en
  • English
  • German
  • Chinese
M2i.4652-Exp 16 bit multi-purpose digitizer - SPECTRUM Instrumentation
M2i.4652-Exp
16 bit multi-purpose digitizer
Parameter Search Sales Contact Support

Recommended product:

Product:

M2i.4652-Exp

16 bit multi-purpose digitizer

Description:

The M2i.46xx Express series allows recording of one, two, four or eight channels with sampling rates of 200 kS/s up to 3 MS/s. These cards offer outstanding A/D features both in resolution and speed for PCI/PCI-X and PCI Express. The powerful A/D amplifier section offers 8 different input ranges, programmable offset and a software switching from single-ended to differential inputs without decreasing the number of channels. The enhanced FIFO engine is capable of streaming even 8 channels at a sustained 3 MS/s to memory or hard disk.

Facts & Features:

  • Up to 3 MS/s on 8 channels
  • Simultaneously sampling on all channels
  • Software selectable single-ended or differential inputs
  • Separate ADC and amplifier per channel
  • Programmable input offset of +/-5 V
  • Up to 1 GSample on-board memory
  • 256 MSample standard memory installed
  • 8 input ranges: +/-50 mV up to +/-10 V
  • Window, pulse width, re-arm, spike, OR/AND trigger
  • Synchronization of up to 16 cards
  • PCIe x1 Gen1 Interface
  • Works with x1/x4/x8/x16* PCIe slots
  • Software compatible to PCI
  • Sustained streaming mode up to 160 MB/s

Technical Drawing:

Application examples:

  • High precision audio measurements
  • Vibration analysis
  • Life cycle tests of plastic components

BaseXIO (Optional)

The BaseXIO option offers 8 asynchronous digital I/O lines on the base card. The direction can be selected by software in groups of four. Two of these lines can also be used as additional external trigger sources. This allows the building of complex trigger conjunctions with external gated triggers as well as AND/OR conjunction of multiple external trigger sources like, for example, the picture and row synchronisation of video signals. In addition one of the I/O lines can be used as reference clock for the Timestamp counter.

FIFO mode

The FIFO mode is designed for continuous data transfer between measurement board and PC memory (up to 245 MB/s on a PCI-X slot, up to 125 MB/s on a PCI slot and up to 160 MB/s on a PCIe slot) or hard disk. The control of the data stream is done automatically by the driver on interrupt request. The complete installed on-board memory is used for buffer data, making the continuous streaming extremely reliable.

System Star-Hub (Optional)

Using the System Star-Hub for M2i series cards it is possible to synchronize several systems with each other having the same advantages that the standard Star-Hub gives. The system star-hub allows to extend the number of synchronous channels or set up multiple synchronous data streaming systems either for data storage or online calculations.

Ring buffer mode

The ring buffer mode is the standard mode of all acquisition boards. Data is written in a ring memory of the board until a trigger event is detected. After the event the posttrigger values are recorded. Because of this continuously recording into a ring buffer there are also samples prior to the trigger event visible: Pretrigger = Memsize - Posttrigger.

Star-Hub (Optional)

The star-hub is an additional module allowing the phase stable synchronization of up to 16 boards in one system. Independent of the number of boards there is no phase delay between all channels. The star-hub distributes trigger and clock information between all boards. As a result all connected boards are running with the same clock and the same trigger. All trigger sources can be combined with OR/AND allowing all channels of all cards to be trigger source at the same time. The star-hub is available as 5 card and 16 card version. The 5 card version doesn't need an extra slot.

Channel Trigger

The data acquisition boards offer a wide variety of trigger modes. Besides the standard signal checking for level and edge as known from oscilloscopes it's also possible to define a window trigger. Trigger conditions can be combined with logical conjunctions like OR to adopt to different application scenarios.

External Trigger

All boards can be triggered using an external TTL signal. It's possible to use positive or negative edge also in combination with a programmable pulse width. An internally recognized trigger event can - when activated by software - be routed to the trigger connector to start external instruments.

Gated Sampling

The Gated Sampling option allows data recording controlled by an external gate signal. Data is only recorded if the gate signal has a programmed level. In addition a pre-area before start of the gate signal as well as a post area after end of the gate signal can be acquired. The number of gate segments is only limited by the used memory and is unlimited when using FIFO mode.

Multiple Recording

The Multiple Recording option allows the recording of several trigger events with an extremely short re-arming time. The hardware doesn't need to be restarted in between. The on-board memory is divided in several segments of the same size. Each of them is filled with data if a trigger event occurs. Pre- and posttrigger of the segments can be programmed. The number of acquired segments is only limited by the used memory and is unlimited when using FIFO mode.

Pulsewidth Trigger

Defines the minimum or maximum width that a trigger pulse must have to generate a trigger event. Pulse width can be combined with channel trigger, pattern trigger and external trigger. This makes it possible to trigger on signal errors like too long or too short pulses.

Spike Trigger

The trigger event is a slope inside the signal that is larger (or even smaller) than a programmed slope. Internally the difference of two adjacent samples is calculated and then compared to the programmed trigger level. This trigger mode allows the detection of signal distortions as needed for power line monitoring.

Timestamp

The timestamp option writes the time positions of the trigger events in an extra memory. The timestamps are relative to the start of recording, a defined zero time, externally synchronized to a radio clock, or a GPS receiver. With this option acquisitions of systems on different locations can be set in a precise time relation.

External Clock

Using a dedicated connector a sampling clock can be fed in from an external system. It's also possible to output the internally used sampling clock to synchronize external equipment to this clock.

High Precision PLL

The internal sampling clock of the card is generated using a high precision PLL. This powerful device allows to select the sampling rate with a fine step size making it possible to perfectly adopt to different measurement tasks. Most other cards on the market only allow the setup of fixed sampling rates like 100 MS/s, 50 MS/s, 25 MS/s, 10 MS/s, ... without any possibility to set the sampling rate to any value in between.

Reference Clock

The option to use a precise external reference clock (normally 10 MHz) is necessary to synchronize the board for high-quality measurements with external equipment (like a signal source). It's also possible to enhance the quality of the sampling clock in this way. The driver automatically generates the requested sampling clock from the fed in reference clock.

On-board Calibration

The on-board calibration can be run on user request and calibrates the amplifier against a dedicated internal high precision calibration source. After this calibration data is stored permanently in an on-board EEPROM and is automatically used for further acquisitions.

Differential Inputs

With a simple software command the inputs can individually be switched from single-ended (in relation to ground) to differential, without loosing any inputs. When the inputs are used in differential mode the A/D converter measures the difference between two lines with relation to system ground.

Programmable Input Amplifiers

The analog inputs can be adapted to real world signals using individual settings for each channel. A large number of different input ranges and a programmable input offset allow to adopt perfectly to the real world signals.

Programmable Input Offset

Most of the Spectrum A/D cards offer a user programmable signal offset opening the Spectrum boards to a wide variety of setups. The signal offset at least covers a range of +/-100 % of the currently selected input range making unipolar measurements with the card possible. Besides this the input range offset can be programmed individually allowing a perfect match of the A/D card section to the real world signal.

Synchronous Sampling

All acquisition cards from Spectrum are built with a completely synchronous design. Every channel has its own independent input amplifier as well as an independent ADC allowing to program all input channel related settings individually for each channel.

3rd Party Drivers

A lot of third-party products are supported by the Spectrum driver. Choose between LabVIEW, MATLAB, LabWindows/CVI and IVI. All drivers come with examples and detailed documentation.

Programming Examples

Programming examples for C++, Delphi, Visual Basic, C#, VB.Net, Java, Python, Julia and LabWindows/CVI are delivered with the driver. Due to the simple interface of the driver, the integration in other programming languages or special measurement software is an easy task.

Linux

All cards are delivered with full Linux support. Pre compiled kernel modules are included for the most common distributions like RedHat, Fedora, Suse, Ubuntu or Debian. The Linux support includes SMP systems, 32 bit and 64 bit systems, versatile programming examples for Gnu C++ as well as the possibility to get the driver sources for own compilation.

Remote Server (Optional)

Using the Spectrum Remote Server it is possible to access the M2p/M2i/M3i/M4i/M4x card(s) installed in one PC (server) from another PC (client) via local area network (LAN), similar to using a digitizerNETBOX. To operate it the remote server option has to be activated by a software license for any of the Spectrum cards in the remote system.

SBench6

SBench 6 is a powerful and intuitive interactive measurement software. Besides the possibility to commence the measuring task immediately, without programming, SBench 6 combines the setup of hardware, data display, oscilloscope, transient recorder, waveform generator, analyzing functions, import and export functions under one easy-to-use interface.

Windows

This standard driver is included in the card delivery and it is possible to get the newest driver version free of charge from our homepage at any time. There are no additional SDK fees for the classical text-based programming. All boards are delivered with drivers for Windows 7, Windows 8, Windows 10 and Windows 11, all 32 bit and 64 bit.

Related products
Product Channels Max. Samplerate Max. Bandwidth
M2i.4620-Exp 2 200 KS/s 100 KHz
M2i.4621-Exp 4 200 KS/s 100 KHz
M2i.4622-Exp 8 200 KS/s 100 KHz
M2i.4630-Exp 2 500 KS/s 250 KHz
M2i.4631-Exp 4 500 KS/s 250 KHz
M2i.4632-Exp 8 500 KS/s 250 KHz
M2i.4640-Exp 2 1 MS/s 500 KHz
M2i.4641-Exp 4 1 MS/s 500 KHz
M2i.4642-Exp 8 1 MS/s 500 KHz
M2i.4650-Exp 2 3 MS/s 1.50 MHz
M2i.4651-Exp 4 3 MS/s 1.50 MHz
Other platforms
On different platforms Bus Max. Bus Transfer speed
DN2.465-08 Ethernet 70 MByte/s
DN2.465-16 Ethernet 70 MByte/s
DN6.465-16 Ethernet 70 MByte/s
DN6.465-24 Ethernet 70 MByte/s
DN6.465-32 Ethernet 70 MByte/s
DN6.465-48 Ethernet 70 MByte/s
M2i.4652 PCI-X 245 MByte/s
MC.4652 CompactPCI 100 MByte/s

A/D External Amplifiers (Optional)

Independent external pre-amplifiers allow to acquire extremely small signals with a reasonable quality. The external amplifiers are optimized for low noise inputs. The amplifiers of the SPA series are available with different bandwidth and input impedance options. No programming is needed to operate the amplifiers.

Clock / Trigger Distribution (Optional)

The Clock and Trigger Distribution card allows to externally connect several systems with a common clock and a synchronized trigger signal. One can connect up to 17 independent systems or external equipment using this card.

Docking Stations (Optional)

All Spectrum products can be used in 3rd party docking stations, connected by either PCIe interface card or by Thunderbolt interface. Docking stations can extend a standard PC by up to 16 PCIe slots.

Streaming Systems (Optional)

Combining a number of Spectrum M2p/M2i/M3i/M4i/M5i PCIe digitizers with a Tera-Store Data Streaming solution allows the capture and storage of long complex signals for extended periods of time. With systems available offering from 1 to 32 TB of storage and streaming rates up to 3 GB/s signals can be digitized and stored seamlessly for hours on end.

Documents

Legacy Windows Driver Installation

Windows driver installation of driver versions < 4.0

21.02.20221 M
M2i.46xx Datasheet

Datasheet of the M2i.46xx family

21.02.2022847 K
M2i.46xx Manual

Manual of M2i.46xx family

21.02.20227 M
PDN M2i.46xx Series

Product Discontinuance Notification for M2i.46xx/M2i.46xx-exp Series

21.02.2022279 K
Streaming System

Datasheet of Spectrum Terastore Streaming System

21.02.2022910 K
M2i ClkTrigDistr Datasheet

M2i Clock / Trigger distribution card

21.02.2022217 K
M2i StarHub Datasheet

M2i StarHub module datasheet

21.02.2022224 K
Docking Station

Data sheet of Docking Station

21.02.2022166 K
IVI Driver Manual

Short Manual for IVI Driver

21.02.2022532 K
SBench 6 data sheet

Data sheet of SBench 6

15.01.2024999 K
MATLAB Manual

Manual for MATLAB driver M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6

13.12.20231 M
LabVIEW Manual

Manual for LabVIEW drivers for M2i/DN2

21.02.20222 M
SBench 6 Manual

Manual for SBench 6

21.02.20227 M

WINDOWS DRIVER + SOFTWARE

Win32 Driver Win2k

M2i / M3i driver - last Version for Windows 2000

221.02.2022437 K
MICX_WIN7_8 (32-bit)

MI/MC/MX/PCI.xxx Windows 7/8 32 Bit Drivers

421.02.2022397 K
MICX_WIN7_8 (64-bit)

MI/MC/MX/PCI.xxx Windows 7/8 64 Bit Drivers

421.02.2022604 K
Win 98/2000 PCI.xxx

PCI.xxx Windows 98/2000 Drivers

321.02.2022364 K
Win NT/98/XP ISA

ISA/PAD/DAP Windows NT/98/XP Drivers + mixed ISA/PCI cards

321.02.20223 M
Win 95 ISA/PCI

ISA/PAD/DAP/PCI Windows 95 Drivers

321.02.2022298 K
Win 95 ISA/PCI

ISA/PAD/DAP/PCI Windows 95 Driver Installer

321.02.2022860 K
Win 3.1 ISA/PCI

ISA/PAD/DAP/PCI Windows 3.1 Driver

321.02.2022248 K
Driver Win7/8/10/11

M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6 driver for Windows 7, 8, 10, 11 (32/64 bit)

7.0023.02.20245 M
Win32 Driver WinXP/Vista

M2i/M3i/M4i/M4x driver - last Version for Windows 32 XP / Vista

3.3021.02.20222 M
Win64 Driver WinXP/Vista

M2i/M3i/M4i/M4x driver - last Version for Windows 64 XP / Vista

3.2021.02.20223 M
c_header

C/C++ driver header and library files

7.0023.02.202443 K
Control Center Win2k

Spectrum Control Center - last Version for Windows 2000

1.4121.02.20228 M
SBench5

SBench 5 Installer

5.3.021.02.20225 M
Control Center (32-bit)

Spectrum Control Center (32-bit) / Windows 7, 8, 10

2.3523.02.202422 M
Control Center (64-bit)

Spectrum Control Center (64-bit) / Windows 7, 8, 10, 11

2.3523.02.202425 M
Control Center WinXP

Spectrum Control Center - last Version for Windows XP

1.7421.02.20228 M
SBench6 (32-bit)

SBench 6 (32-bit) Installer / Windows 7, 8, 10

6.5.0723.02.202436 M
SBench6 (64-bit)

SBench 6 (64-bit) Installer / Windows 7, 8, 10, 11

6.5.0723.02.202439 M
SBench6 WinXP

SBench6 - last Version for Windows XP

6.3.521.02.202241 M
Remote Server Windows

Windows Installer for Remote Server Option

23.02.202413 M
IVI Digitizer

IVI Driver for IVI Digitizer class (32 bit)

23.02.20243 M
IVI Scope

IVI Driver for IVI Scope class (32 bit)

23.02.20243 M
LabView driver

M2i/M2p/M3i/M4i/M4x/M5i/DN2/DN6 LabView driver installer

23.02.202419 M
Matlab driver

M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6 Matlab driver + examples installer

23.02.20247 M
Examples for Windows

Windows Examples (C/C++, .NET, Delphi, Java, Python, Julia ...)

7.0023.02.20242 M

LINUX DRIVER + SOFTWARE

Linux Driver Complete

M2p/M4i/M4x/M5i/M2i/M3i drivers (Kernel + Library) for Linux 32 bit and 64 bit

7.0023.02.202412 M
Linux Driver Library

Driver libraries (no Kernel) for Linux 32 bit and 64 bit

7.0023.02.20249 M
Linux ISA/PCI

ISA/PAD/DAP/PCI Linux Driver

421.02.202210 M
Remote Server Linux

Spectrum Remote Server Linux Installer Package

23.02.202412 K
Control Center

Spectrum Control Center

2.3507.03.202457 M
SBench6

SBench 6 Linux 32 (.rpm)

6.5.0723.02.202426 M
SBench6

SBench 6 Linux 64 (.rpm)

6.5.0723.02.202426 M
SBench6

SBench 6 Linux 32 (.deb)

6.5.0723.02.202423 M
SBench6

SBench 6 Linux 64 (.deb)

6.5.0723.02.202422 M
SBench6

SBench6 Jetson (.deb)

6.5.0723.02.20248 M
MATLAB Driver

Drivers + examples for MATLAB for Linux (DEB + RPM)

23.02.2024183 K
Examples for Linux

Linux Examples (C/C++, Python, Julia ...)

7.0023.02.2024556 K

Firmware

Firmware Update (Windows)

M2i/M2p/M3i/M4i/M4x/M5i firmware update (Windows)

23.02.202422 M
Firmware Update (Linux)

M2i/M2p/M3i/M4i/M4x/M5i firmware update (Linux)

23.02.202430 M

Case Studies

CS Automotive Data Recorder

Case Automotive Data Study Recorder and Playback Solution

21.02.2022278 K

Product Notes

General Digitizer Introduction

General Introduction to Waveform Digitizers

21.02.2022587 K
High-Res High BW Digitizers

Advantages of High Resolution in High Bandwidth Digitizers

21.02.20222 M
Digitizer Front-End

Proper Use of Digitizer Front-End Signal Conditioning

21.02.20223 M
Trigger and Sync

Trigger, Clock and Synchronization Details at high-speed Digitizers

21.02.20221 M
Digitizer Software Integration

Software Support for Modular Digitizers

21.02.2022724 K
SBench 6 Introduction

SBench 6 - Data Acquisition and Analysis of Digitizer Data

21.02.20221 M

Application Notes

Ultrasonic Applications

Using Digitizers in Ultrasonic Applications

21.02.2022617 K
Signal Processing Tools

Using Signal Processing Tools to enhance Digitizer Data

21.02.20221 M
Mechanical Measurements

Mechanical Measurements Using Digitizers

21.02.20221 M
Power Measurements

Power Measurements Using Modular Digitizers

21.02.20221 M
Using Probes & Sensors

Using Probes and Sensors with Modular Digitizers

21.02.2022858 K
Solving Data Transfer Bottlenecks on Digitizers

Solving Data Transfer Bottlenecks on Digitizers

21.02.20222 M
Teaming AWG with Digitizer

Teaming an Arbitrary Waveform Generator with a Modular Digitizer

21.02.2022919 K
Common Digitizer Setup Problems

Application Note: Common Digitizer Setup Problems to avoid

21.02.20221 M
Mechanical Measurements D

Mechanische Messungen mit modularen Digitizern

21.02.20221 M
AN Vehicular Testing with Modular Instruments

Application Note: Vehicular Testing with Modular Instruments

21.02.20221 M
AN Testing Power Supplies

Application Note: Testing Power Supplies using Modular Digitizers

21.02.2022898 K
AN Amplitude Resolution

Application Note: The Amplitude Resolution of Digitizers and how it affects Measurements

21.02.2022555 K
AN008 Install Legacy Win Drivers

Application Note: Legacy Windows Driver Installation

21.02.20221 M
Contact

On location for you. Choose your region.

Europe USA Asia
Contact Europe
Phone +49 (0)4102 6956-0
Fax +49 (0)4102 6956-66
E-Mail info@spec.de
Contact USA
Phone +1 (201) 562-1999
Fax +1 (201) 820-2691
E-Mail sales@spectrum-instrumentation.com
Contact Asia
Phone +61 402 130 414
E-Mail greg.tate@spectrum-instrumentation.com
Support

Request support. We are happy to help.

Support
powered by webEdition CMS