M2p.75xx-x4 - 32 channel digital I/O card

- 32 digital I/O channels
- 1 kS/s up to 125 MS/s sampling speed
- Ultra Fast PCIe Express x4 interface
- 110 Ohm input impedance selectable
- Inputs 3.3 V and 5.0 V TTL compatible
- 1 GByte of on-board memory
- 700 MB/s FIFO mode for input and output
- Synchronization of up to 16 cards per system
- Features: Single-Shot, Streaming, Multiple Recording/Replay, Gated Sampling/Replay, Sequence Mode, Timestamps
- Direct data transfer to CUDA GPU using SCAPP option

- PCIe x4 Gen 1 Interface
- Works with x4/x8/x16* PCIe slots
- Sustained streaming mode up to 700 MB/s**
- Half-Height PCIe Form Factor

Operating Systems
- Windows 7 (SP1), 8, 10, Server 2008 R2 and newer
- Linux Kernel 2.6, 3.x, 5.x
- Windows/Linux 32 and 64 bit

Recommended Software
- Visual C++, Delphi, C++ Builder, GNU C++, VB.NET, C#, Java, Python, Julia
- SBench 6

Drivers
- MATLAB
- LabView

Input

<table>
<thead>
<tr>
<th>Model</th>
<th>16 bit Input</th>
<th>32 bit Input</th>
<th>16 bit Output</th>
<th>32 bit Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2p.7515-x4</td>
<td>125 MS/s</td>
<td>125 MS/s</td>
<td>125 MS/s</td>
<td>125 MS/s</td>
</tr>
</tbody>
</table>

General Information

The M2p.75xx series of fast digital I/O cards allow to acquire or replay digital patterns with a programmable speed of up to 125 MS/s. The direction can be switched by software between input (digital data acquisition) and output (digital pattern generation). The on-board memory of 1 GByte can be completely used for digital pattern. Furthermore the on-board memory can be switched to a FIFO buffer allowing to continuously stream data in either output or input direction.

Using the unique M2p-Star-Hub up to 16 different cards of the M2p series can be synchronized in one system. The M2p series offers - besides the M2p.75x digital I/O card - 16 bit digitizers with 5 MS/s to 125 MS/s sampling speed and up to 8 channels and 16 bit AWGs with 40 MS/s to 125 MS/s sampling speed and up to 8 channels.

*Some x16 PCIe slots are for the use of graphic cards only and can’t be used for other cards.**Throughput measured with a motherboard chipset supporting a TLP size of 256 bytes.
Software Support

Windows drivers
The cards are delivered with drivers for Windows 7, Windows 8 and Windows 10 (each 32 bit and 64 bit). Programming examples for Visual C++, C++ Builder, Delphi, Visual Basic, VB.NET, C#, Python, Java and Julia are included.

Linux Drivers
All cards are delivered with full Linux support. Pre-compiled kernel modules are included for the most common distributions like Fedora, Suse, Ubuntu LTS or Debian. The Linux support includes SMP systems, 32 bit and 64 bit systems, versatile programming examples for GNU C++, Python as well as the possibility to get the kernel driver sources for your own compilation.

SBench 6
A base license of SBench 6, the easy-to-use graphical operating software for Spectrum cards, is included in the delivery. The base license makes it possible to test the card, display acquired data and make some basic measurements. It’s a valuable tool for checking the card’s performance and assisting with the unit’s initial setup. The cards also come with a demo license for the SBench 6 professional version. This license gives the user the opportunity to test the additional features of the professional version with their hardware. The professional version contains several advanced measurement functions, such as FFTs and X/Y display, import and export utilities as well as support for all acquisition modes including data streaming. Data streaming allows the cards to continuously acquire data and transfer it directly to the PC RAM or hard disk. SBench 6 has been optimized to handle data files of several GBs. SBench 6 runs under Windows as well as Linux (KDE, GNOME and Unity) operating systems. A test version of SBench 6 can be downloaded directly over the internet and can run the professional version in a simulation mode without any hardware installed. Existing customers can also request a demo license for the professional version from Spectrum. More details on SBench 6 can be found in the SBench 6 data sheet.

Third-party products
Spectrum supports the most popular third-party software products such as LabVIEW or MATLAB. All drivers come with detailed documentation and working examples are included in the delivery.

SCAPP – CUDA GPU based data processing
For applications requiring high performance signal and data processing Spectrum offers SCAPP (Spectrum’s CUDA Access for Parallel Processing). The SCAPP SDK allows a direct link between Spectrum digitizers, AWGs or Digital Data Acquisition Cards and CUDA based GPU cards. Once in the GPU users can harness the processing power of the GPU’s multiple (up to 5000) processing cores and large (up to 24 GB) memories. SCAPP uses an RDMA (Linux only) process to send data at the full PCIe transfer speed to and from the GPU card. The SDK includes a set of examples for interaction between the Spectrum card and the GPU card and another set of CUDA parallel processing examples with easy building blocks for basic functions like filtering, averaging, data de-multiplexing, data conversion or FFT. All the software is based on C/C++ and can easily be implemented, expanded and modified with normal programming skills.

General Hardware features and options

PCI Express x4
The M2p series cards use a PCI Express x4 Gen 1 connection. They can be used in PCI Express x4, x8 and x16 slots with hosts supporting Gen 1, Gen 2, Gen 3 or Gen4. The maximum sustained data transfer rate is more than 700 MByte/s (read direction) or 700 MByte/s (write direction) per slot. Physically supported slots that are electrically connected with only x1 or x2 can also be used with the M2p series cards, but with reduced data transfer rates.

External clock I/O
Using a dedicated line a sampling clock can be fed in from an external system. It’s also possible to output the internally used sampling clock to synchronize external equipment to this clock.

Reference clock
The option to use a precise external reference clock (typically 10 MHz) is necessary to synchronize the instrument for high-quality measurements with external equipment (like a signal source). It’s also possible to enhance the stability of the sampling clock in this way. The driver automatically generates the requested sampling clock from the fed in reference clock.

Star-Hub
The Star-Hub is an additional module allowing the phase stable synchronization of up to 16 boards in one system. Two versions are available: one with up to 6 cards and the large version supports up to 16 cards in one system. Both versions can be mounted in two different ways, to either extend the cards length to ¾ PCIe length occupying one slot, or extend its width to two slots whilst keeping the ½ PCIe length.

Independent of the number of boards there is no phase delay between the channels. The Star-Hub distributes trigger and clock information between all boards. As a result all connected boards are running with the same clock and the same trigger. All trigger sources can be combined with OR/AND. For digitizers that means all channels of all cards to be trigger source at the same time.

Multi-Purpose I/O
As standard each card has 4 multi-purpose I/O lines. All I/O lines can be used for asynchronous digital I/O, can carry additional status information or can be used as trigger inputs.
Input (Digital Data Acquisition) features

Ring buffer mode
The ring buffer mode is the standard mode of all oscilloscope instruments. Digitized data is continuously written into a ring memory until a trigger event is detected. After the trigger, post-trigger samples are recorded and pre-trigger samples can also be stored. The number of pre-trigger samples available simply equals the total ring memory size minus the number of post-trigger samples.

FIFO mode
The FIFO or streaming mode is designed for continuous data transfer between the card and the PC memory. When mounted in a PCI Express x4 Gen 1 interface both, read and write streaming speeds of up to 700 MByte/s are possible. The control of the data stream is done automatically by the driver on interrupt request basis. The complete installed on-board memory is used to buffer the data, making the continuous streaming process extremely reliable.

Multiple Recording
The Multiple Recording mode allows the recording of several trigger events with an extremely short re-arming time. The hardware doesn’t need to be restarted in between. The on-board memory is divided in several segments of the same size. Each of them is filled with data if a trigger event occurs. Pre- and posttrigger of the segments can be programmed. The number of acquired segments is only limited by the used memory and is unlimited when using FIFO mode.

Gated Sampling
The Gated Sampling mode allows data recording controlled by an external gate signal. Data is only recorded if the gate signal has a programmed level. In addition a pre-area before start of the gate signal as well as a post area after end of the gate signal can be acquired. The number of gate segments is only limited by the used memory and is unlimited when using FIFO mode.

Timestamp
The timestamp function writes the time positions of the trigger events in an extra memory. The timestamps are relative to the start of recording, a defined zero time, externally synchronized to a radio clock, an IRIG-B or GPS receiver. Using the external synchronization gives a precise time relation for acquisitions of systems on different locations.

Output (Pattern Generation) features

Singleshot output
When singleshot output is activated the data of the on-board memory is played exactly one time. The trigger source can be either one of the external trigger inputs or the software trigger. After the first trigger additional trigger events will be ignored.

Repeated output
When the repeated output mode is used the data of the on-board memory is played continuously for a programmed number of times or until a stop command is executed. The trigger source can be either one of the external trigger inputs or the software trigger. After the first trigger additional trigger events will be ignored.

Single Restart replay
When this mode is activated the data of the on-board memory will be replayed once after each trigger event. The trigger source can be either the external TTL trigger or software trigger.

FIFO mode
The FIFO or streaming mode is designed for continuous data transfer between the card and the PC memory. When mounted in a PCI Express x4 Gen 1 interface both, read and write streaming speeds of up to 700 MByte/s are possible. The control of the data stream is done automatically by the driver on interrupt request basis. The complete installed on-board memory is used to buffer the data, making the continuous streaming process extremely reliable.

Multiple Replay
The Multiple Replay mode allows the fast output generation on several trigger events without restarting the hardware. With this option very fast repetition rates can be achieved. The on-board memory is divided into several segments of the same size. Each segment can contain different data which will then be played with the occurrence of each trigger event.

Gated Replay
The Gated Sampling mode allows data replay controlled by an external gate signal. Data is only replayed if the gate signal has attained a programmed level.

Sequence Mode
The sequence mode allows to split the card memory into several data segments of different length. These data segments are chained up in a user chosen order using an additional sequence memory. In this sequence memory the number of loops for each segment can be programmed and trigger conditions can be defined to proceed from segment to segment. Using the sequence mode it is also possible to switch between replay waveforms by a simple software command or to redefine waveform data for segments simultaneously while other segments are being replayed. All trigger-related and software-command-related functions are only working on single cards, not on star-hub-synchronized cards.
Technical Data

Power Up
- Data channels direction after power up: input (high impedance)
- Clock and trigger output after power up: disabled

Digital Data Inputs
- **Direction**: software programmable
- **Acquisition channel selection**: software programmable 16 or 32
- **Sampling clock edge**: software programmable rising or falling edge (see clock section for details)
- **Logic type**: 3.3V LVTTL (5V TTL tolerant) with bus-hold as floating input protection
- **Input Impedance**: software programmable 110 Ω / 50 Ω || 15 pF
- **110 Ω termination voltage**: 2.25 V
- **Standard input levels**: Low: ≤ 0.8 V, High: ≥ 2.0 V
- **Absolute maximum Input levels**: Low: ≥ -0.5 V, High: ≤ 7.0 V
- **Input current sink**: no termination Low: -5.0µA (0.0 V), High: +5.0µA (3.3V), +20.0µA (5.0V)

Digital Data Outputs
- **Direction**: software programmable
- **Replay channel selection**: software programmable 16 or 32
- **Update clock edge**: software programmable rising or falling edge (see clock section for details)
- **Logic type**: 3.3V LVTTL
- **Typical output levels**: high impedance Low: 0.2 V, High: 2.8 V
- **Output levels at max load**: Low: < 0.5 V, High: > 2.0 V
- **Output Impedance (typical)**: ca. 7 Ω
- **Stop level**: software programmable Tristate, Low, High, Hold Last, Custom Value

Output Data Delays
- **Trigger to 1st sample**: 78 samples
- **Gate end to last replayed sample**: 78 samples

Trigger
- **Available trigger modes**: software programmable External, Software, Or/And, Delay
- **Trigger edge**: software programmable Rising edge, falling edge or both edges
- **Trigger pulse width**: software programmable 0 to [4G - 1] samples in steps of 1 sample
- **Trigger delay**: software programmable 0 to [4G - 1] samples in steps of 1 samples
- **Trigger holdoff (for Multi, ABA, Gate)**: software programmable 0 to [4G - 1] samples in steps of 1 samples
- **Multi, ABA, Gate: re-arming time**: software programmable ≤ 40 samples (+ programmed pretrigger + programmed holdoff)
- **Pretrigger at Multi, ABA, Gate, FIFO**: software programmable 8 up to [32 kSamples / number of active channels] in steps of 8
- **Posttrigger**: software programmable 8 up to [32k - 4] samples in steps of 8 (defining pretrigger in standard scope mode)
- **Memory depth**: software programmable 16 up to [installed memory / number of active channels] samples in steps of 8
- **Multiple Recording/ABA segment size**: software programmable 8 up to [installed memory / number of active channels] samples in steps of 8
- **Internal/External trigger accuracy**: sample (sampled with programmed clock edge, see clock section for details)
- **Timestamp modes**: software programmable Standard, Start/reset, external reference clock on X1 (e.g. PPS from GPS, IRIG-B)
- **Data format**: Std., Start/reset: 64 bit counter, increments with sample clock (reset manually or on start)
- **External trigger bandwidth**: 125 MHz
- **Minimum external trigger pulse width**: ≥ 2 samples

External trigger sources
- X0, X1, X2, X3
- **External trigger logic type**: 3.3V LVTTL (5V TTL tolerant)
- **Input transition rise or fall rate**: ≤ 10 ns/V
- **110 Ω termination voltage**: 2.25 V
- **Standard input levels**: Low: ≤ 0.8 V, High: ≥ 2.0 V
- **Absolute maximum Input levels**: Low: ≥ -0.5 V, High: ≤ 7.0 V
- **Input current sink**: no termination Low: -5.0µA (0.0 V), High: +5.0µA (3.3V), +20.0µA (5.0V)
- **External trigger bandwidth**: ≥ 2 samples
Multi Purpose I/O lines

Number of multi purpose input/output lines: four, named X0, X1, X2, X3

Multi Purpose line
Input: available signal types: software programmable
Input: logic type: Asynchronous DigitalIn, Timestamp Reference Clock, Logic trigger
Input: impedance: 3.3V (LVTTL) [5V TTL tolerant]
Input: transition rise or fall rate: ≤ 10 ns/V
Input: termination voltage: 2.25 V
Input: standard levels: Low: ≤ -0.8 V, High: ≥ 2.0 V
Input: absolute maximum levels: Low: ≤ -0.5 V, High: ≤ 7.0 V
Input: current sink (no termination): Low: -5.0 µA (0.0 V), High: +5.0 µA (3.3V), +20.0 µA (5.0V)
Input: maximum bandwidth: 125 MHz
Output: available signal types: software programmable
Output: logic type: 3.3V (LVTTL)
Output: typical levels high impedance: Low: 0.2 V, High: 2.8 V
Output: maximum current load: Low: 64 mA, High: -32 mA
Output: levels at max load: Low: < 0.5 V, High: > 2.0 V
Output: impedance: ca. 7 Ω
Output: update rate (synchronous modes): sampling clock (on programmed clock edge, see clock section for details)

Clock

Clock Modes: software programmable
Active clock edge: software programmable
Internal clock range (PLL mode): 1 kS/s to 125 MS/s
Internal clock accuracy: ±1.0 ppm (at time of calibration in production)
Internal clock aging: ±0.5 ppm / year
PLL clock setup granularity (int. or ext. reference): 1 Hz
External reference clock range: 128 kHz up to 125 MHz
Direct external clock to internal clock delay: 0 ns
Direct external clock range: DC to 125 MHz
Direct external clock minimum LOW/HIGH time: 4 ns
Clock input: logic type: 3.3V (LVTTL) [5V TTL tolerant]
Clock input: transition rise or fall rate: ≤ 10 ns/V
Clock input: termination voltage: 2.25 V
Clock input: standard levels: Low: ≤ -0.8 V, High: ≥ 2.0 V
Clock input: absolute maximum levels: Low: ≤ -0.5 V, High: ≤ 7.0 V
Clock input: current sink (no termination): Low: -5.0 µA (0.0 V), High: +5.0 µA (3.3V), +20.0 µA (5.0V)
Clock input: maximum bandwidth: 125 MHz
Clock input: logic type: 3.3V (LVTTL)
Clock input: typical levels high impedance: Low: 0.2 V, High: 2.8 V
Clock input: maximum current load: Low: 64 mA, High: -32 mA
Clock input: levels at max load: Low: < 0.5 V, High: > 2.0 V
Clock input: impedance: ca. 7 Ω
Clock input: duty cycle: 45% - 55%
Clock output: logic type: 3.3V (LVTTL)
Clock output: typical levels high impedance: Low: 0.2 V, High: 2.8 V
Clock output: maximum current load: Low: 64 mA, High: -32 mA
Clock output: levels at max load: Low: < 0.5 V, High: > 2.0 V
Clock output: impedance: ca. 7 Ω
Clock output: duty cycle: 45% - 55%
Synchronization clock multiplier_N: software programmable

Connectors

Digital Inputs/Outputs: 40 pole half pitch [Hirose FX2 series]
Cable-Type: Cab-d40-xxxx
Connector on card: Hirose FX2B-40PA-1.27DSL
Flat ribbon cable connector: Hirose FX2B-40SA-1.27R

Environmental and Physical Details

Dimension (Single Card) type: 8 channel AWG or High power AWG
Weight (M2p.59xx, M2p.75xx series): maximum 215 g
Weight (M2p.65x0, M2p.65x1, M2p.65x6 series): maximum 195 g
Weight (M2p.65x3, 65x8, 65x4x, 65x7 series): maximum 305 g
Weight (Star-Hub Option -SH6ex, -SH6tm): including 6 sync cables 65 g
Weight (Star-Hub Option -SH16ex, -SH16tm): including 16 sync cables 90 g
Weight (Option -DigSMB): 50 g
Weight (Option -DigFX2): 60 g
Warm up time: 10 minutes
Operating temperature: 0°C to 40°C
Storage temperature: -10°C to 70°C
Humidity: 10% to 90%
Dimension of packing: 1 or 2 cards 470 mm x 250 mm x 130 cm
Volume weight of packing: 1 or 2 cards 4 kgs

PCI Express specific details

- **PCIe slot type**: x4, Generation 1
- **PCIe slot compatibility (physical)**: x4, x8, x16
- **PCIe slot compatibility (electrical)**: x1, x2, x4, x8, x16 with Generation 1, Generation 2, Generation 3, Generation 4
- **Sustained streaming mode** (Card-to-System: M2p.59xx or M2p.75xx)
- **Sustained streaming mode** (System-to-Card: M2p.55xx or M2p.75xx)

- **Power Consumption**

<table>
<thead>
<tr>
<th>3.3V</th>
<th>12V</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD A</td>
<td>TBD A</td>
<td>TBD W</td>
</tr>
</tbody>
</table>

- **MTBF**

 | TBD hours |

Certification, Compliance, Warranty

- **EMC Immunity**: Compliant with CE Mark
- **EMC Emission**: Compliant with CE Mark
- **Product warranty**: 5 years starting with the day of delivery
- **Software and firmware updates**: Life-time, free of charge

Clock to data timing

The setup and hold times as well as any delays relate to the output clock. Please be sure to meet this timing constraints if feeding in external clock. All timings shown here are in relation to the programmed clock edge (rising or falling). The illustration on the right shows the relation to the rising edge as an example.

For detailed information on the different modes for external clocking please refer to the dedicated chapter in the hardware manual for the boards of the M2p.75xx series.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>External Clocking (direct and reference clock)</th>
<th>Internal Clocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsd</td>
<td>9.3 ns</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tcd</td>
<td>TBD</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tso1</td>
<td>0.0 ns</td>
<td>0.0 ns</td>
</tr>
<tr>
<td>Tco2</td>
<td>2.0 ns</td>
<td>2.0 ns</td>
</tr>
<tr>
<td>Tco1</td>
<td>6.1 ns</td>
<td>6.1 ns</td>
</tr>
<tr>
<td>Tc</td>
<td>-3.5 ns</td>
<td>-3.5 ns</td>
</tr>
</tbody>
</table>

When using external clock, a delayed clock signal is generated on the Clock Output pin. The timing data in relation to this delayed clock output is identical to the timing when using internal clocking. It is therefore strongly recommended that you use the delay clock output for clocking any external devices.
Order Information

The card is delivered with 1 GByte on-board memory and supports standard acquisition and replay (scope, single-shot, loop, single restart), FIFO acquisition/replay (streaming), Multiple Recording/Replay, Gated Sampling/Replay, Timestamps and Sequence Mode. Operating system drivers for Windows/Linux 32 bit and 64 bit, examples for C/C++, LabVIEW (Windows), MATLAB (Windows and Linux), .NET, Delphi, Java, and a Base license of the oscilloscope software SBench 6 are included.

One digital connecting cable Cab-d40-idc-100 is included in the delivery for every digital connection (each 16 channels).

PCI Express x4

<table>
<thead>
<tr>
<th>Order no.</th>
<th>Input</th>
<th>Output</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2p.515-x4</td>
<td>32 Channels</td>
<td>32 Channels</td>
<td>125 MS/s</td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th>Order no.</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2p.6xxx-SH6ex (1)</td>
<td>Synchronization Star-Hub for up to 6 cards incl. cables, only one slot width, card length 245 mm</td>
</tr>
<tr>
<td>M2p.6xxx-SH6tm (1)</td>
<td>Synchronization Star-Hub for up to 6 cards incl. cables, two slots width, standard card length</td>
</tr>
<tr>
<td>M2p.6xxx-SH16ex (1)</td>
<td>Synchronization Star-Hub for up to 16 cards incl. cables, only one slot width, card length 245 mm</td>
</tr>
<tr>
<td>M2p.6xxx-SH16tm (1)</td>
<td>Synchronization Star-Hub for up to 16 cards incl. cables, two slots width, standard card length</td>
</tr>
<tr>
<td>M2p.upgrade</td>
<td>Upgrade for M2p.6xxx: Later installation of options Star-Hub</td>
</tr>
</tbody>
</table>

Cables

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cab-d40-idc-100</td>
</tr>
<tr>
<td>Cab-d40-d40-100</td>
</tr>
</tbody>
</table>

Software SBench6

<table>
<thead>
<tr>
<th>Order no.</th>
<th>SBench6</th>
<th>Base version included in delivery. Supports standard mode for one card.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SBench6-Pro</td>
<td>Professional version for one card: FIFO mode, export/import, calculation functions</td>
</tr>
<tr>
<td></td>
<td>SBench6-Multi</td>
<td>Option multiple cards: Needs SBench6-Pro. Handles multiple synchronized cards in one system.</td>
</tr>
<tr>
<td></td>
<td>Volume Licenses</td>
<td>Please ask Spectrum for details.</td>
</tr>
</tbody>
</table>

Software Options

<table>
<thead>
<tr>
<th>Order no.</th>
<th>SPc-Server</th>
<th>Remote Server Software Package - LAN remote access for M2i/M3i/M4x/M4x2/M2p cards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPc-SCAPP</td>
<td>Spectrum’s CUDA Access for Parallel Processing - SDK for direct data transfer between Spectrum card and CUDA GPU. Includes RDMA activation and examples.</td>
</tr>
</tbody>
</table>

(1) : Just one of the options can be installed on a card at a time.
(2) : Third party product with warranty differing from our export conditions. No volume rebate possible.

SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH. Microsoft, Visual C++, Windows, Windows 95, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 10 are trademarks/registered trademarks of Microsoft Corporation. LabVIEW, DAQExpress, DAQFactory and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation. MATLAB is a trademark/registered trademark of The Mathworks, Inc. Delphi and C++Builder are trademarks/registered trademarks of Borland Technologies, Inc. Keysight VEE, VEE Pro and VEE Onelab are trademarks/registered trademarks of Keysight Technologies, Inc. FlexPro is a registered trademark of Wavestar GmbH & Co. KG. PCIe, PCI Express and PCI-X are trademarks of PCI-SIG. US is a registered trademark of the US-Computer. PCIEX and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Intel and Intel Core i3, Core i5, Core i7, Core i9, Xeon and Xeon Phi are trademarks and/or registered trademarks of Intel Corporation. AND, Opencore, Semprom, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices. NVIDIA, CUDA, GeForce, Quadro and Tesla are trademarks/registered trademarks of NVIDIA Corporation.