

DN2.80x/81x - hybridNETBOX up to 125 MS/s: Digitizer and AWG

- Stimulus-Response, Closed-Loop, Recorder/Replay, Automated Tests, MIMO, ...
- 2, 4 or 8 channels with 40 MS/s or 125 MS/s in both directions
- Simultaneously sampling and generation on all channels
- 512 MSample acquisition and 512 MSample AWG memory
- Digitizer: single-ended or differential inputs
- Digitizer: separate ADC and amplifier per channel
- Digitizer: 6 input ranges: ±200 mV up to ±10 V
- Digitizer: programmable input offset of ±100%
- AWG: output into 50 Ohm up to ±3 V (8 channels) or ±6 V (2 and 4 channels)
- AWG: output into 1 MOhm up to ±6 V (8 channels) or ±12 V (2 and 4 channels)
- Streaming, Multiple Recording, Gated Sampling, Timestamps, Sequence Replay

- Ethernet Remote Instrument
- LXI Core 2011 compatible
- GBit Ethernet Interface
- Sustained streaming mode up to 70 MB/s
- Direct Connection to PC/Laptop
- Connect anywhere in company LAN
- Embedded Webserver for Maintenance/Updates
- Embedded Server option for open Linux platform

Operating Systems

- Windows 7 (SP1), 8, 10,
 Server 2008 R2 and newer
- Linux Kernel 2.6, 3.x, 4.x, 5.x
- Windows/Linux 32 and 64 bit

SBench 6 Professional Included

- Acquisition, Generation and Display of analog and digital data
- Calculation, FFT
- Documentation and Import, Export

Drivers

- LabVIEW, MATLAB, LabWindows/CVI
- Visual C++, GNU C++, VB.NET, C#, Delphi, Java, Python, Julia
- IVI

General Information

The hybridNETBOX DN2.80/81x series internally consists of a Digitizer and an AWG that can run together or independently. That allows simultaneous data generation and data acquisition for stimulus-response tests, ATE applications, MIMO applications or closed-loop applications. Used independently, the digitizer can acquire test data in the field and the AWG can replay this test data in lab. The hybridNETBOX offers 16 bit resolution and is available with sampling rates of 40 MS/s and 125 MS/s. The hybridNETBOX can be installed anywhere in the company LAN and can be remotely controlled from a host PC.

	Digitizer				Aı	erator	Internal		
Model	Single-End	ed Inputs	Differentio	I Inputs	Out	puts	Outp	Star-Hub	
DN2.813-02	2 channels	40 MS/s	2 channels	40 MS/s	2 channels	40 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.813-04	4 channels	40 MS/s	4 channels	40 MS/s	4 channels	40 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.803-08	8 channels	40 MS/s	4 channels	40 MS/s	8 channels	40 MS/s	±3V (50Ω)	±6V (1MΩ)	yes ⁽¹⁾
DN2.816-02	2 channels	125 MS/s	2 channels	125 MS/s	2 channels	125 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.816-04	4 channels	125 MS/s	4 channels	125 MS/s	4 channels	125 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.806-08	8 channels 4 channels	80 MS/s 125 MS/s	4 channels	125 MS/s	8 channels 4 channels		±3V (50Ω)	±6V (1MΩ)	yes ⁽¹⁾

[1]SBench 6 does not support star-hub for mixed digitizer and AWG. Instead SBench 6 can only operate the cards independently by starting two instances of the program

Software Support

Windows Support

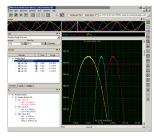
The digitizerNETBOX/generatorNETBOX/hybridNETBOX can be accessed from Windows 7, Windows 8, Windows 10 (either 32 bit or 64 bit). Programming examples for Visual C++, C++ Builder, LabWindows/CVI, Delphi, Visual Basic, VB.NET, C#, Julia, Python, Java and IVI are included.

Linux Support

The digitizerNETBOX/generatorNET-BOX/hybridNETBOX can be accessed from any Linux system. The Linux support includes SMP systems, 32 bit and 64 bit systems, versatile programming examples for Gnu C++, Python, Julia as well as drivers for MATLAB for

Linux. SBench 6, the powerful data acquisition and analysis software from Spectrum is also included as a Linux version.

Discovery Protocol



The Discovery function helps you to find and identify any Spectrum LXI instruments, like the digitizerNETBOX and generatorNETBOX, avail-

able to your computer on the network. The Discovery function will also locate any Spectrum card products that are managed by an installed Spectrum Remote Server somewhere on the network.

After running the discovery function the card information is cached and can be directly accessed by SBench 6. Furthermore the qualified VISA address is returned and can be used by any software to access the remote instrument.

SBench 6 Professional

The digitizerNETBOX, generator-NETBOX and hybridNETBOX can be used with Spectrum's powerful software SBench 6 – a Professional license for the software is already installed in the box. SBench 6 supports all of the standard features of the instrument. It has a variety of display windows as well as analysis, export and documen-

tation functions.

- Available for Windows Windows 7, Windows 8, Windows 10 and Linux
- Easy to use interface with drag and drop, docking windows and context menus
- Display of analog and digital data, X-Y display, frequency domain and spread signals
- · Designed to handle several GBytes of data
- Fast data preview functions
- SBench 6 only supports either AWG or Digitizer in one program
- Star-Hub for mixed mode applications is not supported
- To run AWG and Digitizer with SBench 6, the software needs to be started twice and each instance of the program then operates independently one device

IVI Driver

The IVI standards define an open driver architecture, a set of instrument classes, and shared software components. Together these provide critical elements needed for instrument interchangeability. IVI's defined Application Programming Interfaces (APIs) standardize

common measurement functions reducing the time needed to learn a new $\ensuremath{\mathsf{IVI}}$ instrument.

The Spectrum products to be accessed with the IVI driver can be locally installed data acquisition cards, remotely installed data acquisition cards or remote LXI instruments like

digitizerNETBOX/generatorNETBOX. To maximize the compatibility with existing IVI based software installations, the Spectrum IVI driver supports IVI Scope, IVI Digitizer and IVI FGen class with IVI-C and IVI-COM interfaces.

Third-party Software Products

Most popular third-party software products, such as LabVIEW, MATLAB or LabWindows/CVI are supported. All drivers come with examples and detailed documentation.

Embedded Webserver

The integrated webserver follows the LXI standard and gathers information on the product, set up of the Ethernet configuration and current status. It also allows the setting of a configuration password, access to documentation and updating of the complete instrument firmware, including the embedded remote server and the webserver

General Hardware features and options

LXI Instrument

The digitizerNETBOX and generatorNETBOX are fully LXI instrument compatible to LXI Core 2011 following the LXI Device Specification

2011 rev. 1.4. The digitizerNETBOX/generatorNETBOX has been tested and approved by the LXI Consortium.

Located on the front panel is the main on/off switch, LEDs showing the LXI and Acquisition status and the LAN reset switch.

Chassis features

The chassis is especially desigend for usage in different application arreas and has some advanced features for mobile and shared usage:

- stable metal chassis
- 8 bumper edges protect the chassis, the desk and other components on it. The bumper edges allow to store the chassis either vertically or horizontally and the lock-in structure allows to stack multiple chassis with a secure fit onto each other. For 19" rack mount montage the bumpers can be unmounted and replaced by the 19" rack mount option
- The handle allows to easily carry the chassis around in juts one hand
- A standard GND screw on the back of the chassis allows to connect the metal chassis to measurement ground to reduce noise based on ground loops and ground level differences.

Front Panel

Standard BNC connectors are used for all analog input or output signals and all auxiliary signals like clock and trigger. No special adapter cables are needed and the connection is secure even when used in a moving environment.

Custom front panels are available on request even for small series, be it SMA, LEMO connectors or custom specific connectors.

Ethernet Connectivity

The GBit Ethernet connection can be used with standard COTS Ethernet cabling. The integration into a standard LAN allows to connect the digitizerNETBOX/generatorNET-BOX either directly to a desktop PC or Laptop or it is possible to place the instrument somewhere in the

company LAN and access it from any desktop over the LAN.

Boot on Power Option

The digitizerNETBOX/generatorNETBOX can be factory configured to automatically start and boot upon availability of the input power rail. That way the instrument will automatically become available again upon loss of input power.

DC Power Supply Option

The digitizerNETBOX/generatorNETBOX/hybridNETBOX can be equipped with an internal DC power supply which replaces the standard AC power supply. This power supply options is available with an input range of nominal 24 V. Contact the sales team if other DC levels are required.

Using the DC power supply the device can be used for mobile applications together with a Laptop in automotive or airborne applications.

Option Embedded Server

The option turns the digitizer-NETBOX/generatorNETBOX in a powerful PC that allows to run own programs on a small and remote data acquisition system. The digitizerNET-BOX/generatorNETBOX is en-

hanced by more memory, a powerful CPU, a freely accessable internal SSD and a remote software development access method.

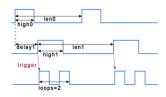
The digitizerNETBOX/generatorNETBOX can either run connected to LAN or it can run totally independent, storing data to the internal SSD. The original digitizerNETBOX/generatorNETBOX remote instrument functionality is still 100 % available. Running the embedded server option it is possible to pre-calculate results based on the acquired data, store acquisitions locally and to transfer just the required data or results parts in a client-server based software structure. A different example for the

digitizerNETBOX/generatorNETBOX embedded server is surveillance/logger application which can run totally independent for days and send notification emails only over LAN or offloads stored data as soon as it's connected again.

Access to the embedded server is done through a standard text based Linux shell based on the ssh secure shell.

External clock I/O

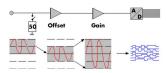
Using a dedicated connector a sampling clock can be fed in from an external system. It's also possible to output the internally used sampling clock to synchronise external equipment to this clock.


Reference clock

The option to use a precise external reference clock (normally 10 MHz) is necessary to synchronize the instrument for high-quality

measurements with external equipment (like a signal source). It's also possible to enhance the quality of the sampling clock in this way. The driver automatically generates the requested sampling clock from the fed in reference clock.

Firmware Option Digital Pulse Generator


The digital pulse generator option adds 4 internal independent digital pulse generators with programmable duty cycle, output frequency, delay and number of loops. These digital pulse generators can be triggered by software, hardware trigger or can trig-

ger each other allowing to form complex pulse schemes to drive external equipment or experiments. The digital pulse generators can be output on the existing multi-XIO lines (X0, X1, ...), to trigger other pulse generators or can be used to trigger the instrument's main trigger internally. Time resolution of the pulse generator depends on the cards type and the selected sampling rate and can be found in the technical data section.

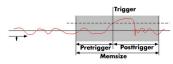
The pulse generator option is a firmware option and can be later installed on all shipped cards.

Digitizer Hardware Features and Options

Input Amplifier

The analog inputs can be adapted to real world signals using a wide variety of settings that are individual for each channel. By using software commands the input termination can be changed

between 50 Ohm and 1 MOhm, one can select a matching input range and the signal offset can be compensated for.


Differential inputs

With a simple software command the inputs can individually be switched from single-ended (in relation to ground) to differential by combining each two single-ended inputs to one differential input. When the inputs are used in differential mode the A/D converter measures the difference between two lines with relation to system ground.

Automatic on-board calibration

All of the channels are calibrated in factory before the board is shipped. To compensate for different variations like PC power supply, temperature and aging, the software driver provides routines for an automatic onboard offset and gain calibration of all input ranges. All the cards contain a high precision on-board calibration reference.

Ring buffer mode

The ring buffer mode is the standard mode of all oscilloscope instruments. Digitized data is continuously written into a ring memory until a

trigger event is detected. After the trigger, post-trigger samples are recorded and pre-trigger samples can also be stored. The number of pre-trigger samples available simply equals the total ring memory size minus the number of post trigger samples.

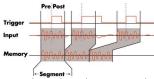
FIFO mode

The FIFO mode is designed for continuous data transfer between remote instrument and PC memory or hard disk. The control of the data stream is done automatically by the driver on interrupt request. The complete installed on-board memory is used for buffer data, making the continuous streaming extremely reliable.

Channel trigger

The data acquisition instruments offer a wide variety of trigger modes. Besides the standard signal checking for level and edge as known from oscilloscopes it's also possible to define a window trigger. All trigger modes can be combined with the pulsewidth trigger. This makes it possible to trigger on signal errors like too long or too short pulses. In addition to this a re-arming mode (for accurate trigger recognition on noisy signals) the AND/OR conjunction of different trigger events is possible. As a unique feature it is possible to use deactivated channels as trigger sources.

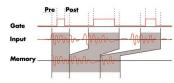
External trigger I/O


All instruments can be triggered using an external TTL signal. It's possible to use positive or negative edge also in combination with a programmable pulse width. An internally recognised trigger

event can - when activated by software - be routed to the trigger connector to start external instruments.

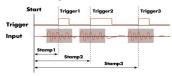
Pulse width

Defines the minimum or maximum width that a trigger pulse must have to generate a trigger event. Pulse width can be combined with channel trigger, pattern trigger and external trigger.


Multiple Recording

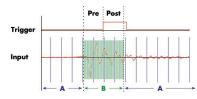
The Multiple Recording mode allows the recording of several trigger events with an extremely short re-arming time. The hardware doesn't need to be restarted in be-

tween. The on-board memory is divided in several segments of the same size. Each of them is filled with data if a trigger event occurs. Pre- and posttrigger of the segments can be programmed. The number of acquired segments is only limited by the used memory and is unlimited when using FIFO mode.


Gated Sampling

The Gated Sampling mode allows data recording controlled by an external gate signal. Data is only recorded if the gate signal has a programmed level. In addition a pre-area before start

of the gate signal as well as a post area after end of the gate signal can be acquired. The number of gate segments is only limited by the used memory and is unlimited when using FIFO mode.


Timestamp

The timestamp function writes the time positions of the trigger events in an extra memory. The timestamps are relative to the start of recording, a defined zero time, ex-

ternally synchronized to a radio clock, an IRIG-B a GPS receiver. Using the external synchronization gives a precise time relation for acquisitions of systems on different locations.

ABA mode

The ABA mode combines slow continuous data recording with fast acquisition on trigger events. The ABA mode works like a slow data logger combined with a fast digitizer. The exact

position of the trigger events is stored as timestamps in an extra memory.

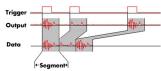
AWG Hardware Features and Options

Singleshot output

When singleshot output is activated the data of the on-board memory is played exactly one time. The trigger source can be either one of the external trigger inputs or the software trigger. After the first trigger additional trigger events will be ignored.

Repeated output

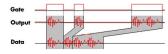
When the repeated output mode is used the data of the on-board memory is played continuously for a programmed number of times or until a stop command is executed. The trigger source can be either one of the external trigger inputs or the software trigger. After the first trigger additional trigger events will be ignored.


Single Restart replay

When this mode is activated the data of the on-board memory will be replayed once after each trigger event. The trigger source can be either the external TTL trigger or software trigger.

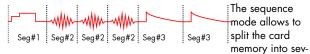
FIFO mode

The FIFO mode is designed for continuous data transfer between PC memory or hard disk and the generation board. The control of the data stream is done automatically by the driver on an interrupt request basis. The complete installed on-board memory is used for buffering data, making the continuous streaming extremely reliable.


Multiple Replay

The Multiple Replay mode allows the fast output generation on several trigger events without restarting the hardware. With this option very fast repetition rates can be

achieved. The on-board memory is divided into several segments of the same size. Each segment can contain different data which will then be played with the occurrence of each trigger event.


Gated Replay

The Gated Sampling mode allows data replay controlled by an external gate signal. Data is only replayed if the gate signal has attained a

programmed level.

Sequence Mode

eral data segments of different length. These data segments are chained up in a user chosen order using an additional sequence memory. In this sequence memory the number of loops for each segment can be programmed and trigger conditions can be defined to proceed from segment to segment. Using the sequence mode it is also possible to switch between replay waveforms by a simple software command or to redefine waveform data for segments simultaneously while other segments are being replayed. All trigger-related and software-command-related functions are only working on single cards, not on star-hub-synchrnonized cards.

External trigger input

All boards can be triggered using up to two external analog or digital signals. One external trigger input has two analog comparators that can define an edge or window trigger, a hysteresis trigger or a rearm trigger. The other input has one comparator that can be used for standard edge and level triggers.

hybridNETBOX Technical Data - Digitizer

Only figures that are given with a maximum reading or with a tolerance reading are guaranteed specifications. All other figures are typical characteristics that are given for information purposes only. Figures are valid for products stored for at least 2 hours inside the specified operating temperature range, after a 30 minute warm-up, after running an on-board calibration and with proper cooled products. All figures have been measured in lab environment with an environmental temperature between 20°C and 25°C and an altitude of less than 100 m.

Analoa Inputs

Resolution		16 bit (can be reduced to acquire simultaneous digital inputs)
Input Range	software programmable	±200 mV, ±500 mV, ±1 V, ±2 V, ±5 V, ±10 V
Input Type	software programmable	Single-ended or True Differential
Input Offset (single-ended)	software programmable	programmable to ±100% of input range in steps of 1%
ADC Differential non linearity (DNL)	ADC only	591x: ±0.2/±0.8 LSB (typ./max.) 592x: ±0.2/±0.8 LSB (typ./max.) 593x, 8x3: ±0.5/±0.9 LSB (typ./max.) 594x: ±0.5/±0.9 LSB (typ./max.) 596x, 8x6: ±0.5/±0.9 LSB (typ./max.)
ADC Integral non linearity (INL)	ADC only	591x: ±1.0/±2.3 LSB (typ./max.) 592x: ±1.0/±2.3 LSB (typ./max.) 593x, 803, 813: ±2.0/±7.5 LSB (typ./max.) 594x: ±2.0/±7.5 LSB (typ./max.) 596x, 806, 816: ±2.0/±7.5 LSB (typ./max.)
Offset error (full speed), DC signal	after warm-up and calibration	≤ 0.1% of range
Gain error (full speed), DC signal	after warm-up and calibration	≤ 0.1% of reading
Offset temperature drift	after warm-up and calibration	typical 5 ppm/°K
Gain temperatur drift	after warm-up and calibration	typical 45 ppm/°K
AC accuracy	1 kHz signal	≤ 0.3% of reading
AC accuracy	50 kHz signal	≤ 0.5% of reading
Crosstalk: Signal 1 MHz, 50 Ω	$range \le \pm 1V$ $range \ge \pm 2V$	≤ 95 dB on adjacent channels ≤ 90 dB on adjacent channels
Crosstalk: Signal 10 MHz, 50 Ω	range ≤ ±1V range ≥ ±2V	≤ 87 dB on adjacent channels ≤ 85 dB on adjacent channels
Analog Input impedance	software programmable	50 Ω /1 M Ω 30 pF
Analog input coupling	fixed	DC
Over voltage protection	$range \le \pm 1V$	± 5 V (1 M Ω), 3.5 Vrms (50 Ω)
Over voltage protection	$range \ge \pm 2V$	± 50 V (1 M Ω), 5 Vrms (50 Ω)
Anti-Aliasing Filter (digital filtering active)	591x (5 MS/s)	Digital Anti-Aliasing filter at 40% of sampling rate. Examples: 5 MS/s sampling rate -> anti-aliasing filter at 2 MHz 1 MS/s sampling rate -> anti-aliasing filter at 400 kHz
Anti-Aliasing Filter (standard)	591x (5 MS/s) 592x (20 MS/s) 593x (40 MS/s) 594x (80 MS/s) 596x (125 MS/s)	fixed 2.5 MHz 3rd order butterworth alike fixed 10 MHz 3rd order butterworth alike fixed 20 MHz 3rd order butterworth alike fixed 40 MHz 3rd order butterworth alike fixed 60 MHz 3rd order butterworth alike
CMRR (Common Mode Rejection Ratio)	range ≤ ±1V	100 kHz: 75 dB, 1 MHz: 60 dB, 10 MHz: 40 dB
CMRR (Common Mode Rejection Ratio)	range ≥ ±2V	100 kHz: 55 dB, 1 MHz: 52 dB, 10 MHz: 50 dB
Common Mode Voltage Range Differential Input	Input Range VCM (1 M Ω termination) VCM (50 Ω termination)	±200 mV ±500 mV ±1 V ±2 V ±5 V ±10 V ±900 mV ±2.25 V ±2.25 V ±9 V ±22.5 V ±900 mV ±2.25 V ±2.25 V ±3.5 V ±3.5 V
Channel selection (single-ended inputs)	software programmable	1, 2, 4 or 8 channels (maximum is model dependent)
Channel selection (true differential inputs)	software programmable	1, 2 or 4 channels (maximum is model dependent)
Calibration	Internal	Self-calibration is done on software command and corrects against the onboard references. Self-calibration should be issued after warm-up time.
Calibration	External	External calibration calibrates the onboard references used in self-calibration. All calibration constants are stored in nonvolatile memory. A yearly external calibration is recommended.

<u>Trigger</u>

Available trigger modes	software programmable	Channel Trigger, E	xternal, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay
Trigger level resolution	software programmable	14 bit	
Trigger edge	software programmable	Rising edge, falling	g edge or both edges
Trigger pulse width	software programmable	0 to [4G - 1] samp	les in steps of 1 sample
Trigger delay	software programmable	0 to [4G - 1] samp	les in steps of 1 samples
Trigger holdoff (for Multi, ABA, Gate)	software programmable	0 to [4G - 1] samp	les in steps of 1 samples
Multi, ABA, Gate: re-arming time		< 40 samples (+ pi	rogrammed pretrigger + programmed holdoff)
Pretrigger at Multi, ABA, Gate, FIFO	software programmable	8 up to [32 kSamp	les / number of active channels] in steps of 8
Posttrigger	software programmable	8 up to [8G - 4] sa	mples in steps of 8 (defining pretrigger in standard scope mode)
Memory depth	software programmable	16 up to [installed	memory / number of active channels] samples in steps of 8
Multiple Recording/ABA segment size	software programmable	8 up to [installed m	nemory / number of active channels] samples in steps of 8
Internal/External trigger accuracy		1 sample	
Timestamp modes	software programmable	Standard, Startrese	et, external reference clock on X1 (e.g. PPS from GPS, IRIG-B)
Data format		Std., Startreset:	64 bit counter, increments with sample clock (reset manually or on start)
		RefClock:	24 bit upper counter (increment with RefClock) 40 bit lower counter (increments with sample clock, reset with RefClock)
Extra data	software programmable	none, acquisition o	of X1/X2/X3 inputs at trigger time, trigger source (for OR trigger)
Size per stamp		128 bit = 16 bytes	
External trigger		Ext	X1, X2, X3
External trigger type		Single level compa	rator 3.3V LVTTL logic inputs

External trigger impedance

software programmable $50 \Omega / 5 k\Omega$ ±5 V (5 kΩ), ±2.5 V (50 Ω), For electrical specifications refer to "Multi Purpose I/O lines" section.

n.a. DC to 125 MHz

External trigger input level External trigger over voltage protection

±20 V (5 kΩ), 5 Vrms (50 Ω)

200 mVpp

External trigger sensitivity (minimum required signal swing) External trigger level External trigger bandwidth

±5 V in steps of 10 mV software programmable 50 O

DC to 400 MHz DC to 300 MHz

Minimum external trigger pulse width Resulting max detectable trigger frequency

≥ 2 samples ≥ 2 samples [Current Samplerate]/2 [Current Samplerate]/2

Multi Purpose I/O lines

Number of multi purpose output lines Number of multi purpose input/output lines one, named XO three, named X1, X2, X3

χo X1, X2, X3 Multi Purpose line

 $5~\mathrm{k}\Omega$

Synchronous Digital-In, Asynchronous Digital-In, Timestamp Reference Clock, Logic trigger Input: available signal types software programmable n a Input: signal levels 3.3 V LVTTL (Low \leq 0.8 V, High \geq 2.0 V) n.a.

 $10 \text{ k}\Omega$ to 3.3 VInput: impedance n.a. Input: maximum voltage level -0.5 V to +4.0 V n.a. 125 MHz Input: maximum bandwidth n.a.

Run-, Arm-, Trigger-Output, Asynchronous Digital-Out, Run-, Arm-, Trigger-Output, Asynchronous Digital-Out Output: available signal types software programmable ADC Clock Output

Digital Pulse Generator (option) Digital Pulse Generator (option)

Output: impedance

Output: drive strength Capable of driving 50 Ω loads, maximum drive strength ±48 mA

3.3 V LVTTL, TTL compatible for high impedance loads Output: type / signal levels

Output: update rate (synchronous modes) sampling clock

• The auxiliary I/O lines X0 and X3 for the digitizer module are not available on DN2.80x-08 and DN2.81x-08 models.

Option M2p.xxxx-PulseGen

Number of internal pulse generators

Number of pulse generator output lines 4 (Existing multi-purpose outputs X0 to X3) Time resolution of pulse generator Selected Sampling Rate, max is 125 MS/s (8 ns) Programmable output modes Single-shot, multiple repetitions on trigger, gated Programmable trigger sources Software, Card Trigger, Other Pulse Generator, XIO lines.

Programmable trigger gate None ARM state RUN state Programmable length (frequency) 2 to 4G samples in steps of 1 (32 bit) Programmable width (duty cycle) 1 to 4G samples in steps of 1 (32 bit) Programmable delay 0 to 4G samples in steps of 1 (32 bit)

0 to 4G samples in steps of 1 (32 bit) - 0 = infiniteProgrammable loops Output level of digital pulse generators Please see section of multi-purpose I/O lines

Clock

Clock Modes internal PLL, external clock, external reference clock, sync software programmable Internal clock range (PLL mode) software programmable see "Clock Limitations and Bandwidth" table below Internal clock accuracy after warm-up $\leq \pm 1.0$ ppm (at time of calibration in production)

Internal clock aging \leq ±0.5 ppm / year

PLL clock setup granularity (int. or ext. reference) 1 Hz External reference clock range 128 kHz up to 125 MHz software programmable

Direct external clock to internal clock delay single card only

4 3 ns Direct external clock range see "Clock Limitations and Bandwidth" table below

Direct external clock minimum LOW/HIGH time see "Clock Limitations and Bandwidth" table below External clock type Single level comparato

External clock input level $\pm 5 \text{ V } (5 \text{ k}\Omega), \pm 2.5 \text{ V } (50 \Omega),$ External clock input impedance software programmable $50~\Omega$ / $5~k\Omega$

External clock over voltage protection $\pm 20 \text{ V } (5 \text{ k}\Omega), 5 \text{ Vrms } (50 \Omega)$ 200 mVpp

External clock sensitivity (minimum required signal swing)

External clock level software programmable ±5 V in steps of 1mV External clock edge rising edge used External reference clock input duty cycle 45% - 55%

Clock output electrical specification Available via Multi Purpose output XO. Refer to "Multi Purpose I/O lines" section. Synchronization clock multiplier ${}_{\!\!M}N''$ for different clocks on synchronized cards N being a multiplier [1, 2, 3, 4, 5, ... Max) of the card with the currently slowest sampling clock. The card maximum (see "Clock Limitations and Bandwidth" table below) must not be exceeded. software programmable

8 up to (64k - 8) in steps of 8 ABA mode clock divider for slow clock software programmable Channel to channel skew on one card < 200 ps (typical) Skew between star-hub synchronized cards < 100 ps (typical)

• The auxiliary I/O lines X0 for the digitizer module is not available on DN2.80x-08 and DN2.81x-08 models.

Clock Limitations and Bandwidth

	M2p.591x, DN2.591-xx DN6.591-xx	M2p.592x, DN2.592-xx DN6.592-xx	M2p.593x DN2.593-xx DN6.593-xx DN2.803-xx DN2.813-xx	M2p.594x	M2p.596x DN2.596-xx DN6.596-xx DN2.806-xx DN2.816-xx
max internal clock (non-synchronized cards)	5 MS/s	20 MS/s	40 MS/s	80 MS/s	125 MS/s
min internal clock (non-synchronized cards)	1 kS/s	1 kS/s	1 kS/s	1 kS/s	1 kS/s
max internal clock (cards synchronized via star-hub)	5 MS/s	20 MS/s	40 MS/s	80 MS/s	125 MS/s
min internal clock (cards synchronized via star-hub)	128 kS/s	128 kS/s	128 kS/s	128 kS/s	128 kS/s
max direct external clock	5 MS/s	20 MS/s	40 MS/s	80 MS/s	125 MS/s
min direct external clock	1 MS/s	1 MS/s	1 MS/s	1 MS/s	1 MS/s
min direct external clock LOW time	25 ns	25 ns	4 ns	4 ns	4 ns
min direct external clock HIGH time	25 ns	25 ns	4 ns	4 ns	4 ns
-3 dB analog input bandwidth	> 2.0 MHz	> 10 MHz	> 20 MHz	> 40 MHz	> 60 MHz
-3 dB analog input bandwidth, digital filter de-activated	> 2.5 MHz	n.a.	n.a.	n.a.	n.a.

RMS Noise Level (Zero Noise), typical figures

		M2p.591x, DN2.591-xx, DN6.591-xx digital filtering active								
Input Range	±200 mV	±500 mV	±1	±2 V	±5 V	±10 V				
Voltage resolution	6.1 μV	15.3 μV	30.5 μV	61.0 μV	152.6 μV	305.2 μV				
50 Ω	<1.5 LSB <10 μV	<1.2 LSB <19 μV	<1.0 LSB <31 μV	<3.0 LSB <183 μV	<1.6 LSB <245 μV	<1.2 LSB <367 μV				
1 ΜΩ	<1.5 LSB <10 μV	<1.2 LSB <19 μV	<1.0 LSB <31 μV	<3.0 LSB <183 μV	<1.6 LSB <245 μV	<1.2 LSB <367 μV				

	M2p.592x, DN2.592-xx, DN6.592-xx											
Input Range	±20	0 mV	±50	0 mV	3	:1	±2	2 V	±	5 V	±1	0 V
Voltage resolution	6.1 μV		15.3 μV		30.5 μV		61.0 μV		152.6 μV		305.2 μV	
50 Ω	<4.0 LSB	<25 μV	<2.6 LSB	<40 μV	<2.1 LSB	<65 μV	<4.3 LSB	<263 μV	<2.6 LSB	<397 μV	<2.1 LSB	<641 μV
1 ΜΩ	<4.5 LSB	<28 μV	<3.0 LSB	<46 μV	<2.5 LSB	<107 μV	<4.5 LSB	<275 μV	<3.0 LSB	<458 μV	<2.5 LSB	<763 μV

		M2p.593x, DN2.593-xx, DN6.593-xx, DN2.803-xx, DN2.813-xx											
Input Range		±200 mV		±50	±500 mV		±1		±2 V		±5 V		0 V
Voltage resolution		6.1 μV		15.3 μV		30.5 μV		61.0 μV		152.6 μV		305.2 μV	
50 Ω		<6.0 LSB	<37 μV	<5.0 LSB	<77 μV	<4.5 LSB	<138 μV	<6.5 LSB	<397 μV	<5.0 LSB	<763 μV	<4.5 LSB	<1.4 mV
1 ΜΩ		<6.5 LSB	<40 μV	<5.0 LSB	<77 μV	<4.5 LSB	<138 μV	<6.5 LSB	<397 μV	<5.0 LSB	<763 μV	<4.5 LSB	<1.4 mV

	M2p.594x											
Input Range	±20	0 mV	±50	0 mV	3	±1	±	2 V	±	5 V	±1	0 V
Voltage resolution	6.1 μV		15.3 μV		30.5 μV		61.0 μV		152.6 μV		305.2 μV	
50 Ω	<7.0 LSB	<43 µV	<5.5 LSB	<85 µV	<4.5 LSB	<138 µV	<7.5 LSB	<458 μV	<5.5 LSB	<840 µV	<4.5 LSB	<1.4 mV
1 ΜΩ	<7.5 LSB	<46 µV	<5.8 LSB	<89 µV	<4.5 LSB	<138 µV	<7.7 LSB	<470 μV	<5.8 LSB	<886 µV	<4.5 LSB	<1.4 mV

		M2p.596x, DN2.596-xx, DN6.596-xx, DN2.806-xx, DN2.816-xx										
Input Range	±20	00 mV	±50	0 mV	3	:1	±	2 V	±	5 V	±1	0 V
Voltage resolution	6.	1 μV	15.	3 μV	30.	5 μV	61.	0 μV	152	.6 μV	305	.2 μV
50 Ω	<9.0 LSB	<55μV	<6.8 LSB	<104 μV	<5.5 LSB	<168 μV	<9.0 LSB	<550 μV	<6.8 LSB	<1.1 mV	<5.5 LSB	<1.7 mV
1 ΜΩ	<9.5 LSB	<58μV	<7.1 LSB	<109 μV	<5.5 LSB	<168 μV	<9.5 LSB	<580 μV	<7.1 LSB	<1.1 mV	<5.5 LSB	<1.7 mV

Dynamic Parameters, typical figures

		M2p.591x, DN2.591-xx, DN6.591-xx digital filtering active											
Test - sampling rate		_ 5 MS/s											
Input Range	±200	±200 mV ±500 mV ±1 V ±2 V											
Test Signal Frequency	20 kHz	1 MHz	20 kHz	1 MHz	20 kHz	1 MHz	20 kHz	1 MHz					
SNR (typ)	≥ 83.5 dB	≥ 82.8 dB	≥ 85.0 dB	≥ 84.9 dB	≥ 86.2 dB	≥ 85.7 dB	n.a.	n.a.					
THD (typ)	(≤ 84.4 dB)	\leq -93.5 dB	(≤ 86.3 dB)	≤-93.1 dB	(≤ 86.9 dB)	\leq -91.8 dB	n.a.	n.a.					
SFDR (typ), excl. harm.	≥ 103.0 dB	$\geq 103.0 \; dB$	≥ 104.0 dB	\geq 107.0 dB	≥ 103.0 dB	\geq 107.0 dB	n.a.	n.a.					
ENOB (based on SNR)	≥ 13.6 LSB	$\geq 13.4 \ LSB$	≥ 13.8 LSB	\geq 13.8 LSB	≥ 14.0 LSB	$\geq 13.9 \ LSB$	n.a.	n.a.					
ENOB (based on SINAD)	≥ 13.1 LSB	\geq 13.4 LSB	≥ 13.4 LSB	≥ 13.7 LSB	≥ 13.6 LSB	$\geq 13.8 \; LSB$	n.a.	n.a.					

	M2p.591x, DN2.591-xx, DN6.591-xx digital filtering active								
Test - sampling rate	3 M	IS/s	1 <i>N</i>	IS/s	500	kS/s	200 kS/s		
Input Range	±200 mV	±1 V	±200 mV	±1 V	±200 mV	±1 V	±200 mV	±1 V	
Test Signal Frequency	20	20 kHz		kHz	20	kHz	20 kHz		
Input bandwidth due to digital filter	1.2	MHz	400	kHz	200	klHz	80 kHz		
SNR (typ)	≥ 85.3 dB	≥ 86.6 dB	≥ 87.2 dB	≥ 89.1 dB	≥ 86.2 dB	≥ 89.7 dB	≥ 86.4 dB	≥ 89.4 dB	
THD (typ)	(≤ 88.9 dB)	(≤ -88.5 dB)	(≤ 86.4 dB)	(≤-88.6 dB)	(≤ 86.9 dB)	(≤ -90.8 dB)	(≤ 89.7 dB)	(≤-93.8 dB)	
SFDR (typ), excl. harm.	≥ 103.1 dB	≥ 103.6 dB	≥ 102.8 dB	≥ 105.6 dB	≥ 103.1 dB	≥ 103.1 dB	≥ 103.1 dB	≥ 103.5 dB	
ENOB (based on SNR)	≥ 13.9 LSB	≥ 14.1 LSB	≥ 14.2 LSB	≥ 14.5 LSB	≥ 14.0 LSB	≥ 14.6 LSB	≥ 14.1 LSB	≥ 14.6 LSB	
ENOB (based on SINAD)	≥ 13.5 LSB	≥ 13.7 LSB	≥ 13.6 LSB	≥ 14.0 LSB	≥ 13.6 LSB	≥ 14.2 LSB	≥ 13.8 LSB	≥ 14.3 LSB	

		M2p.592x, DN2.592-xx, DN6.592-xx										
Test - sampling rate			_	20 /	MS/s	_	_					
Input Range	±200	±200 mV ±500 mV ±1 V ±2 V										
Test Signal Frequency	1 MHz	n.a.	1 MHz	n.a.	1 MHz	n.a.	1 MHz	n.a.				
SNR (typ)	≥77.2 dB	n.a.	≥ 79.8 dB	n.a.	≥ 81.0 dB	n.a.	≥75.0 dB	n.a.				
THD (typ)	≤ 92.5 dB	n.a.	≤-92.8 dB	n.a.	≤-89.5 dB	n.a.	≤-76.5 dB	n.a.				
SFDR (typ), excl. harm.	≥ 103.0 dB	n.a.	≥ 103.0 dB	n.a.	≥ 105.0 dB	n.a.	≥ 93.0 dB	n.a.				
ENOB (based on SNR)	≥ 12.5 LSB	n.a.	≥ 13.0 LSB	n.a.	≥ 13.2 LSB	n.a.	≥ 12.2 LSB	n.a.				
ENOB (based on SINAD)	≥ 12.5 LSB	n.a.	≥ 13.0 LSB	n.a.	≥ 13.1 LSB	n.a.	≥ 11.8 LSB	n.a.				

		M2p.593x, DN2.593-xx, DN6.593-xx, DN2.803-xx, DN2.813-xx								
Test - sampling rate		40 MS/s								
Input Range	±200) mV	±500) mV	±	1	±2	V		
Test Signal Frequency	1 MHz	10 MHz	1 MHz 10 MHz		1 MHz	10 MHz	1 MHz	10 MHz		
SNR (typ)	≥73.0 dB	≥72.6 dB	≥ 74.6 dB	≥74.4 dB	≥75.3 dB	≥ 75.3 dB	≥71.9 dB	≥71.8 dB		
THD (typ)	≤-87.8 dB	≤ -67.0 dB	≤-89.0 dB	≤-67.0 dB	≤-86.1 dB	≤ -67.2 dB	≤-79.0 dB	≤-67.2 dB		
SFDR (typ), excl. harm.	≥ 98.3 dB	≥ 96.5 dB	≥ 98.8 dB	≥ 99.5 dB	≥ 101.0 dB	\geq 100.0 dB	≥ 81.7 dB	≥91.3 dB		
ENOB (based on SNR)	≥ 11.8 LSB	≥ 11.8 LSB ≥ 11.8 LSB ≥ 12.1 LSB ≥ 12.0 LSB ≥ 12.2 LSB ≥ 12.2 LSB ≥ 11.7 LSB								
ENOB (based on SINAD)	≥ 11.8 LSB	≥ 10.7 LSB	≥ 12.1 LSB	≥ 10.7 LSB	≥ 12.2 LSB	≥ 10.8 LSB	≥ 11.6 LSB	≥ 10.7 LSB		

	M2p.594x									
Test - sampling rate		80 MS/s								
Input Range	±200) mV	±500) mV	±	1	±2	. V		
Test Signal Frequency	1 MHz	10 MHz	1 MHz 10 MHz		1 MHz	10 MHz	1 MHz	10 MHz		
SNR (typ)	≥ 70.6 dB	≥70.5 dB	≥72.9 dB	≥72.8 dB	≥ 74.2 dB	≥74.2 dB	≥ 69.8 dB	≥ 69.8 dB		
THD (typ)	≤ -87.3 dB	≤-76.9 dB	≤-86.6 dB	≤-76.3 dB	≤-84.8 dB	≤-70.1 dB	≤ -79.0 dB	≤ -77.9 dB		
SFDR (typ), excl. harm.	≥ 97.5 dB	$\geq 105.0 \; dB$	≥ 101.0 dB	$\geq 104.0 \; dB$	≥ 100.0 dB	\geq 100.0 dB	≥ 96.9 dB	≥ 96.6 dB		
ENOB (based on SNR)	≥ 11.4 LSB	≥ 11.4 LSB ≥ 11.4 LSB ≥ 11.8 LSB ≥ 11.8 LSB ≥ 12.0 LSB ≥ 12.0 LSB ≥ 11.2 LSB								
ENOB (based on SINAD)	≥ 11.4 LSB	≥ 11.3 LSB	≥ 11.8 LSB	≥ 11.5 LSB	≥ 12.0 LSB	≥ 11.1 LSB	≥ 11.2 LSB	≥ 11.2 LSB		

		M2p.596x, DN2.596-xx, DN6.596-xx, DN2.806-xx, DN2.816-xx										
Test - sampling rate		125 MS/s										
Input Range		±200 mV			±500 mV			±1 V			±2 V	
Test Signal Frequency	1 MHz	10 MHz	40 MHz	1 MHz	10 MHz	40 MHz	1 MHz	10 MHz	40 MHz	1 MHz	10 MHz	40 MHz
SNR (typ)	≥ 68.1 dB	≥ 66.2 dB	≥ 65.5 dB	≥70.5 dB	≥ 69.9 dB	≥ 68.7 dB	≥73.3 dB	≥72.7 dB	≥71.5 dB	≥ 67.8 dB	≥ 65.8 dB	≥ 65.1 dB
THD (typ)	≤-81.5 dB	≤-74.5 dB	≤-53.7 dB	≤-82.5 dB	≤-77.6 dB	≤-55.3 dB	≤-83.3 dB	≤-68.9 dB	≤-57.3 dB	≤-78.0 dB	≤-75.6 dB	≤-53.7 dB
SFDR (typ), excl. harm.	≥ 95.0 dB	≥ 93.4 dB	≥ 92.3 dB	≥ 97.5 dB	≥ 96.8 dB	≥ 94.0 dB	≥ 98.5 dB	≥ 98.1 dB	≥ 96.4 dB	≥ 91.5 dB	≥ 89.0 dB	\geq 89.0 dB
ENOB (based on SNR)	≥ 11.0 LSB	≥ 10.7 LSB	≥ 10.6 LSB	≥ 11.4 LSB	≥ 11.3 LSB	≥ 11.1 LSB	≥ 11.8 LSB	≥ 11.8 LSB	≥ 11.6 LSB	≥ 11.0 LSB	≥ 10.6 LSB	≥ 10.5 LSB
ENOB (based on SINAD)	≥ 11.0 LSB	≥ 10.6 LSB	≥ 8.6 LSB	≥ 11.4 LSB	≥ 11.1 LSB	≥ 8.9 LSB	≥ 11.7 LSB	≥ 11.0 LSB	≥ 9.2 LSB	≥ 10.9 LSB	≥ 10.6 LSB	≥ 8.6 LSB

Dynamic parameters are measured at ± 1 V input range (if no other range is stated) and 50Ω termination with the samplerate specified in the table. Measured parameters are averaged 20 times to get typical values. Test signal is a pure sine wave generated by a signal generator and a matching bandpass filter. Amplitude is >99% of FSR. SNR and RMS noise parameters may differ depending on the quality of the used PC. SNR = Signal to Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range, SINAD = Signal Noise and Distortion, ENOB = Effective Number of Bits.

Connectors

Analog Inputs or Outputs 9 mm BNC female (one for each single-ended Ch.) Cable-Type: Cab-9m-xx-xx 9 mm BNC female Cable-Type: Cab-9m-xx-xx Trigger Input Clock/Reference Clock Input 9 mm BNC female Cable-Type: Cab-9m-xx-xx Clock Output, Multi-Purpose XO 9 mm BNC female Cable-Type: Cab-9m-xx-xx Multi-Purpose I/O X1, X2, X3 Programmable Direction 9 mm BNC female Cable-Type: Cab-9m-xx-xx

Connection Cycles

All connectors have an expected lifetime as specified below. Please avoid to exceed the specified connection cycles or use connector savers.

BNC connector 500 connection cycles
Power connector 500 connection cycles
LAN connector 750 connection cycles

• The auxiliary I/O lines X0 and X3 for the digitizer module are not available on DN2.80x-08 and DN2.81x-08 models.

hybridNETBOX Technical Data - Arbitrary Waveform Generator

Only figures that are given with a maximum reading or with a tolerance reading are guaranteed specifications. All other figures are typical characteristics that are given for information purposes only. Figures are valid for products stored for at least 2 hours inside the specified operating temperature range, after a 30 minute warm-up, after running an on-board calibration and with proper cooled products. All figures have been measured in lab environment with an environmental temperature between 20°C and 25°C and an altitude of less than 100 m.

Analog Outputs

Andiog Outputs							
Resolution		16 bit					
D/A Interpolation		no interpolation					
Output amplitude	software programmable	653x and 656x:	± 1 mV up to ± 3 V in 1 mV steps into 50 Ω termination (resulting in ± 2 mV up to ± 6 V in 2mV steps into high impedance loads)				
		653x and 656x	Gain values below ± 300 mV into 50 Ω are generated by reduction of digital samples				
		654x and 657x:	± 1 mV up to ± 6 V in 1 mV steps into 50 Ω termination (resulting in ± 2 mV up to ± 12 V in 2mV steps into high impedance loads)				
		654x and 657x:	Gain values below ± 300 mV and between ± 1000 mV and ± 2000 mV into $50~\Omega$ are generated by reduction of digital samples				
Output Amplifier Path Selection	automatically by driver	Low Power path:	Selected Gain of ± 1 mV to ± 960 mV (into $50~\Omega$)				
		High Power path:	653x and 656x: Selected Gain of ± 940 mV to ± 3 V (into 50 Ω) 654x and 657x: Selected Gain of ± 940 mV to ± 6 V (into 50 Ω)				
Output Amplifier Setting Hysteresis	automatically by driver	940 mV to 960 mV 960 mV. If output is	V (if output is using low power path it will switch to high power path at susing high power path it will switch to low power path at 940 mV)				
Output amplifier path switching time		1.2 ms (output disc	abled while switching)				
Output offset Low Power Path	software programmable	$\pm 960~\text{mV}$ in $1~\text{mV}$	steps into 50 Ω (±1920 mV in 2 mV steps into 1 M Ω)				
Output offset High Power Path	software programmable	653x and 656x: ± 3 V in 1 mV steps into 50 Ω (± 6 V in 2 mV steps into 1 M Ω) 654x and 657x: ± 6 V in 1 mV steps into 50 Ω (± 12 V in 2 mV steps into 1 M Ω)					
Filters	software programmable	One of 4 different	filters (refer to "Bandwidth and Filters" section)				
DAC Differential non linearity (DNL)	DAC only	±2.0 LSB typical					
DAC Integral non linearity (INL)	DAC only	±4.0 LSB typical					
Output resistance		50 Ω					
Output coupling		DC					
Minimum output load			0 Ω (short circuit safe by design) 0 Ω (short circuit safe by hardware supervisor, outputs will turn off)				
Max output swing in 50 Ω			3.0 V (offset + amplitude) 6.0 V (offset + amplitude)				
Max output swing in 1 M Ω		654x and 657x: ±	.6.0 V (offset + amplitude) .12.0 V (offset + amplitude)				
Max output current		653x and 656x: ± 654x and 657x: ±	.60 mA				
Slewrate (using Filter 0)		653x and 656x: H	to 900 mV]: 250 mV/ns ligh power path (0 to 3000 mV): 850 mV/ns ligh power path (0 to 6000 mV): 1700 mV/ns				
Rise/Fall time 10% to 90% (using Filter 0)		654x and 657x: ±	3 V square wave: 5.3 ns 3.5 square wave: 5.4 ns .6 V square wave: 5.4 ns				
Crosstalk @ 1 MHz signal ±3 V	1 to 4 ch standard AWG	95 dB (M2p.6530	, M2p.6531, M2p.6536, M2p.6560, M2p.6561, M2p.6566)				
Crosstalk @ 1 MHz signal ±3 V	8 channel AWG	84 dB (M2p.6533	, M2p.6568)				
Crosstalk @ 1 MHz signal ±6 V	1 to 4 ch high-voltage AWG	99 dB (M2p.6540	, M2p.6541, M2p.6546, M2p.6540, M2p.6541, M2p.6546)				
Output accuracy		±1 mV ±0.5 % of p	programmed output amplitude ±0.1 % of programmed output offset				
Calibration	External	External calibration non-volatile memor	n calibrates the on-board references. All calibration constants are stored in y. A yearly external calibration is recommended.				

<u>Trigger</u>

Available trigger modes

	, -		,				
Trigger edge	software programmable	programmable Rising edge, falling edge or both edges					
Trigger pulse width	software programmable	0 to [4G - 1] samples in steps of 1 sample					
Trigger delay	software programmable	0 to [4G - 1] samples in steps of 1 s	amples				
Trigger hold-off (for Multi, Gate)	software programmable	0 to [4G - 1] samples in steps of 1 s	amples				
Multi, Gate: re-arming time		< 24 samples (+ programmed hold-o	off)				
Trigger to Output Delay		73 sample clocks + 7 ns (valid for a	II modes except SPCSEQ_ENDLOOPONTRIG)				
Memory depth	software programmable	16 up to [installed memory / numbe	r of active channels] samples in steps of 8				
Multiple Replay segment size	software programmable	16 up to [installed memory / numbe	r of active channels] samples in steps of 8				
External trigger accuracy		1 sample					
External trigger		Ext	X1, X2, X3				
External trigger type		Single level comparator	3.3V LVTTL logic inputs				
External trigger impedance	software programmable	50 Ω / 5 kΩ	For electrical specifications refer to				
External trigger input level		\pm 5 V (5 kΩ), \pm 2.5 V (50 Ω),	"Multi Purpose I/O lines" section.				
External trigger over voltage protection		± 20 V (5 k Ω), 5 Vrms (50 Ω)					
External trigger sensitivity (minimum required signal swing)		200 mVpp					
External trigger level	software programmable	±5 V in steps of 10 mV					
External trigger bandwidth	50 Ω 5 kΩ	DC to 400 MHz DC to 300 MHz	n.a. DC to 125 MHz				
Minimum external trigger pulse width		≥ 2 samples	≥ 2 samples				

External, Software, Pulse, Or/And, Delay

software programmable

Multi Purpose I/O lines

Number of multi purpose output lines one, named X0 three, named X1, X2, X3 Number of multi purpose input/output lines

Multi Purpose line χo X1, X2, X3

Input: available signal types Asynchronous Digital-In, Logic trigger software programmable n.a. Input: signal levels 3.3 V LVTTL (Low \leq 0.8 V, High \geq 2.0 V) n.a.

Input: impedance n a $10 \text{ k}\Omega$ to 3.3 V-0.5 V to +4.0 V Input: maximum voltage level n.a. Input: maximum bandwidth 125 MHz n.a.

Output: available signal types software programmable

Run-, Arm-, Trigger-Output, Marker-Output, Synchronous Digital-Out, Asynchronous Digital-Out Run-, Arm-, Trigger-Output, Marker-Output, Synchronous Digital-Out, Asynchronous Digital-Out,

ADC Clock Output,

Output: impedance

Capable of driving 50 Ω loads, maximum drive strength ± 48 mA Output: drive strength

Output: type / signal levels 3.3V LVTTL, TTL compatible for high impedance loads Output: update rate (synchronous modes)

sampling clock

Sequence Replay Mode

Number of sequence steps software programmable 1 up to 4096 (sequence steps can be overloaded at runtime) 2 up to 64k (segment data can be overloaded at runtime) Number of memory segments software programmable

software programmable 32 samples in steps of 8 samples. Minimum segment size

Maximum segment size software programmable 512 MS / active channels / number of sequence segments (round up to the next power of two) Loop Count software programmable 1 to (1M - 1) loops

Loop for #Loops, Next, Loop until Trigger, End Sequence Sequence Step Commands software programmable Special Commands software programmable Data Overload at runtime, sequence steps overload at runtime,

readout current replayed sequence step

Software commands changing the sequence as well as "Loop until trigger" are not synchronized between cards. This also applies to multiple AWG modules in a generator NETBOX. Limitations for synchronized products

Clock

Clock Modes internal PLL, external clock, external reference clock, sync software programmable

Internal clock range (PLL mode) software programmable see "Clock Limitations" table below

 $\leq \pm 1.0$ ppm (at time of calibration in production) Internal clock accuracy after warm-up Internal clock aging $\leq \pm 0.5$ ppm / year

PLL clock setup granularity (internal reference) 1 Hz

128 kHz up to 125 MHz External reference clock range software programmable

Direct external clock to internal clock delay 4.3 ns

Direct external clock range see "Clock Limitations and Bandwidth" table below External clock type Single level comparato

External clock input level $\pm 5 \text{ V } (5 \text{ k}\Omega), \pm 2.5 \text{ V } (50 \Omega),$

External clock input impedance software programmable $50~\Omega$ / $5~k\Omega$

External clock over voltage protection $\pm 20 \text{ V } (5 \text{ k}\Omega), 5 \text{ Vrms } (50 \Omega)$

External clock sensitivity (minimum required signal swing)

External clock level +5 V in steps of 1mV software programmable External clock edge rising edge used

External reference clock input duty cycle 45% - 55% Clock output electrical specification

Available via Multi Purpose output XO. Refer to "Multi Purpose I/O lines" section. Synchronization clock multiplier "N" for software programmable

N being a multiplier (1, 2, 3, 4, 5, ... Max) of the card with the currently slowest sampling clock. The card maximum (see "Clock Limitations and Bandwidth" table below) must not be exceeded. different clocks on synchronized cards

200 mVpp

Channel to channel skew on one card < 200 ps (typical) Skew between star-hub synchronized cards < 100 ps (typical)

Clock Limitations

	M2p.653x DNx.653-xx M2p.654x DNx.654-xx DNx.803-xx DNx.813-xx	M2p.656x DNx.656-xx M2p.657x DNx.657-xx DNx.806-xx DNx.816-xx
max internal clock (non-synchronized cards)	40 MS/s	125 MS/s
min internal clock (non-synchronized cards)	1 kS/s	1 kS/s
max internal clock (cards synchronized via star-hub)	40 MS/s	125 MS/s
min internal clock (cards synchronized via star-hub)	128 kS/s	128 kS/s
max direct external clock	40 MS/s	125 MS/s
min direct external clock	DC	DC
min direct external clock LOW time	4 ns	4 ns
min direct external clock HIGH time	4 ns	4 ns

Bandwidth and Filters

	Filter	- 3dB bandwidth	Filter characteristic
Analog bandwidth does not include Sinc response of DAC	Filter 0	70 MHz	third-order Butterworth
	Filter 1	20 MHz	fifth-order Butterworth
	Filter 2	5 MHz	fourth-order Bessel
	Filter 3	1 MHz	fourth-order Bessel

Dynamic Parameters

	M2p.653x/DNx.653-xx/DNx.803-xx							
Test - Samplerate	40 /	MS/s	40 MS/s					
Output Frequency	800	kHz	4 N	ΛHz				
Output Level in $50~\Omega$	±900mV	±900mV ±3000mV		±3000mV				
Used Filter	1 /	1 MHz		ИHz				
NSD (typ)	-142 dBm/Hz	-132 dBm/Hz	-142 dBm/Hz	-132 dBm/Hz				
SNR (typ)	90.7 dB	91.1 dB	83.7 dB	84.1 dB				
THD (typ)	-74.0 dB	-74.0 dB	-70.5 dB	-70.5 dB				
SINAD (typ)	73.9 dB	73.9 dB	69.8 dB	69.8 dB				
SFDR (typ), excl harm.	97.0 dB	95.0 dB	88.0 dB	88.0 dB				
ENOB (SINAD)	12.0	12.0	11.3	11.3				
ENOB (SNR)	14.7	14.8	13.5	13.6				

		•							
·	M2p.	.654x/DNx.65	4-xx/DNx.813-xx						
Test - Samplerate	40 /	MS/s	40 MS/s						
Output Frequency	800) kHz	4 N	ΛHz					
Output Level in 50 Ω	±900mV	±900mV ±6000mV		±6000mV					
Used Filter	1 /	1 MHz		ΛHz					
NSD (typ)	-138 dBm/Hz	-138 dBm/Hz -129 dBm/Hz		-126 dBm/Hz					
SNR (typ)	86.7 dB	88.1 dB	83.7 dB	84.2 dB					
THD (typ)	-74.0 dB	-74.0 dB	-74.0 dB	-74.0 dB					
SINAD (typ)	73.8 dB	73.8 dB	73.6 dB	73.6 dB					
SFDR (typ), excl harm.									
ENOB (SINAD)	12.0	12.0	11.9	11.9					
ENOB (SNR)	14.1	14.3	13.6	13. <i>7</i>					

		M2p.656x/DNx.656-xx/DNx.806-xx								
Test - Samplerate	125	MS/s	125	MS/s	125 MS/s					
Output Frequency	800	800 kHz		ΛHz	16 MHz					
Used Filter	1 /	ΜHz	5 N	ΛHz	20 /	MHz				
Output Level in 50 Ω	±900mV	±3000mV	±900mV	±3000mV	±900mV	±3000mV				
NSD (typ)	-142 dBm/Hz	-132 dBm/Hz	-142 dBm/Hz	-132 dBm/Hz	-142 dBm/Hz	-132 dBm/Hz				
SNR (typ)	90.7 dB	91.1 dB	83.7 dB	84.1 dB	77.7 dB	78.1 dB				
THD (typ)	-74.0 dB	-74.0 dB	-70.5 dB	-70.5 dB	-66.0 dB	-61.9 dB				
SINAD (typ)	73.9 dB	73.9 dB	69.8 dB	69.8 dB	65.7 dB	60.9 dB				
SFDR (typ), excl harm.	97.0 dB	95.0 dB	88.0 dB	88.0 dB	90.0 dB	89.0 dB				
ENOB (SINAD)	12.0	12.0	11.3	11.3	10.6	9.8				
ENOB (SNR)	14.7	14.8	13.5	13.6	12.5	12.6				

		M2p.657x/DNx.657-xx/DNx.816-xx								
Test - Samplerate	125	MS/s	125	MS/s	125 MS/s					
Output Frequency	800	800 kHz		4 MHz		MHz				
Used Filter	1 /	ΛHz	5 N	ΛHz	20 MHz					
Output Level in 50 Ω	±900mV	±6000mV	±900mV	±6000mV	±900mV	±6000mV				
NSD (typ)	-138 dBm/Hz	-129 dBm/Hz	-142 dBm/Hz	-126 dBm/Hz	-142 dBm/Hz	-127 dBm/Hz				
SNR (typ)	86.7 dB	88.1 dB	83.7 dB	84.2 dB	77.7 dB	79.1 dB				
THD (typ)	-74.0 dB	-74.0 dB	-74.0 dB -74.0 dB		-70.5 dB	-63.1 dB				
SINAD (typ)	73.8 dB	73.8 dB	73.6 dB	73.6 dB	69.7 dB	63.0 dB				
SFDR (typ), excl harm.										
ENOB (SINAD)	12.0	12.0	11.9	11.9	11.3	10.2				
ENOB (SNR)	14.1	14.3	13.6	13 <i>.7</i>	12.6	12.8				

THD and SFDR are measured at the given output level and 50 Ohm termination with a high resolution M3i.4860/M4i.4450-x8 data acquisition card and are calculated from the spectrum. Noise Spectral Density is measured with built-in calculation from an HP E4401B Spectrum Analyzer. All available D/A channels are activated for the tests. SNR and SFDR figures may differ depending on the quality of the used PC. NSD = Noise Spectral Density, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range.

Connectors

Analog Inputs or Outputs

7 mm BNC female (one for each single-ended Ch.)

9 mm BNC female

9 mm BNC female

10 cable-Type: Cab-9m-xx-xx

10 clock/Reference Clock Input

10 mm BNC female

10 m

Connection Cycles

All connectors have an expected lifetime as specified below. Please avoid to exceed the specified connection cycles or use connector savers.

BNC connector 500 connection cycles
Power connector 500 connection cycles
LAN connector 750 connection cycles

hybridNETBOX Technical Data - General

Option digitizerNETBOX/generatorNETBOX embedded server (DN2.xxx-Emb, DN6.xxx-Emb)

Intel Quad Core 2 GHz 4 GByte RAM System memory

System data storage Internal 128 GByte SSD

Development access Remote Linux command shell (ssh), no graphical interface (GUI) available Accessible Hardware Full access to Spectrum instruments, LAN, front panel LEDs, RAM, SSD

Integrated operating system OpenSuse 12.2 with kernel 4.4.7.

Internal PCIe connection DN2.20, DN2.46, DN2.47, DN2.49, DN2.59, DN2.60, DN2.65 PCle x1. Gen1

DN6.46, DN6.49, DN6.59, DN6.65, DN2.80, DN2.81

DN2.22, DN2.44, DN2.66 PCle x1, Gen2

DN6.22, DN6.44, DN6.66, DN2.82

Ethernet specific details

LAN Connection Standard RJ45

LAN Speed Auto Sensing: GBit Ethernet, 100BASE-T, 10BASE-T

LAN IP address DHCP (IPv4) with AutoIP fall-back (169.254.x.y), fixed IP (IPv4) programmable Sustained Streaming speed DN2.20, DN2.46, DN2.47, DN2.49, DN2.60 up to 70 MByte/s

DN6.46, DN6.49

DN2.59, DN2.65, DN2.22, DN2.44, DN2.66 up to 100 MByte/s

DN6.59, DN6.65, DN6.22, DN6.44, DN6.66

Used TCP/UDP Ports mDNS Daemon: 5353 Webserver: 80 UPNP Doemon: 1900

VISA Discovery Protocol: 111, 9757 Spectrum Remote Server: 1026, 5025

AC Power connection details (default configuration)

Mains AC power supply Input voltage: 100 to 240 VAC, 50 to 60 Hz AC power supply connector IEC 60320-1-C14 (PC standard coupler)

Power supply cord power cord included for Schuko contact (CEE 7/7)

DC 24 V Power supply details (option DN2.xxxx-DC24)

18 V to 36 V Power supply connector screw terminal Power supply cord no cord included

Serial connection details (DN2.xxx with hardware ≥ V11)

Serial connection (RS232) For diagnostic purposes only. Do not use, unless being instructed by a Spectrum support agent.

Certification, Compliance, Warranty

Conformity Declaration EN 17050-1:2010 General Requirements

2014/30/EU EU Directives EMC - Electromagnetic Compatibility

EMC - Electromagnetic Companibility IVD - Electrical equipment designed for use within certain voltage limits ROHS - Restriction of the use of certain hazardous substances in electrical and electronic equipment 2014/35/EU 2011/65/EU

REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals WEEE - Waste from Electrical and Electronic Equipment 2006/1907/EC 2012/19/EU

Safety regulations for electrical measuring, control, regulating and laboratory devices - Part 1: General requirement Electrical and electronic measuring equipment - Documentation FN 61010-1 · 2010 Compliance Standards

7.0 kg

EN 61326-1:2021 Electrical equipment for measurement, control and laboratory use EMC requirements - Part 1: General requirements EN 61326-2-1:2021

EMC requirements - Part 2-1: Particular requirements - Test configurations, operational conditions and performance criteria for sensitive test and measurement equipment for EMC unprotected applications

EN IEC 63000:2018 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of haz-

ardous substances

5 years starting with the day of delivery Product warranty

Software and firmware updates Life-time, free of charge

DN2 specific Technical Data

Environmental and Physical Details DN2.xxx

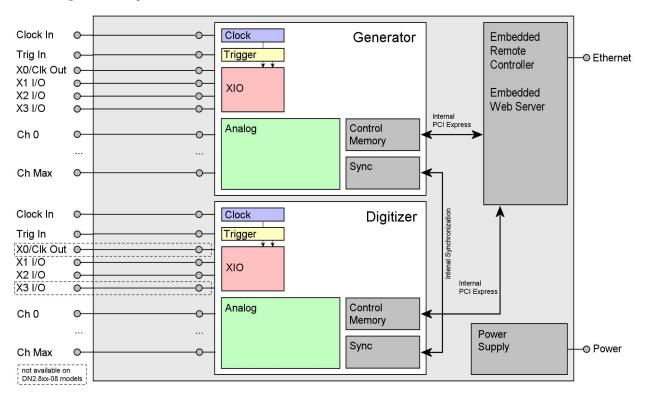
366 mm x 267 mm x 87 mm Dimension of Chassis without connectors or bumpers LxWxH

Dimension of Chassis with 19" rack mount option 366 mm x 482.6 mm x 87 mm (2U height) 6.3 kg, with rack mount kit: 6.8 kg Weight (1 internal acquisition/generation module) 6.7 kg, with rack mount kit 7.2 kg

Weight (2 internal acquisition/generation modules) Warm up time 20 minutes 0°C to 40°C Operating temperature -10°C to 70°C Storage temperature 10% to 90% Humidity

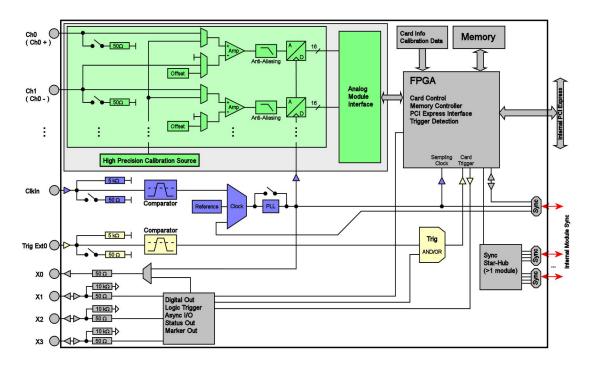
 $470 \text{ mm} \times 390 \text{ mm} \times 180 \text{ mm}$ Dimension of packing (single DN2) $L \times W \times H$

Volume weight of Packing (single DN2)

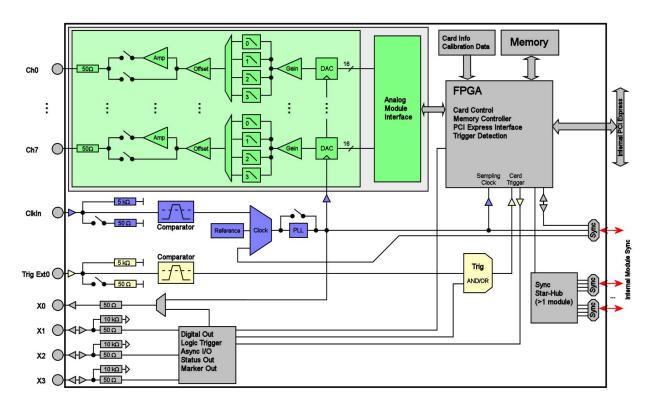

Power Consumption

	230 VAC	12 VDC		12 VDC		24 VDC
2 + 2 channel versions				_		
4 + 4 channel versions						
8 + 8 channel versions						

MTBF


MTBF 100000 hours

Block diagram of hybridNETBOX DN2


- The number of maximum channels is model dependent.
- The auxiliary I/O lines X0 and X3 for the digitizer module are not available on DN2.80x-08 and DN2.81x-08 models.

Block diagram of Digitizer Module hybridNETBOX DN2.80x/81x

 \bullet The auxiliary I/O lines X0 and X3 for the digitizer module are not available on DN2.80x-08 and DN2.81x-08 models.

Block diagram of AWG Module hybridNETBOX DN2.80x/81x

Order Information

The hybridNETBOX is equipped with a large internal memory for data storage and data replay. The internal digitizer supports standard acquisition (Scope), FIFO acquisition (streaming), Multiple Recording, Gated Sampling, ABA mode and Timestamps. Then internal AWG supports standard replay, FIFO replay (streaming), Multiple Replay, Gated Replay, Continuous Replay (Loop), Single-Restart as well as Sequence. Operating system drivers for Windows/Linux 32 bit and 64 bit, drivers and examples for C/C++, IVI (Scope, Digitizer and Function Generator class), LabVIEW (Windows), MATLAB (Windows and Linux), .NET, Delphi, Java, Python, Julia and a Professional license of the oscilloscope software SBench 6 are included.

The system is delivered with a connection cable meeting your countries power connection. Additional power connections with other standards are available as option.

hybridNETBOX DN2 - Ethernet/LXI Interface

		Inputs		Outputs		
Order no.	Memory	Single-Ended	Differential	Channels	Level@50 Ω	Level@1 $M\Omega$
DN2.813-02	2 x 512 MSamples	2 x 40 MS/s	2 x 40 MS/s	2 x 40 MS/s	±6 V	±12 V
DN2.813-04	2 x 512 MSamples	4 x 40 MS/s	4x 40 MS/s	4x 40 MS/s	±6 V	±12 V
DN2.803-08	2 x 512 MSamples	8 x 40 MS/s	4 x 40 MS/s	8 x 40 MS/s	±3 V	±6 V
DN2.816-02	2 x 512 MSamples	2 x 125 MS/s	2 x 125 MS/s	2 x 125 MS/s	±6 V	±12 V
DN2.816-04	2 x 512 MSamples	4 x 125 MS/s	4 x 125 MS/s	4 x 125 MS/s	±6 V	±12 V
DN2.806-08	2 x 512 MSamples	4 x 125 MS/s 8 x 80 MS/s	4 x 125 MS/s	4 x 125 MS/s 8 x 80 MS/s	±3 V	±6 V

Options

Order no.	Option
DN2.xxx-Rack	19" rack mounting set for self mounting
DN2.xxx-Emb	Extension to Embedded Server: CPU, more memory, SSD. Access via remote Linux secure shell (ssh)
DN2.xxx-DC12	12 VDC internal power supply. Replaces AC power supply. Accepts 9 V to 18 V DC input. Screw terminals.
DN2.xxx-DC24	24 VDC internal power supply. Replaces AC power supply. Accepts 18 V to 36 V DC input. Screw terminals
DN2.xxx-BTPWR	Boot on Power On: the digitizerNETBOX/generatorNETBOX/hybridNETBOX automatically boots if power is switched on.

Firmware Options

Order no.	Option
M2p.xxxx-PulseGen	Firmware Option: adds 4 freely programmable digital pulse generators that use the XIO lines for output (later installation by firmware - upgrade available)

Calibration

Order no.	Option
DN2.xxx-Recal	Recalibration of complete digitizerNETBOX/generatorNETBOX/hybridNETBOX DN2 including calibration protocol

BNC Cables

The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz.

for Connections	Connection	Length	to SMA male	to SMA female	to BNC male	to SMB female
All	BNC male	80 cm	Cab-3mA-9m-80	Cab-3fA-9m-80	Cab-9m-9m-80	Cab-3f-9m-80
All	BNC male	200 cm	Cab-3mA-9m-200	Cab-3fA-9m-200	Cab-9m-9m-200	Cab-3f-9m-200

Technical changes and printing errors possible

lechnical changes and printing errors possible

Shench, digilizerNETBOX, generatorNETBOX and hybridNETBOX are gistered trademarks of Spectrum Instrumentation GmbH. Microsoft, Visual C++, Windows, Windows 98, Windows 98, Windows NT, Windows XP, Windows 7, Windows 7, Windows 10 and Windows 11 are trademarks/registered trademarks of Microsoft Corporation. LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation. MATLAB is a trademark/registered trademarks of National Instruments Corporation. MATLAB is a trademark/registered trademarks of the IVI Foundation. Oracle and Java are registered trademarks of Oracle and it is affiliated trademark of the IVI Foundation. Oracle and Java are registered trademarks of Oracle and it is affiliates. Python is a trademark of Julia Computing, Inc. PCIe, PCI Express and PCIX and PCIXIG are trademarks of PCIXIG. IXI is a registered trademark of the IXI Consortium. PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group. Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Advanced Micro Devices. Arm is a trademark or registered trademarks of Intel Corporation. AMD, Opteron, Sempron, Phenom, PX, Ryzen and EPYC are istered trademarks of Advanced Micro Devices. Arm is a trademark or registered trademarks of NVIDIA, CUDA, GeForce, Quadro, Tesla and Jetson are trademarks/registered trademarks of NVIDIA Corporation.