en
  • English
  • German
  • Chinese
M4i.7725-x8 LVDS Digital Waveform Acquisition - SPECTRUM Instrumentation
M4i.7725-x8
LVDS Digital Waveform Acquisition
Parameter Search Sales Contact Support

Product:

M4i.7725-x8

LVDS Digital Waveform Acquisition

Description:

The M4i.77xx-x8 series digital waveform acquisition (logic-analyzer) cards include versions with 32 synchronous channels, either single-ended with programmable threshold levels or differential. The large onboard memory can be segmented to record different waveform sequences. While the M4i.77xx cards have been designed using the latest technology they are still software compatible with the drivers from earlier Spectrum digital acquisition cards. Therefore existing customers can use the same software they developed for a 10 year old 60 MS/s digital input card also for an M4i.77xx series 720 MS/s logic analyzer.

Facts & Features:

  • 250 MBit/s internal Sampling Rate Timing
  • 250 MBit/s external State Clock
  • Differential Interface: LVDS, (LV)PECL, (N)PECL, ...
  • 32 simultaneous digital channels
  • 4 GByte (32 GBit) on-board memory as standard
  • FIFO mode continuous streaming
  • Asynchronous state clock (gaps allowed)
  • Programmable clock delay
  • Pattern trigger, external trigger
  • Synchronization of up to 8 cards
  • PCI Express x8 Gen2 Interface
  • Works with x8/x16 PCIe Gen1 to Gen3 slots
  • Sustained streaming speed card to PC up to 3.4 GB/s
  • Sustained streaming speed PC to card up to 2.8 GB/s
  • Direct data transfer to / from CUDA GPU using SCAPP

Product-Video:

Technical Drawing:

Application examples:

  • ADC Back-End
  • Research and Development
  • Logic Analyzer
  • Digital Data Recorder
  • Spectrum Analyzer Recorder

FIFO mode

The FIFO mode is designed for continuous data transfer between measurement board and PC memory or hard disk. The read (acquisition) transfer rate reached depends on the motherboard and can be up to 3.4 GByte/s on a PCI Express x8 Gen2 slot. The control of the data stream is done automatically by the driver on interrupt request. The complete installed on-board memory is used for buffer data, making the continuous streaming extremely reliable.

Ring buffer mode

The ring buffer mode is the standard mode of all acquisition boards. Data is written in a ring memory of the board until a trigger event is detected. After the event the posttrigger values are recorded. Because of this continuously recording into a ring buffer there are also samples prior to the trigger event visible: Pretrigger = Memsize - Posttrigger.

Star-Hub (Optional)

The star-hub is an additional module allowing the phase stable synchronization of up to 8 boards in one system. Independent of the number of boards there is no phase delay between all channels. The star-hub distributes trigger and clock information between all boards. As a result all connected boards are running with the same clock and the same trigger. All trigger sources can be combined with OR allowing all channels of all cards to be trigger source at the same time. The star-hub is available as either piggy-back version (extending the width of the card) or as extension version (extending the length of the card to full length).

External Trigger Input

The boards can be triggered using an external trigger input, that has the same exact interface capabilities as the installed data lines, either single-ended with programmable threshold or differential.

Gated Sampling

The Gated Sampling option allows data recording controlled by an external gate signal. Data is only recorded if the gate signal has a programmed level. In addition a pre-area before start of the gate signal as well as a post area after end of the gate signal can be acquired. The number of gate segments is only limited by the used memory and is unlimited when using FIFO mode.

Multiple Recording

The Multiple Recording option allows the recording of several trigger events with an extremely short re-arming time. The hardware doesn't need to be restarted in between. The on-board memory is divided in several segments of the same size. Each of them is filled with data if a trigger event occurs. Pre- and posttrigger of the segments can be programmed. The number of acquired segments is only limited by the used memory and is unlimited when using FIFO mode.

Pattern Trigger

For every bit of the digital input the pattern trigger defines individually the expected level or sets the bit to don't care'. In combination with pulsewidth counter and edge detection the pattern trigger could be used to recognise a huge variety of trigger events.

Timestamp

The timestamp option writes the time positions of the trigger events in an extra memory. The timestamps are relative to the start of recording, a defined zero time, externally synchronized to a radio clock, or a GPS receiver. With this option acquisitions of systems on different locations can be set in a precise time relation.

High Precision PLL

The internal sampling clock of the card is generated using a high precision PLL. This powerful device allows to select the sampling rate with a fine step size making it possible to perfectly adopt to different measurement tasks. Most other cards on the market only allow the setup of fixed sampling rates like 100 MS/s, 50 MS/s, 25 MS/s, 10 MS/s, ... without any possibility to set the sampling rate to any value in between.

Reference Clock

The option to use a precise external reference clock (normally 10 MHz) is necessary to synchronize the board for high-quality measurements with external equipment (like a signal source). It's also possible to enhance the quality of the sampling clock in this way. The driver automatically generates the requested sampling clock from the fed in reference clock.

State Clock

The state analysis mode allows to use an external clock to synchronously sample the applied data. In this mode the clock is allowed to have gaps, as long as the minimum required high and low times are met. To simplify the synchronous sampling of the data, the incoming clock signal can be shifted/delayed with regards to the data, to allow proper data capture. Furthermore the edge of the clock to acquire the data can be defined by software to rising edge, falling edge or both edges (DDR clock mode)

3rd Party Drivers

A lot of third-party products are supported by the Spectrum driver. Choose between LabVIEW, MATLAB, LabWindows/CVI and IVI. All drivers come with examples and detailed documentation.

Programming Examples

Programming examples for C++, Delphi, Visual Basic, C#, VB.Net, Java, Python, Julia and LabWindows/CVI are delivered with the driver. Due to the simple interface of the driver, the integration in other programming languages or special measurement software is an easy task.

Linux

All cards are delivered with full Linux support. Pre compiled kernel modules are included for the most common distributions like RedHat, Fedora, Suse, Ubuntu or Debian. The Linux support includes SMP systems, 32 bit and 64 bit systems, versatile programming examples for Gnu C++ as well as the possibility to get the driver sources for own compilation.

Remote Server (Optional)

Using the Spectrum Remote Server it is possible to access the M2p/M2i/M3i/M4i/M4x card(s) installed in one PC (server) from another PC (client) via local area network (LAN), similar to using a digitizerNETBOX. To operate it the remote server option has to be activated by a software license for any of the Spectrum cards in the remote system.

SBench6

SBench 6 is a powerful and intuitive interactive measurement software. Besides the possibility to commence the measuring task immediately, without programming, SBench 6 combines the setup of hardware, data display, oscilloscope, transient recorder, waveform generator, analyzing functions, import and export functions under one easy-to-use interface.

SCAPP - CUDA Interface (Optional)

The SDK option allows to directly transfer data between the Spectrum card and a NVIDA CUDA GPU card. The GPU card is optimized for parallel data processing. The package comes with a number of detailed examples like FFT or block average.

Windows

This standard driver is included in the card delivery and it is possible to get the newest driver version free of charge from our homepage at any time. There are no additional SDK fees for the classical text-based programming. All boards are delivered with drivers for Windows 7, Windows 8, Windows 10 and Windows 11, all 32 bit and 64 bit.

Related products
Product Channels Max. Samplerate
M4i.7710-x8 32 125 MS/s
M4i.7720-x8 32 250 MS/s
M4i.7730-x8 32 720 MS/s
M4i.7735-x8 32 720 MS/s

Streaming Systems (Optional)

Combining a number of Spectrum M2p/M2i/M3i/M4i/M5i PCIe digitizers with a Tera-Store Data Streaming solution allows the capture and storage of long complex signals for extended periods of time. With systems available offering from 1 to 32 TB of storage and streaming rates up to 3 GB/s signals can be digitized and stored seamlessly for hours on end.

Documents

Legacy Windows Driver Installation

Windows driver installation of driver versions < 4.0

21.02.20221 M
M4i.77xx Datasheet

Data sheet of the M4i.77xx series

23.02.2024801 K
M4i.77xx Manual

Manual of M4i.77xx family

03.06.202410 M
Streaming System

Datasheet of Spectrum Terastore Streaming System

21.02.2022910 K
SBench 6 data sheet

Data sheet of SBench 6

15.01.2024999 K
M4i LabVIEW Manual

Manual for LabVIEW drivers for M4i / M4x

08.12.20236 M
MATLAB Manual

Manual for MATLAB driver M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6

13.12.20231 M
SCAPP Manual

SCAPP Manual

08.12.2023618 K
SBench 6 Manual

Manual for SBench 6

21.02.20227 M

WINDOWS DRIVER + SOFTWARE

Driver Win7/8/10/11

M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6 driver for Windows 7, 8, 10, 11 (32/64 bit)

7.0227.05.20245 M
Win32 Driver WinXP/Vista

M2i/M3i/M4i/M4x driver - last Version for Windows 32 XP / Vista

3.3021.02.20222 M
Win64 Driver WinXP/Vista

M2i/M3i/M4i/M4x driver - last Version for Windows 64 XP / Vista

3.2021.02.20223 M
c_header

C/C++ driver header and library files

7.0227.05.202443 K
Control Center (32-bit)

Spectrum Control Center (32-bit) / Windows 7, 8, 10

2.3627.05.202422 M
Control Center (64-bit)

Spectrum Control Center (64-bit) / Windows 7, 8, 10, 11

2.3627.05.202425 M
Control Center WinXP

Spectrum Control Center - last Version for Windows XP

1.7421.02.20228 M
SBench6 (32-bit)

SBench 6 (32-bit) Installer / Windows 7, 8, 10

6.5.0822.04.202436 M
SBench6 (64-bit)

SBench 6 (64-bit) Installer / Windows 7, 8, 10, 11

6.5.0822.04.202439 M
SBench6 WinXP

SBench6 - last Version for Windows XP

6.3.521.02.202241 M
Remote Server Windows

Windows Installer for Remote Server Option

22.04.202413 M
LabView driver

M2i/M2p/M3i/M4i/M4x/M5i/DN2/DN6 LabView driver installer

27.05.202419 M
Matlab driver

M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6 Matlab driver + examples installer

27.05.202415 M
Examples for Windows

Windows Examples (C/C++, .NET, Delphi, Java, Python, Julia ...)

7.0227.05.20242 M

LINUX DRIVER + SOFTWARE

Linux Driver Complete

M2p/M4i/M4x/M5i/M2i/M3i drivers (Kernel + Library) for Linux 32 bit and 64 bit

7.0227.05.202412 M
Linux Driver Library

Driver libraries (no Kernel) for Linux 32 bit and 64 bit

7.0227.05.20249 M
Remote Server Linux

Spectrum Remote Server Linux Installer Package

22.04.202412 K
Control Center

Spectrum Control Center

2.3622.04.202457 M
SBench6

SBench 6 Linux 32 (.rpm)

6.5.0822.04.202426 M
SBench6

SBench 6 Linux 64 (.rpm)

6.5.0822.04.202426 M
SBench6

SBench 6 Linux 32 (.deb)

6.5.0822.04.202423 M
SBench6

SBench 6 Linux 64 (.deb)

6.5.0827.05.202422 M
SBench6

SBench6 Jetson (.deb)

6.5.0822.04.202411 M
MATLAB Driver

Drivers + examples for MATLAB for Linux (DEB + RPM)

27.05.2024183 K
Examples for Linux

Linux Examples (C/C++, Python, Julia ...)

7.0227.05.2024564 K

Firmware

Firmware Update (Windows)

M2i/M2p/M3i/M4i/M4x/M5i firmware update (Windows)

03.06.202422 M
Firmware Update (Linux)

M2i/M2p/M3i/M4i/M4x/M5i firmware update (Linux)

03.06.202430 M

Product Notes

Trigger and Sync

Trigger, Clock and Synchronization Details at high-speed Digitizers

21.02.20221 M
Digitizer Software Integration

Software Support for Modular Digitizers

21.02.2022724 K
SBench 6 Introduction

SBench 6 - Data Acquisition and Analysis of Digitizer Data

21.02.20221 M

Application Notes

Solving Data Transfer Bottlenecks on Digitizers

Solving Data Transfer Bottlenecks on Digitizers

21.02.20222 M
AN Closed Loop Digitizer+AWG

Application Note: Closed Loop Tests with Digitizer and AWG and CUDA-GPU

21.02.20222 M
AN008 Install Legacy Win Drivers

Application Note: Legacy Windows Driver Installation

21.02.20221 M
Contact

On location for you. Choose your region.

Europe USA Asia
Contact Europe
Phone +49 (0)4102 6956-0
Fax +49 (0)4102 6956-66
E-Mail info@spec.de
Contact USA
Phone +1 (201) 562-1999
Fax +1 (201) 820-2691
E-Mail sales@spectrum-instrumentation.com
Contact Asia
Phone +61 402 130 414
E-Mail greg.tate@spectrum-instrumentation.com
Support

Request support. We are happy to help.

Support
powered by webEdition CMS