THIS PRODUCT IS OBSOLETE. Show more about end-life-products policy.
Recommended product:
Product:
14 bit Arbitrary Waveform Generator
Description:
The generatorNETBOX DN2.603 has a resolution of 14 bit and a maximum output rate of 125 MS/s. With these LXI instruments it is possible to generate free definable waveforms on several channels synchronously.
Facts & Features:
- Up to 125 MS/s on 2 channels
- Up to 62.5 MS/s on 4 channels
- Simultaneous generation on all channels
- Output up to +/-3 V in 50 Ohm
- Offset and amplitude programmable
- Up to 1 GSample on-board memory
- 3 software selectable filters
- FIFO mode continuous streaming output
- GBit Ethernet/LXI compatible instrument
- Easy connectivity with BNC/SMA connections
- SBench 6 Professional included
- Direct remote access from Workstations or Laptops
- Simple integration into the factory LAN
Application examples:
- IQ Base signal generation
- Remote controlled AWG at experiment
- Component of LXI test system
- Production tests
- Replay of acquired test data
FIFO mode
The FIFO mode is designed for continuous data transfer between the digitizerNETBOX and the host PC. The transfer speed is depending on the Ethernet connection between box and host and is in the region of 40 MB/s to 60 MB/s. The control of the data stream is done automatically by the driver on interrupt request. The complete installed on-board memory is used for buffer data, making the continuous streaming extremely reliable.Repeated Output
When repeated output is used the data of the on-board memory is replayed continuously until a stop command is executed or N times. As trigger source one can use the external TTL trigger or the software trigger.Sequence Replay Mode
The sequence mode allows to split the card memory into several data segments of different length. These data segments are chained up in a user chosen order using an additional sequence step memory with the ability to program loops and triggers and to reload data while output is running.Single Restart
When this mode is activated the data of the on-board memory will be replayed once after each trigger event. As Trigger source one can use the external TTL or software trigger.Singleshot Output
When singleshot output is activated the data of the on-board memory is replayed exactly one time. As trigger source one can use the external TTL trigger or the software trigger.External Trigger
All boards can be triggered using an external TTL signal. It's possible to use positive or negative edge also in combination with a programmable pulse width. An internally recognized trigger event can - when activated by software - be routed to the trigger connector to start external instruments.
Gated Replay
The Gated Sampling option allows data replay controlled by an external gate signal. Data is only replayed if the gate signal has a programmed level.Multiple Replay
The Multiple Replay option allows the fast repetition output on several trigger events without restarting the hardware. With this option very fast repetition rates can be achieved. The on-board memory is divided in several segments of same size. Each of them is generated if a trigger event occurs.External Clock
Using a dedicated connector a sampling clock can be fed in from an external system. It's also possible to output the internally used sampling clock to synchronize external equipment to this clock.
High Precision PLL
The internal sampling clock of the card is generated using a high precision PLL. This powerful device allows to select the sampling rate with a fine step size making it possible to perfectly adopt to different measurement tasks. Most other cards on the market only allow the setup of fixed sampling rates like 100 MS/s, 50 MS/s, 25 MS/s, 10 MS/s, ... without any possibility to set the sampling rate to any value in between.Reference Clock
The option to use a precise external reference clock (normally 10 MHz) is necessary to synchronize the board for high-quality measurements with external equipment (like a signal source). It's also possible to enhance the quality of the sampling clock in this way. The driver automatically generates the requested sampling clock from the fed in reference clock.Programmable Offset + Amplitude
The Spectrum Arbitrary Waveform Generators are equipped with a very wide programmable output offset and amplitude. This allows to adapt the output signal level to the needs of the stimulated device while also having the maximum output resolution available for the signal.Remote Access
The digitizerNETBOX can be remotely accessed from any current Windows (starting with Windows XP) 32 bit or 64 bit system or Linux (starting with Kernel 2.6) 32 bit or 64 bit system by Ethernet. The remote access is done in the very exact programming like a locally installed product allowing to use any of the supported software packages.Product | Channels | Max. Samplerate | Max. Bandwidth |
---|---|---|---|
DN2.603-08 | 8 | 125 MS/s | 60 MHz |
On different platforms | Bus | Max. Bus Transfer speed |
---|---|---|
DN2.603-08 | Ethernet | 70 MByte/s |
M2i.6034 | PCI-X | 245 MByte/s |
M2i.6034-Exp | PCI Express x1 | 160 MByte/s |
MC.6034 | CompactPCI | 100 MByte/s |
MI.6034 | PCI | 100 MByte/s |
Documents
DN2.60x Datasheet | Datasheet of the generatorNETBOX DN2.60x series |
21.02.2022 | 846 K | |
DN2.96x Datasheet | Datasheet of the generatorNETBOX DN2.96x series |
23.09.2024 | 919 K | |
DN2.60x Manual | Manual of generatorNETBOX DN2.60x family |
21.02.2022 | 6 M | |
IVI Driver Manual | Short Manual for IVI Driver |
21.02.2022 | 532 K | |
SBench 6 data sheet | Data sheet of SBench 6 |
15.01.2024 | 999 K | |
MATLAB Manual | Manual for MATLAB driver M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6 |
13.12.2023 | 1 M | |
LabVIEW Manual | Manual for LabVIEW drivers for M2i/DN2 |
21.02.2022 | 2 M | |
SBench 6 Manual | Manual for SBench 6 |
21.02.2022 | 7 M |
WINDOWS DRIVER + SOFTWARE
Driver Win7/8/10/11 | M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6 driver for Windows 7, 8, 10, 11 (32/64 bit) |
7.03 | 25.09.2024 | 5 M |
c_header | C/C++ driver header and library files |
7.03 | 16.09.2024 | 43 K |
IVI FGen | IVI Driver for IVI FGen class (32 bit) |
19.09.2016 | 3 M | |
Control Center (32-bit) | Spectrum Control Center (32-bit) / Windows 7, 8, 10 |
2.37 | 17.09.2024 | 23 M |
Control Center (64-bit) | Spectrum Control Center (64-bit) / Windows 7, 8, 10, 11 |
2.37 | 17.09.2024 | 36 M |
Control Center WinXP | Spectrum Control Center - last Version for Windows XP |
1.74 | 21.02.2022 | 8 M |
SBench6 (32-bit) | SBench 6 (32-bit) Installer / Windows 7, 8, 10 |
6.5.09 | 17.09.2024 | 36 M |
SBench6 (64-bit) | SBench 6 (64-bit) Installer / Windows 7, 8, 10, 11 |
6.5.09 | 17.09.2024 | 49 M |
SBench6 WinXP | SBench6 - last Version for Windows XP |
6.3.5 | 21.02.2022 | 41 M |
LabView driver | M2i/M2p/M3i/M4i/M4x/M5i/DN2/DN6 LabView driver installer |
17.09.2024 | 19 M | |
Matlab driver | M2p/M4i/M4x/M5i/M2i/M3i/DN2/DN6 Matlab driver + examples installer |
17.09.2024 | 25 M | |
Examples for Windows | Windows Examples (C/C++, .NET, Delphi, Java, Python, Julia ...) |
7.03 | 17.09.2024 | 2 M |
LINUX DRIVER + SOFTWARE
Linux Driver Library | Driver libraries (no Kernel) for Linux 32 bit and 64 bit |
7.03 | 25.09.2024 | 9 M |
Control Center | Spectrum Control Center |
2.37 | 17.09.2024 | 31 M |
SBench6 | SBench 6 Linux 32 (.rpm) |
6.5.08 | 22.04.2024 | 26 M |
SBench6 | SBench 6 Linux 64 (.rpm) |
6.5.09 | 17.09.2024 | 23 M |
SBench6 | SBench 6 Linux 32 (.deb) |
6.5.08 | 22.04.2024 | 23 M |
SBench6 | SBench 6 Linux 64 (.deb) |
6.5.09 | 17.09.2024 | 22 M |
SBench6 | SBench6 Jetson (.deb) |
6.5.09 | 19.04.2024 | 11 M |
MATLAB Driver | Drivers + examples for MATLAB for Linux (DEB + RPM) |
17.09.2024 | 156 K | |
Examples for Linux | Linux Examples (C/C++, Python, Julia ...) |
7.03 | 17.09.2024 | 568 K |
Firmware
DN2 Firmware Base V27 | DN2 Standard Firmware V27 (update from versions V7-V26 to V27) |
V27 | 21.02.2022 | 52 M |
DN2 Firmware Base V7 | DN2 Standard Firmware V7 (update from versions V1-V6 to V7) |
V7 | 21.02.2022 | 11 M |
DN2/DN6 Firmware Update | DN2/DN6 Standard Firmware (install V27 first for updates prior to V27) |
V84 | 01.01.1970 | 0 P |
Product Notes
Trigger and Sync | Trigger, Clock and Synchronization Details at high-speed Digitizers |
21.02.2022 | 1 M | |
Digitizer Software Integration | Software Support for Modular Digitizers |
21.02.2022 | 724 K | |
LXI based Digitizers | LXI based Multi-channel Digitizer Instrument |
21.02.2022 | 739 K | |
SBench 6 Introduction | SBench 6 - Data Acquisition and Analysis of Digitizer Data |
21.02.2022 | 1 M | |
AWG Waveforms | Creating AWG Waveforms in SBench 6 using Equations |
21.02.2022 | 479 K | |
Create & Capture AWG Waveforms | Creating , Capturing and Transferring Waveforms for AWG's using SBench 6 |
21.02.2022 | 2 M |
Application Notes
Teaming AWG with Digitizer | Teaming an Arbitrary Waveform Generator with a Modular Digitizer |
21.02.2022 | 919 K | |
Introduction to Modular Arbitrary Function Generators | An Introduction to Modular Arbitrary Function Generators |
21.02.2022 | 701 K | |
Arbitrary Waveform Generator Operating Modes | Using Arbitrary Waveform Generator Operating Modes Effectively |
21.02.2022 | 481 K |