Search

You are here

Ultrasound/Ultrasonic Applications | Spectrum

Ultrasound

The use of Ultrasonic products is increasing as new techniques and improvements in instrument performance constantly expand the range of applications. Spectrum digitizers are ideal tools for making ultrasonic measurements and can play a key role required in the development, testing and operation of these products. Spectrum digitizers and arbitrary waveform generators offer a wide range of bandwidths, sampling rates, and dynamic range to match the broad spectrum of ultrasonic measurement needs. When wide dynamic range and maximum sensitivity is required high-resolution 14 and 16 bit digitizers are available for capturing and analyzing ultrasonic signals from 100 kHz up to 250 MHz in frequency. A cost effective range of 8 bit digitizers is also available to cover frequency ranges from 5 MHz up to 1.5 GHz.  Typical ultrasound applications include Non-Destructive Testing (NDT), Ultrasonic Testing (UT), Doppler Effect Flow-meters, Time-of-flight Diffraction (TOFD), Range Finding, Scanning Acoustic Microscopy (SAM) and Tomography (SAT), Medical Sonography and Ultrasonography, Phased array ultrasonics, Laser ultrasonics and Acoustic Emission.

Spectrum Product Features

  • 14 and 16 Bit Resolution
  • Segmented Memory with FIFO Readout
  • Low Dead-Time between triggers (< 80 ns)

Matching Card Families

  • M4i.44xx: 14/16 Bit 500 MS/s to 130 MS/s digitizer
  • M4i.22xx: 8 Bit 5 GS/s to 1.25 GS/s digitizer
  • M2p.59xx: 16 bit 20 MS/s to 125 MS/s Digitizer

Related Documents

Application Note UltrasonicUsing Spectrum Digitizer in Ultrasonic Applications

The use of Ultrasonic products is increasing as new techniques and improvements in instrument performance constantly expand the range of applications. Spectrum digitizers are ideal tools for making ultrasonic measurements and can play a key role required in the development, testing and operation of these products. Spectrum digitizers and arbitrary waveform generators offer a wide range of bandwidths, sampling rates, and dynamic range to match the broad spectrum of ultrasonic measurement needs

Case Study OCTOCT application for skin cancer diagnosis

The VivoSight® OCT scanner uses the technique of swept-source Optical Coherence Tomography (SS-OCT) for cross-sectional imaging of skin. This is a significant new tool to assist in diagnosis and treatment of skin cancers and other skin conditions.

Useful Links

  • The Shanghai Jiao Tong University in China is conducting research into the properties of daughter bubbles that are generated by inertial cavitation of preformed microbubbles. For detection of inertial cavitation and scattering, transducers produce signals that are acquired by an M4i.4410-x8 130 MS/s, 16-bit Digitizer. The data is then transferred to a computer for Fourier transform and power spectrum analysis. A white paper discussing this ultrasonics sonochemistry research is available here
  • At London’s St Thomas’ Hospital in the UK, they are working on a high-speed photoacoustic-guided wavefront shaping method, that uses a relatively simple experimental setup, with potential for in vivo applications. Part of the system uses an M4i.4420-x8 250 MS/s, 16-bit Digitizer to acquire ultrasonic signals. The full research paper discussing the experimental setup and results can be found here
  • The College of Biophotonics, South China Normal University, China, is improving the performance of photoacoustic/ultrasound endoscopes. Their research uses an M4i.4420-x8 250 MS/s, 16-bit Digitizer as part of dual-modality endoscope. A research paper here shows the potential for using the tens-of-micron-resolved PA/US endoscope for in vivo anatomical imaging in the clinical detection of colorectal diseases.The University of Leeds and the Leeds Institute of Medical Research, Leeds, U.K. are studying the use of nanobubbles as a drug delivery agent for cancer treatment. A Spectrum M4i.4420-x8, 250 MS/s, 16-bit Digitizer is used as the data acquisition card that collect acoustic emission signals. A paper discussing the research can be found here
  • The MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, at the South China Normal University, in China has developed a Photoacoustic Imaging (PAI) pen that can be handheld (performing forward detection and lateral detection) to extend the application of photoacoustic (PA) microscopy to areas such as the oral cavity, throat, cervix, and abdominal viscera. The experimental setup uses an M4i.4450-x8 500 MS/s, 14 bit, digitizer to acquire the sensor signals. A paper discussing the PAI pen and the test results can be found here
  • The School of Biomedical Engineering, Tohoku University,  Japan is using a 5 GS/s M4i.2230-x8 Digitizer to achieve optical resolution photoacoustic microscopy with sub-micron lateral resolution for visualization of cells and their structures. Details and results of their experimental setup can be found hereAt the Central South University in Changsha, China, they are using an M4i.2233-x8 high speed digitizer in an improved acoustic-resolution-based photoacoustic microscope (ARPAM) that helps to resolve the conflict between lateral resolution and depth of field. The article is available here
  • The University of Helsinki, Finland, has developed a 3 Megapixel Ultrasonic Microscope using a Spectrum M4i.6631-x8 AWG for signal transmission and an M4i.2233-x8 digitizer for data acquisition. IEEE members can download the full article here
  • The University College London has developed a method for large area all-optical ultrasound imaging using robotic control that involves the use of an M4i.4420-x8 250 MS/s, 16-bit digitizer. A white paper on the development can be found here
  • Find out how Nanyang Technological University, Singapore, uses a high speed 16 bit Spectrum digitizer M4i.4420-x8 for Photoacoustic Imaging by clicking here
  • See how the Department of Medical Physics and Biomedical Engineering, at University College London, UK, use an M4i.4420-x8 high-resolution digitizer in a miniature all optical ultrasonic 3D endoscopic imaging system by clicking here
  • Click here to find out how the School of Electronic and Electrical Engineering, University of Leeds, UK, are using a Spectrum M4i.4420-x8 high-resolution digitizer, plasmonic gold nanorods and high intensity focused ultrasound (HIFU) to improve non-invasive techniques for the treatment of cancerous tissue
  • At the Queensland Brain Institute, University of Queensland, researchers are using a Spectrum M4i.4421-x8 16 bit digitizer to study ultrasound propagation in materials that are used to model the human skull as well as investigating therapeutic ultrasound as a potential means to treat diseases of the brain.
  • The Laboratory of Acoustical Waveform Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands, is developing the Delft Breast Ultrasound Scanning System (DBUS) as a means for detecting the presence of tumors. Find out how they are using the 14 bit M3i.4142 digitizer by following this link
  • A video-rate all-optical ultrasound imaging system, where ultrasound is generated and detected using light, has been demonstrated at the Department of Medical Physics and Biomedical Engineering, University College London, UK. The system uses a Spectrum M4i.4420-x8 high resolution 16 bit digitizer to acquire signals from a broadband photodiode. Details on how the system enables real-time, video-rate 2D ultrasound imaging, at a frame rate of 15 Hz, can be found here