
SPECTRUM INSTRUME
PHONE: +49 (0)4102-6956-0
MX.70xx
fast digital I/O board

with TTL levels
for PXI bus

Hardware Manual
Driver Manual

English version May 24, 2018
NTATION GMBH · AHRENSFELDER WEG 13-17 · 22927 GROSSHANSDORF · GERMANY
· FAX: +49 (0)4102-6956-66 · E-MAIL: info@spec.de · INTERNET: www.spectrum-instrumentation.com

(c) SPECTRUM INSTRUMENTATION GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY

SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH.
Microsoft, Visual C++, Visual Basic, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7,
Windows 8, Windows 10 and Windows Server are trademarks/registered trademarks of Microsoft Corporation.
LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.
Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc.
Keysight VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc.
FlexPro is a registered trademark of Weisang GmbH & Co. KG.
PCIe, PCI Express, PCI-X and PCI-SIG are trademarks of PCI-SIG.
PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group.
PXI is a trademark of the PXI Systems Alliance.
LXI is a registered trademark of the LXI Consortium.
IVI is a registered trademark of the IVI Foundation
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Intel and Intel Xeon are trademarks and/or registered trademarks of Intel Corporation.
AMD and Opteron are trademarks and/or registered trademarks of Advanced Micro Devices.
NVIDIA, CUDA, GeForce, Quadro and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation.

Introduction... 6
Preface ... 6
General Information ... 6
Different models of the MX.70xx series ... 7
The Spectrum type plate .. 8
Hardware information... 9

Block diagram.. 9
Order Information... 10

Hardware Installation ... 11
System Requirements .. 11
Warnings.. 11

ESD Precautions ... 11
Cooling Precautions.. 11
Sources of noise ... 11

Installing the board in the system.. 11
Installing a single board without any options.. 11
Installing a board with digital inputs/outputs.. 12

Software Driver Installation... 13
Interrupt Sharing .. 13
Important Notes on Driver Version 4.00.. 13
Windows XP 32/64 Bit .. 14

Installation ... 14
Version control ... 14
Driver - Update... 15

Windows Vista/7 32/64 Bit ... 16
Installation ... 16
Version control ... 17
Driver - Update... 17

Windows NT / Windows 2000 32 Bit ... 18
Installation ... 18
Adding boards to the Windows NT / Windows 2000 driver... 18
Driver - Update... 18
Important Notes on Driver Version 4.00 .. 18

Linux... 19
Overview .. 19
Installation with Udev support... 19
Installation without Udev support .. 20

Software ... 22
Software Overview... 22
C/C++ Driver Interface... 22

Header files ... 22
Microsoft Visual C++ .. 23
Borland C++ Builder ... 23
Linux Gnu C... 23
Other Windows C/C++ compilers ... 23
National Instruments LabWindows/CVI... 24
Driver functions .. 24

Delphi (Pascal) Programming Interface .. 26
Type definition ... 26
Include Driver... 26
Examples... 26
Driver functions .. 26

Visual Basic Programming Interface .. 27
Include Driver... 27
Visual Basic Examples... 28
VBA for Excel Examples .. 28
Driver functions .. 28
3

Programming the Board .. 30
Overview .. 30
Register tables ... 30
Programming examples... 30
Error handling.. 30
Initialization... 31

Starting the automatic initialization routine .. 31
PCI Register ... 31
Hardware version... 32
Date of production.. 32
Serial number .. 32
Maximum possible sample rate .. 32
Installed memory .. 32
Installed features and options ... 33
Used interrupt line .. 33
Used type of driver ... 33

Powerdown and reset ... 34

Digital I/Os ... 35
Channel Selection .. 35

For all 701x boards.. 35
For the 7005 board.. 35
Important note on channels selection... 36

Settings of the I/O lines .. 36
Settings for the inputs .. 36
Settings for the outputs .. 36

Standard acquisition/generation modes .. 38
Input modes... 38

Standard posttrigger mode .. 38
Output modes .. 38

Singleshot mode... 38
Continuous Mode ... 39
Posttrigger Mode.. 39

Programming... 39
Memory, Pre- and Posttrigger ... 39
Starting without interrupt (classic mode)... 42
Starting with interrupt driven mode ... 42
Data organization .. 43
Reading out the data with SpcGetData.. 43
Writing data with SpcSetData.. 44
Sample format.. 45

FIFO Mode... 47
Overview .. 47

General Information.. 47
Background FIFO Read ... 47
Background FIFO Write... 48
Speed Limitations.. 48

Programming... 49
Software Buffers ... 49
Buffer processing.. 50
FIFO mode .. 50
Example FIFO acquisition mode ... 51
Example FIFO generation mode ... 51
Data organization .. 52
Sample format.. 52

Clock generation ... 53
Overview .. 53
Internally generated sample rate .. 53

Standard internal sample rate .. 53
Using plain quartz without PLL .. 54

External clocking.. 55
Direct external clock ... 55
External clock with divider ... 56
PXI Reference Clock .. 57
4

Trigger modes and appendant registers .. 58
General Description.. 58
Software trigger ... 58
External TTL trigger ... 58

Edge triggers ... 59
Pulsewidth triggers.. 60

Pattern Trigger ... 61
Overview of the pattern trigger registers.. 61
Pattern trigger edge setup.. 62
Triggerpattern and Triggermask.. 62

PXI Features.. 69
Background on PXI ... 69

PXI and CompactPCI... 69
PXI Reference Clock .. 69
PXI Star Trigger .. 69
PXI Trigger Bus ... 69
PXI Interconnect Bus .. 69

Programming PXI Features ... 70
PXI Reference Clock .. 70
PXI Trigger Modes .. 70

Multiple Recording... 73
Recording modes ... 73

Standard Mode.. 73
FIFO Mode .. 73

Trigger modes.. 73

Multiple Replay ... 75
Output modes .. 75

Standard Mode.. 75
FIFO Mode .. 75

Trigger modes.. 75

Gated Sampling .. 77
Recording modes ... 77

Standard Mode.. 77
FIFO Mode .. 77

Trigger modes.. 77
General information and trigger delay .. 77
End of gate alignment ... 78
Alignement samples per channel .. 78
Number of samples on gate signal ... 78
Allowed trigger modes .. 79
Example program... 79

Gated Replay .. 80
Output modes .. 80

Standard Mode.. 80
FIFO Mode .. 80

Trigger modes.. 80
General information and trigger delay .. 80
Alignement samples per channel .. 81
Number of samples on gate signal ... 81
Allowed trigger modes .. 81

Example program... 82

Appendix .. 83
Error Codes ... 83
Pin assignment of the multipin connector ... 84

Additions for boards with up to 32 bit (extra bracket) ... 84
Main digital outputs .. 84

Pin assignment of the multipin cable ... 84
IDC footprints... 85
5

Preface Introduction
Introduction

Preface
This manual provides detailed information on the hardware features of your Spectrum instrumentation board. This information includes tech-
nical data, specifications, block diagram and a connector description.

In addition, this guide takes you through the process of installing your board and also describes the installation of the delivered driver package
for each operating system.

Finally this manual provides you with the complete software information of the board and the related driver. The reader of this manual will
be able to integrate the board in any PC system with one of the supported bus and operating systems.

Please note that this manual provides no description for specific driver parts such as those for LabVIEW or MATLAB. These drivers are pro-
vided by special order.

For any new information on the board as well as new available options or memory upgrades please contact our website
www.spectrum-instrumentation.com. You will also find the current driver package with the latest bug fixes and new features on our site.

Please read this manual carefully before you install any hardware or software. Spectrum is not responsible
for any hardware failures resulting from incorrect usage.

General Information
The MX.70xx series of fast digital I/O boards offer a resolution between 1 bit and 32 bit with a maximum samplerate of 125 MS/s (60
MS/s). The data direction of the board can be programmed either to input or output. The on-board memory of up to 128 MByte can be used
completely for recording or replaying digital data. Alternatively the MX.70xx can be used in FIFO mode. Then data is transferred on-line to
PC memory or hard disk. The standard PXI bus allows synchronisation of several MX.xxxx boards. Therefore the MX.70xx board can be used
as an enlargement to analog boards.

Application examples: Recording/Replay of digital data, test pattern generation, chip test, system test, pattern rec-
ognition.
6 MX.70xx Manual

Introduction Different models of the MX.70xx series
Different models of the MX.70xx series
The following overwiew shows the different available models of the MX.70xx series. They differ in the number of available channels. You
can also see the model dependant allocation of the output connectors.

• MX.7005
MX.7010

• MX.7011
(c) Spectrum GmbH 7

The Spectrum type plate Introduction
The Spectrum type plate

The Spectrum type plate, which consists of the following components, can be found on all of our boards.

The board type, consisting of the two letters describing the bus (in this case MX for the PXI bus) and the model number.

The size of the on-board installed memory in MSamples. In this example there are 8 MS (16 MByte) installed.

The serial number of your Spectrum board. Every board has a unique serial number.

The board revision, consisting of the base version and the module version.

A list of the installed options. A complete list of all available options is shown in the order information. In this example the option
’Multiple Recording’ is installed.

The date of production, consisting of the calendar week and the year.

Please always supply us with the above information, especially the serial number in case of support request.
That allows us to answer your questions as soon as possible. Thank you.
8 MX.70xx Manual

Introduction Hardware information
Hardware information

Block diagram

Technical DataI

Internal samplerate 1 kS/s up to 125 MS/s Dimension 160 mm x 233 mm (Standard 3U)
External samplerate DC up to 125 MS/s Width (MX.7005, MX.7010) 1 slot
Input impedance 110 Ohm / 50 kOhm || 15 pF Width (MX.7011) 2 slots
110 Ohm termination voltage 2.5V Connector 40 pole half pitch (Hirose FX2 series)
Signal level (data, trigger, clock) 3.3 V/ 5 V TTL compatible Operating temperature 0°C to 50°C

Data input current sink 0.0 V 3.3 V 5.0 V Storage temperature -10°C to 70°C
(no termination) -1.0 µA +1.0 µA +20.0 µA Humidity 10% to 90%

MTBF 200000 hours
Clock / trigger input current sink
(no termination)

± 1.0 µA

Multi: Trigger to 1st sample delay fixed
Multi: Recovery time < 20 samples (16 - 64 bit)

32 bit 16 bit 8 bit 4 bit 2 bit 1 bit
ext. Trigger accuracy (samples) 1 1 2 4 8 16
int. Trigger accuracy (samples) 1 1 2 4 8 16

Trigger input:Standard TTL level Low: -0.5 > level < 0.8 V
High: 2.0 V > level < 5.5 V
Trigger pulse must be valid > 2 clock periods.

Clock input: Standard TTL level Low: -0.5 V > level < 0.8 V
High: 2.0 V > level < 5.5 V
Rising edge. Duty cycle: 50% ± 5%

Trigger output Standard TTL, capable of driving 50 Ohm.
Low < 0.4 V (@ 20 mA, max 64 mA)
High > 2.4 V (@ -20 mA, max -48 mA)
One positive edge after the first internal trigger

Clock output Standard TTL, capable of driving 50 Ohm
Low < 0.4 V (@ 20 mA, max 64 mA)
High > 2.4 V (@ -20 mA, max -48 mA)

Power consumption (maximum value) Full speed
+3,3 V +5 V +12 V -12 V

MX.7005 (16 bit output @ 125 MS/s in 110 Ohm) 1.18 A (3.9 W) 0.81 A (4.1 W) 0 A 0 A
MX.7010 (16 bit output @ 125 MS/s in 110 Ohm) 1.18 A (3.9 W) 0.81 A (4.1 W) 0 A 0 A
MX.7011 (32 bit output @ 60 MS/s in 110 Ohm) 1.70 A (5.6 W) 0.81 A (4.1 W) 0 A 0 A
(c) Spectrum GmbH 9

Hardware information Introduction
For detailed information on the different modes for external clocking-
please refer to the dedicated chapter in the hardware manual for the
boards of the 70xx series.

Order Information
The card is delivered with 64 MByte on-board memory and supports standard mode (Scope), FIFO mode (streaming), Multiple Recording/Re-
play and Gated Sampling/Replay. Operating system drivers for Windows/Linux 32 bit and 64 bit, examples for C/C++, LabVIEW (Win-
dows), MATLAB (Windows), LabWindows/CVI, Delphi, Visual Basic, Python and a Base license of the oscilloscope software SBench 6 are
included. Drivers for other 3rd party products like VEE or DASYLab may be available on request.

One digital connecting cable Cab-d40-idc-100 is included in the delivery for every digital connection (each 16 channels).

External Clocking Mode
Delay time SINGLE BURST_S BURST_M
tckdly 20 ns 30 ns < 1 ns

tv > 350 ns > 150 ns > 2.5 ns

tp > 2.5 ns > 2.5 ns > 2.5 ns

ts < 3.0 ns < 3.0 ns < 3.0 ns

tVh < 1.0 ns < 1.0 ns < 1.0 ns

Versions Order no. 1 Bit 2 Bit 4 Bit 8 Bit 16 Bit 32 Bit

MX.7005 125 MS/s 125 MS/s 125 MS/s 125 MS/s 125 MS/s
MX.7010 - - - 125 MS/s 125 MS/s
MX.7011 - - - 125 MS/s 125 MS/s 60 MS/s

Memory Order no. Option

MX.7xxx-128M Memory upgrade to 128 MB of total memory
MX.7xxx-up Additional fee for later memory upgrade

Cable Order no. Option

Cab-d40-idc-100 Flat ribbon cable 40 pole FX2 for digital connector to 2x20 pole IDC connector, 100 cm
Cab-d40-d40-100 Flat ribbon cable 40 pole FX2 for digital connector to 40 pole digital FX2 connector, 100 cm

Software SBench6 Order no.

SBench6 Base version included in delivery. Supports standard mode for one card.
SBench6-Pro Professional version for one card: FIFO mode, export/import, calculation functions
SBench6-Multi Option multiple cards: Needs SBench6-Pro. Handles multiple synchronized cards in one system.
Volume Licenses Please ask Spectrum for details.
10 MX.70xx Manual

Hardware Installation System Requirements
Hardware Installation

System Requirements
All Spectrum MX.xxxx instrumentation boards are compliant to the PXI 3U standard and require in general one free slot. Depending on the
installed options additional free slots can be necessary.

Warnings

ESD Precautions
The boards of the MX.xxxx series contain electronic components that can be damaged by electrostatic discharge (ESD).

Before installing the board in your system or even before touching it, it is absolutely necessary to bleed of any elec-
trostatic electricity.

Cooling Precautions
The boards of the MX.xxxx series operate with components having very high power consumption at high speeds. For this reason it is abso-
lutely required to cool this board sufficiently. It is strongly recommended to install an additional cooling fan producing a stream of air across
the boards surface. In most cases PXI systems are already equipped with sufficient cooling power. In that case please make sure that the air
stream is not blocked.

During longer pauses between the single measurements the power down mode should be called to reduce the heat production.

Sources of noise
The boards of the MX.xxxx series should be placed far away from any noise producing source (like e.g. the power supply). It should especially
be avoided to place the board in the slot directly adjacent to another fast board (like the graphics controller).

Installing the board in the system

Installing a single board without any options
The locks on the bottom side of PXI boards need to be unlocked and opened before installing the board into a free slot of the system. Therefore
you need to press the little button on the inside of the fastener and move it outwards (see figure). Now slowly insert the card into the host
system using the key ways until the lock snaps in with a „click“.

While inserting the board take care not to tilt it.

After the board’s insertion fasten the two screws carefully, without overdoing.

(c) Spectrum GmbH 11

Installing the board in the system Hardware Installation
Installing a board with digital inputs/outputs
The locks on the bottom side of PXI boards need to be unlocked and opened before installing the board into a free slot of the system. Therefore
you need to press the little button on the inside of the fastener and move it outwards (see figure). Now slowly insert the card into the host
system using the key ways until the lock snaps in with a „click“.

While inserting the board take care not to tilt it.

After the board’s insertion fasten the four screws of both brakkets carefully, without overdoing. The figure shows exemplarily a board with
two installed modules.

12 MX.70xx Manual

Software Driver Installation Interrupt Sharing
Software Driver Installation
Before using the board a driver must be installed that matches the operating system. The installation is done in different ways depending on
the used operating system. The driver that is on CD supports all boards of the MI, MC and MX series. That means that you can use the same
driver for all boards of theses families.

Interrupt Sharing
This board uses a PCI interrupt for DMA data transfer and for controlling the FIFO mode. The used interrupt line is allocated by the PC BIOS
at system start and is normally depending on the selected slot. Because there is only a limited number of interrupt lines available on the PCI
bus it can happen that two or more boards must use the same interrupt line. This so called interrupt sharing must be supported by all drivers
of the participating equipment.

Most available drivers and also the Spectrum driver for your board can manage interrupt sharing. But there are also some drivers on the
market that can only use one interrupt exclusively. If this equipment shares an interrupt with the Spectrum board, the system will hang up if
the second driver is loaded (the time is depending on the operating system).

If this happens it is necessary to reconfigure the system in that way that the critical equipment has an exclusive access to an interrupt.

On most systems the BIOS shows a list of all installed PCI boards with their allocated interrupt lines directly after system start. You have to
check whether an interrupt line is shared between two boards. Some BIOS allow the manual allocation of interrupt lines. Have a look in your
mainboard manual for further information on this topic.

Because normally the interrupt line is fixed for one PCI slot it is simply necessary to use another slot for the critical board to force a new
interrupt allocation. You have to search a configuration where all critical boards have only exclusive access to one interrupt.

Depending on the system, using the Spectrum board with a shared interrupt may degrade performance a little. Each interrupt needs to be
checked by two drivers. For this reason when using time critical FIFO mode even the Spectrum board should have an exclusively access to
one interrupt line.

Important Notes on Driver Version 4.00
With Windows driver version V4.00 and later the support for Windows 64 bit versions was added for MI, MC and MX series cards. This
required an internal change such that Windows 98, Windows ME, and Windows 2000 versions are no longer compatible with the WDM
driver version.

Windows 98 and Windows ME should use the latest 3.39 driver version (delivered on CD revision 3.06), be-
cause with driver version V4.00 on these two operating systems are no longer supported.

Windows 2000 users can alternatively change from the existing WDM driver to the Windows NT legacy driver, which is still supported by
Spectrum.

Because changing from one driver model (WDM) to another (NT legacy) might result in conflicts please contact
Spectrum prior to the update.
(c) Spectrum GmbH 13

Windows XP 32/64 Bit Software Driver Installation
Windows XP 32/64 Bit

Installation

When installing the board in a Windows XP system the Spectrum board will be rec-
ognized automatically on the next start-up.

The system offers the direct installation of a driver for the board.

Do not let Windows automatically search for the best driver, be-
cause sometimes the driver will not be found on the CD. Please take
the option of choosing a manual installation path instead.

Allow Windows XP to search for the most suitable driver in a specific directory. Se-
lect the CD that was delivered with the board as installation source. The driver files
are located on CD in the directory
\Driver\win32\winxp_vista_7 for Windows Vista/7 (for 32 Bit)
or
\Driver\win64\winxp_vista_7 for Windows Vista/7 (for 64 Bit)

The hardware assistant shows you the exact board type that has been found like
the MI.3020 in the example. Older boards (before june 2004) show „Spectrum
Board“ instead.

The drivers can be used directly after installation. It is not necessary to restart the
system. The installed drivers are linked in the device manager.

Below you’ll see how to examine the driver version and how to update the driver
with a newer version.

Version control

If you want to check which driver version is installed in the system this
can be easily done in the device manager. Therefore please start the
device manager from the control panel and show the properties of
the installed driver.
14 MX.70xx Manual

Software Driver Installation Windows XP 32/64 Bit
On the property page Windows XP shows the date and the version of the installed driver.

After clicking the driver details button the detailed version information of the driver is shown.
In the case of a support question this information must be presented together with the
board’s serial number to the support team to help finding a fast solution.

Driver - Update

If a new driver version should be installed no Spectrum board is allowed to be in
use by any software. So please stop and exit all software that could access the
boards.

A new driver version is directly installed from the device manager. Therefore please
open the properties page of the driver as shown in the section before. As next step
click on the update driver button and follow the steps of the driver installation in a
similar way to the previous board and driver installation.

Please select the path where the new driver version was unzipped to. If you’ve got
the new driver version on CD please select the proper path on the CD containing
the new driver version:
\Driver\win32\winxp_vista_7 for Windows Vista/7 (for 32 Bit)
or
\Driver\win64\winxp_vista_7 for Windows Vista/7 (for 64 Bit)

The new driver version can be used directly after installation without restarting the
system. Please keep in mind to update the driver of all installed Spectrum boards.

(c) Spectrum GmbH 15

Windows Vista/7 32/64 Bit Software Driver Installation
Windows Vista/7 32/64 Bit

Installation
When installing the card in a Windows Vista or Windows 7 system, it might be recognized automatically on the next start-up. The system
tries at first to automatically search and install the drivers from the Microsoft homepage.

This mechanism will fail at first for the „PCI Device“ device, because the Spectrum drivers are not available via Microsoft, so simply close the
dialog. This message can be safely ignored.

Afterwards open the device manager from the Win-
dows control panel, as shown on the right.

Find the above mentioned „PCI Device“, right-click
and select „Update Driver Software...“

Do not let Windows Vista/7 automatically search the for the best driv-
er, because it will search the internet and not find a proper driver.
Please take the option of browsing the computer manually for the driv-
er software instead. Allow Windows Vista/7 to search for the most
suitable driver in a specific directory.

Now simply select the root folder of the CD that was delivered with
the board as installation source and enable the „Include subfolders“
option.

Alternatively you can browse to the installtions folders. The driver files
are located on CD in the directory
\Driver\win32\winxp_vista_7 for Windows Vista/7 (for 32 Bit)
or
\Driver\win64\winxp_vista_7 for Windows Vista/7 (for 64 Bit)
16 MX.70xx Manual

Software Driver Installation Windows Vista/7 32/64 Bit
On the upcoming Windows security dialog select install. To pre-
vent Windows Vista/7 to always ask this question for future up-
dates, you can optionally select to always trust software from
Spctrum.

The hardware assistant then shows you the exact board type that has
been found like the MI.3120 in the example.

The drivers can be used directly after installation. It is not necessary to
restart the system. The installed drivers are linked in the device man-
ager.

Below you’ll see how to examine the driver version and how to update
the driver with a newer version.

Version control

If you want to check which driver version is installed
in the system this can be easily done in the device
manager. Therefore please start the device manager
from the control panel and show the properties of
the installed driver.

On the property page Windows Vista/7 shows the date and the version of the installed driv-
er.
After clicking the driver details button the detailed version information of the driver is shown.
In the case of a support question this information must be presented together with the board’s
serial number to the support team to help finding a fast solution.

Driver - Update
The driver update under Windows Vista/7 is exact the same procedure as the initial instal-
lation. Please follow the steps above, starting from the device manager, select the Spectrum card to be updated, right-click and select „Update
Driver Software...“ and follow the steps above.
(c) Spectrum GmbH 17

Windows NT / Windows 2000 32 Bit Software Driver Installation

Windows NT / Windows 2000 32 Bit

Installation

Under Windows NT and
Windows 2000 the Spectrum
driver must be installed man-
ually. The driver is found on
CD in the directory \Driv-
er\win32\winnt.
Please start the
„winNTDrv_Install.exe“ pro-
gram. The installation is per-
formed totally automatically,
simply click on the „Next“
button. After installtion the
system must be rebooted
once (see picture on the right

side). The driver is install to support one PCI/PXI or CompactPCI device. If more boards are installed in the system the configuration of the
driver has to be changed. Please see the following chapter for this topic.

Adding boards to the Windows NT / Windows 2000 driver

The Windows NT lagacy
driver must be configured
by the Driver Configura-
tion utility to support more
than one board. The Driver
Configuration utility is au-
tomatically installed with
the driver. The Utility can
be found in the start menu
as „DrvConfig“.

To add a new card please follow these steps:

• Increase the board number on top of the screen by pressing the right button
• Change the board type from „Not Installed“ to „PCI Board“
• Press the „Apply changes“ button
• Press the „OK“ button
• Restart the system

Driver - Update
If a new driver version should be installed no Spectrum board is allowed to be in use by any software. So please stop and exit all software
that could access the boards.
When updating a system please simply execute the setup file of the new driver version. Afterwards the system has to be rebooted. The driver
configuration is not changed.

Important Notes on Driver Version 4.00
With Windows driver version V4.00 and later the support for Windows 64 bit versions was added for MI, MC and MX series cards. This
required an internal change such that Windows 98, Windows ME, and Windows 2000 versions are no longer compatible with the WDM
driver version.

Because changing from one driver model (WDM) to another (NT legacy) might result in conflicts please contact
Spectrum prior to the update.

18 MX.70xx Manual

Software Driver Installation Linux
Linux

Overview
The Spectrum boards are delivered with drivers for linux. It is necessary to install them manually following the steps explained afterwards.
The linux drivers can be found on CD in the directory /Driver/linux. As linux is an open source operating system there are several distributions
in use world-wide that are compiled with different kernel settings. As we are not able to install and maintain hundreds of different distributions
and versions we had to focus on some common used linux distributions.
However if your distribution does not work with one of these pre-compiled kernel modules or you have a specialized kernel installed (like a
SMP kernel) you can get the linux driver sources directly from us. With this sources it’s no problem to compile and use the linux driver on your
system. Please contact your local distributor to get the sources. The Spectrum linux drivers are compatible with kernel versions 2.4, 2.6, 3.x
and 4.x.

On this CD you’ll find pre-compiled linux kernel modules for the following versions

64 bit
The Spectrum Linux Drivers also run under 64 bit systems based on the AMD 64 bit architecture (AMD64). The Intel architecture (IA64)
is not supported and has not been tested. All drivers, examples and programs need to be recompiled to run under 64 bit Linux. The
64 bit support is available starting with driver version 3.18. Due to the different pointer size two additional functions have been
implemented that are described later on. All special functionality concerning 64 bit Linux support is marked with the logo seen on the right.

Installation with Udev support
Starting with driver version 3.21 build 1548 the driver natively supports udev. Once the driver is loaded it automatically generates the device
nodes under /dev. The cards are automatically named to /dev/spc0, /dev/spc1, ... If udev is installed on your system the following two
installtion steps are not necessary to be made manually. You may use all the standard naming and rules that are available with udev.

Login as root.
It is necessary to have the root rights for installing a driver.

Select the right driver from the CD.
Refer to the list shown above. If your distribution is not listed there please select the module that most closely matches your installed kernel
version. Copy the driver kernel module spc.o from the CD directory to your hard disk. Be sure to use a hard disk directory that is a accessible
by all users who should work with the board.

First time load of the driver
The linux driver is shipped as the loadable module spc.o. The driver includes all Spectrum PCI, PXI and CompactPCI boards. The boards are
recognized automatically after driver loading.Load the driver with the insmod command:

Distribution Kernel Version Processor Width Distribution Kernel Version Processor Width
Suse 9.3 2.6.11 single and smp 32 bit Fedora Core 3 2.6.9 single and smp 32 bit
Suse 10.0 2.6.13 single only 32 bit and 64 bit Fedora Core 4 2.6.11 single and smp 32 bit
Suse 10.1 2.6.16 single only 32 bit and 64 bit Fedora Core 5 2.6.15 single and smp 32 bit and 64 bit
Suse 10.2 2.6.18 single and smp 32 bit and 64 bit Fedora Core 6 2.6.18 single and smp 32 bit and 64 bit
Suse 10.3 2.6.22 single and smp 32 bit and 64 bit Fedora Core 7 2.6.21 single and smp 32 bit and 64 bit
Suse 11.0 2.6.25 single and smp 32 bit and 64 bit Fedora 8 2.6.23 single and smp 32 bit and 64 bit
Suse 11.1 2.6.27 single and smp 32 bit and 64 bit Fedora 9 2.6.25 single and smp 32 bit and 64 bit
Suse 11.2 2.6.31 single and smp 32 bit and 64 bit Fedora 10 2.6.27 single and smp 32 bit and 64 bit
Suse 11.3 2.6.34 single and smp 32 bit and 64 bit Fedora 11 2.6.29 single and smp 32 bit and 64 bit
Suse 11.4 2.6.38 single and smp 32 bit and 64 bit Fedora 12 2.6.31 single and smp 32 bit and 64 bit
Suse 12.1 3.1 single and smp 32 bit and 64 bit Fedora 13 2.6.33.3 single and smp 32 bit and 64 bit
Suse 12.2 3.4.6 single and smp 32 bit and 64 bit Fedora 14 2.6.35.6 single and smp 32 bit and 64 bit
Suse 12.3 3.7.0 single and smp 32 bit and 64 bit Fedora 15 2.6.38.6 single and smp 32 bit and 64 bit
Suse 13.1 3.11.6 single and smp 32 bit and 64 bit Fedora 16 3.1 single and smp 32 bit and 64 bit
Suse 13.2 3.16.6 single and smp 32 bit and 64 bit Fedora 17 3.3.4 single and smp 32 bit and 64 bit
Suse 42.1 4.1.12 single and smp 64 bit Fedora 18 3.6.10 single and smp 32 bit and 64 bit

Fedora 19 3.9.5 single and smp 32 bit and 64 bit
Debian Sarge 2.4.27 single 32 bit Fedora 20 3.11.10 single and smp 32 bit and 64 bit
Debian Sarge 2.6.8 single 32 bit Fedora 21 3.17.4 single and smp 32 bit and 64 bit
Debian Etch 2.6.18 single and smp 32 bit and 64 bit Fedora 22 4.0.4 single and smp 32 bit and 64 bit
Debian Lenny 2.6.26 single and smp 32 bit and 64 bit Fedora 23 4.2.3 single and smp 32 bit and 64 bit
Debian Squeeze 2.6.32 single and smp 32 bit and 64 bit Fedora 24 4.5.5 single and smp 32 bit and 64 bit
Debian Wheezy 3.2.41 single and smp 32 bit and 64 bit
Debian Jessie 3.16.7 single and smp 32 bit and 64 bit Ubuntu 12.04 LTS 3.2 single and smp 32 bit and 64 bit

Ubuntu 14.04 LTS 3.15.0 single and smp 32 bit and 64 bit
Ubuntu 16.04 LTS 4.4.0 single and smp 32 bit and 64 bit

linux:~ # insmod spc.o
(c) Spectrum GmbH 19

Linux Software Driver Installation
The insmod command may generate a warning that the driver module was compiled for another kernel version. In that case you may try to
load the driver module with the force parameter and test the board very carefully.

If the kernel module could not be loaded in your linux installation it is necessary to compile the driver directly on your system. Please con-
tactSpectrum to get the needed source files including the compilation description.

Depending on the used linux distribution the insmod command generates a message telling the driver version and the board types and serial
numbers that have been found. If your distribution does not show this message it is possible to view them with the dmesg command:

In the example we show you the output generated by a MI.3020. All other board types are similar to this output but showing the correct
board type.

Driver info
Information about the installed boards could be found in the /proc/spectrum file. All PCI, PXI and CompactPCI boards show the basic infor-
mation found in the EEProm there. This is an example output generated by a MI.3020:

Automatic load of the driver
It is necessary to load the kernel driver module after each start of the system before using the boards. Therefore you may add the „insmod
spc.o“ command in one of the start-up files. Or you may load the kernel driver module manually whenever you need access to the board.

Installation without Udev support

Login as root.
It is necessary to have the root rights for installing a driver.

Select the right driver from the CD.
Refer to the list shown above. If your distribution is not listed there please select the module that most closely matches your installed kernel
version. Copy the driver kernel module spc.o from the CD directory to your hard disk. Be sure to use a hard disk directory that is a accessible
by all users who should work with the board.

First time load of the driver
The linux driver is shipped as the loadable module spc.o. The driver includes all Spectrum PCI, PXI and CompactPCI boards. The boards are
recognized automatically after driver loading.Load the driver with the insmod command:

The insmod command may generate a warning that the driver module was compiled for another kernel version. In that case you may try to
load the driver module with the force parameter and test the board very carefully.

If the kernel module could not be loaded in your linux installation it is necessary to compile the driver directly on your system. Please con-
tactSpectrum to get the needed source files including the compilation description.

linux:~ # insmod -f spc.o

linux:~ # dmesg
... some other stuff
spc driver version: 3.07 build 0
sp0: MI.3020 sn 01234

linux:~ # cat /proc/spectrum

Spectrum driver information

Driver Version: 3.07 build 0

Board#0: MI.3020
 serial number: 01234
 production month: 05/2004
 version: 9.6
 samplerate: 100 MHz
 installed memory: 16 MBytes

linux:~ # insmod spc.o

linux:~ # insmod -f spc.o
20 MX.70xx Manual

Software Driver Installation Linux
Depending on the used linux distribution the insmod command generates a message telling the driver version and the board types and serial
numbers that have been found. If your distribution does not show this message it is possible to view them with the dmesg command:

In the example we show you the output generated by a MI.3020. All other board types are similar to this output but showing the correct
board type.

Examine the major number of the driver
For accessing the device driver it is necessary to know the major number of the device. This number is listed in the /proc/devices list. The
device driver is called "spec" in this list. Normally this number is 254 but this depends on the device drivers that have been installed before.

Installing the device
You connect a device to the driver with the mknod command. The major number is the number of the driver as shown in the last step, the
minor number is the index of the board starting with 0. This step must only be done once for the system where the boards are installed in.
The device will remain in the file structure even if the board is de-installed from the system.

The following command makes a device for the first Spectrum board the driver has found:

Make sure that the users who work with the driver have full rights access for the device. Therefore you should give all persons all rights to the
device:

Now it is possible to access the board using this device.

Driver info
Information about the installed boards could be found in the /proc/spectrum file. All PCI, PXI and CompactPCI boards show the basic infor-
mation found in the EEProm there. This is an example output generated by a MI.3020:

Automatic load of the driver
It is necessary to load the kernel driver module after each start of the system before using the boards. Therefore you may add the „insmod
spc.o“ command in one of the start-up files. Or you may load the kernel driver module manually whenever you need access to the board.

linux:~ # dmesg
... some other stuff
spc driver version: 3.07 build 0
sp0: MI.3020 sn 01234

linux:~ # cat /proc/devices
Character devices:
...
171 ieee1394
180 usb
188 ttyUSB
254 spec

Block devices:
 1 ramdisk
 2 fd
...

linux:~ # mknod /dev/spc0 c 254 0

linux:~ # chmod a+w /dev/spc0

linux:~ # cat /proc/spectrum

Spectrum driver information

Driver Version: 3.07 build 0

Board#0: MI.3020
 serial number: 01234
 production month: 05/2004
 version: 9.6
 samplerate: 100 MHz
 installed memory: 16 MBytes
(c) Spectrum GmbH 21

Software Overview Software
Software
This chapter gives you an overview about the structure of the drivers and the software, where to find and how to use the examples. It detailed
shows how the drivers are included under different programming languages and where the differences are when calling the driver functions
from different programming languages.

This manual only shows the use of the standard driver API. For further information on programming drivers
for third-party software like LabVIEW, MATLAB (and on request DASYLab or VEE) an additional manual can
be found on the CD delivered with the card.

Software Overview

The Spectrum drivers offer you a common and fast API for using all of the board hardware features. This API is nearly the same on all operating
systems. Based on this API one can write your own programs using any programming language that can access the driver API. This manual
detailed describes the driver API allowing you to write your own programs.
The optional drivers for third-party products like LabVIEW or DASYLab are also based on this API. The special functionality of these drivers
is not subject of this manual and is described on separate manuals delivered with the driver option.

C/C++ Driver Interface
C/C++ is the main programming language for which the drivers have been build up. Therefore the interface to C/C++ is the best match. All
the small examples of the manual showing different parts of the hardware programming are done with C.

Header files
The basic task before using the driver is to include the header files that are delivered on CD together with the board. The header files are
found in the directory /Driver/header_c. Please don’t change them in any way because they are updated with each new driver version to
include the new registers and new functionality.

dlltyp.h Includes the platform specific definitions for data types and function declarations. All data types are based on this definitions. The use of this typ definition file
allows the use of examples and programs on different platforms without changes to the program source.

regs.h Defines all registers and commands which are used in the Spectrum driver for the different boards. The registers a board uses are described in the board spe-
cific part of the documentation.

spectrum.h Defines the functions of the driver. All definitions are taken from the file dlltyp.h. The functions itself are described below.
spcerr.h Lists all and describes all error codes that can be given back by any of the driver functions. The error codes and their meaning are described in detail in the

appendix of this manual.
errors.h Only there for backward compatibility with older program versions. Please use spcerr.h instead.
22 MX.70xx Manual

Software C/C++ Driver Interface
Example for including the header files:

Microsoft Visual C++

Include Driver
The driver files can be easily included in Microsoft C++ by simply using the library file that is delivered together with the drivers. The library
file can be found on the CD in the path /Examples/vc/c_header. Please include the library file Spectrum.lib in your Visual C++ project. All
functions described below are now available in your program.

Examples
Examples can be found on CD in the path /Examples/vc. There is one subdirectory for each board family. You’ll find board specific examples
for that family there. The examples are bus type independent. As a result that means that the MI30xx directory contains examples for the
MI.30xx, the MC.30xx and the MX.30xx families. The example directories contain a running project file for Microsoft Visual C++ that can
be directly loaded and compiled.
There are also some more board independent examples in the directory MIxxxx. These examples show different aspects of the boards like
programming options or synchronization and have to be combined with one of the board specific example.

Borland C++ Builder

Include Driver
The driver files can be easily included in Borland C++ Builder by simply using the library file that is delivered together with the drivers. The
library file can be found on the CD in the path /Examples/vc/c_header. Please include the library file spclib_bcc.lib in your Borland C++
Builder project. All functions described below are now available in your program.

Examples
The Borland C++ Builder examples share the sources with the Visual C++ examples. Please see above chapter for a more detailed documen-
tation of the examples. In each example directory are project files for Visual C++ as well as Borland C++ Builder.

Linux Gnu C

Include Driver
The interface of the linux drivers is a little bit different from the windows interface. To make the access easier and to have more similar exam-
ples we added an include file that re maps the standard driver functions to the linux specific functions. This include file is found in the path
/Examples/linux/spcioctl.inc. All examples are based on this file.

Example for including Linux driver:

Examples
Examples can be found on CD in the path /Examples/linux. There is one subdirectory for each board family. You’ll find board specific ex-
amples for that family there. The examples are bus type independent. As a result that means that the MI30xx directory contains examples for
the MI.30xx, the MC.30xx and the MX.30xx families. The examples are simple one file programs and can be compiled using the Gnu C
compiler gcc. It’s not necessary to use a makefile for them.

Other Windows C/C++ compilers

Include Driver
To access the driver, the driver functions must be loaded from the driver dll. This can be easily done by standard windows functions. There
is one example in the directory /Examples/other that shows the process. After loading the functions from the dll one can proceed with the
examples that are given for Microsoft Visual C++.

// ----- driver includes -----
#include "../c_header/dlltyp.h"
#include "../c_header/spectrum.h"
#include "../c_header/spcerr.h"
#include "../c_header/regs.h"

// ----- driver includes -----
#include "../c_header/dlltyp.h"
#include "../c_header/regs.h"
#include "../c_header/spcerr.h"

// ----- include the easy ioctl commands from the driver -----
#include "../c_header/spcioctl.inc"
(c) Spectrum GmbH 23

C/C++ Driver Interface Software
Example of function loading:

National Instruments LabWindows/CVI

Include Drivers
To use the Spectrum driver under LabWindows/CVI it is necessary to first load the functions from the driver dll. This is more or less similar to
the above shown process with the only difference that LabWindows/CVI uses it’s own library handling functions instead of the windows
standard functions.

Example of function loading under LabWindows/CVI:

Examples
Examples for LabWindows/CVI can be found on CD in the directory /Examples/cvi. Theses examples show mainly how to include the driver
in a LabWindows/CVI environment and don’t use any special functions of the boards. The examples have to be merged with the standard
windows examples described under Visual C++.

Driver functions
The driver contains five functions to access the hardware.

Function SpcInitPCIBoard
This function initializes all installed PCI, PXI and CompactPCI boards. The boards are recognized automatically. All installation parameters
are read out from the hardware and stored in the driver. The number of PCI boards will be given back in the value Count and the version of
the PCI bus itself will be given back in the value PCIVersion.

Function SpcInitPCIBoards:

Under Linux this function is not available. Instead one must open and close the driver with the standard file
functions open and close. The functionality behind this function is the same as the SpcInitPCIBoards function.

Using the Driver under Linux:

Function SpcSetParam
All hardware settings are based on software registers that can be set by the function SpcSetParam. This function sets a register to a defined
value or executes a command. The board must first be initialized. The available software registers for the driver are listed in the board specific
part of the documentation below.

The value „nr“ contains the index of the board that you want to access, the value „reg“ is the register that has to be changed and the value
„value“ is the new value that should be set to this software register. The function will return an error value in case of malfunction.

// definition of external function that has to be loaded from DLL
typedef int16 (SPCINITPCIBOARDS) (int16* pnCount, int16* pnPCIVersion);
typedef int16 (SPCSETPARAM) (int16 nNr, int32 lReg, int32 lValue);
typedef int16 (SPCGETPARAM) (int16 nNr, int32 lReg, int32* plValue);
...
SPCINITPCIBOARDS* pfnSpcInitPCIBoards;
SPCSETPARAM* pfnSpcSetParam;
SPCGETPARAM* pfnSpcGetParam;
...
// ----- Search for dll -----
hDLL = LoadLibrary ("spectrum.dll");

// ----- Load functions from DLL -----
pfnSpcInitPCIBoards = (SPCINITPCIBOARDS*) GetProcAddress (hDLL, "SpcInitPCIBoards");
pfnSpcSetParam = (SPCSETPARAM*) GetProcAddress (hDLL, "SpcSetParam");
pfnSpcGetParam = (SPCGETPARAM*) GetProcAddress (hDLL, "SpcGetParam");

// ----- load the driver entries from the DLL -----
DriverId = LoadExternalModule ("spectrum.lib");

// ----- Load functions from DLL -----
SpcInitPCIBoards = (SPCINITPCIBOARDS*) GetExternalModuleAddr (DriverId, "SpcInitPCIBoards", &Status);
SpcSetParam = (SPCSETPARAM*) GetExternalModuleAddr (DriverId, "SpcSetParam", &Status);
SpcGetParam = (SPCGETPARAM*) GetExternalModuleAddr (DriverId, "SpcGetParam", &Status);

int16 SpcInitPCIBoards (int16* count, int16* PCIVersion);

hDrv = open ("/dev/spc0", O_RDWR);
...
close (hDrv);
24 MX.70xx Manual

Software C/C++ Driver Interface
Function SpcSetParam

Under Linux the value „nr“ must contain the handle that was retrieved by the open function for that specific
board. The values is then not of the type „int16“ but of the type „handle“.

Function SpcGetParam
The function SpcGetParam reads out software registers or status information. The board must first be initialized. The available software reg-
isters for the driver are listed in the board specific part of the documentation below.
The value „nr“ contains the index of the board that you want to access, the value „reg“ is the register that has to be read out and the value
„value“ is a pointer to a value that should contain the read parameter after function call. The function will return an error value in case of
malfunction.

Function SpcGetParam

Under Linux the value „nr“ must contain the handle that was given back by the open function of that spe-
cific board. The values is then not of the type „int16“ but of the type „handle“.

Function SpcSetAdr
This function is only available under Linux. It is intended to program one of the FIFO buffer addresses to the driver. Depending on the
platform (32 bit or 64 bit) the address parameter has a matching pointer size of 32 bit or 64 bit. This function can be used with Linux
32 bit as well as Linux 64 bit installations. The function was implemented with driver version 3.18 and is not available with prior
driver versions. Please be sure to use the matching spcioctl.inc file including this function declaration.

Function SpcSetAdr

Function SpcGetAdr
This function is only available under Linux. It is intended to read out one of the FIFO buffer addresses from the driver. Depending on
the platform (32 bit or 64 bit) the address parameter has a matching pointer size of 32 bit or 64 bit. This function can be used with
Linux 32 bit as well as Linux 64 bit installations. The function was implemented with driver version 3.18 and is not available with
prior driver versions. Please be sure to use the matching spcioctl.inc file including this function declaration.

Function SpcGetAdr

Function SpcSetData
Writes data to the board for a specific memory channel. The board must first be initialized. The value „nr“ contains the index of the board
that you want to access, the „ch“ parameter contains the memory channel. „start“ and „len“ define the position of data to be written. „data“
is a pointer to the array holding the data. The function will return an error value in case of malfunction.

This function is only available on generator or I/O boards. The function is not available on acquisition boards.

Function SpcSetData (Windows)

Under Linux the additional parameter nBytesPerSample must be used for this function. For all boards with 8 bit resolution the parameter is
„1“, for all boards with 12, 14 or 16 bit resolution this parameter has to be „2“. Under Linux the value „hDrv“ must contain the handle that
was given back by the open function of that specific board. Under Linux the return value is not an error code but the number of bytes that
has been written.

Function SpcSetData (Linux)

int16 SpcSetParam (int16 nr, int32 reg, int32 value);

int16 SpcGetParam (int16 nr, int32 reg, int32* value);

int16 SpcSetAdr (drv_handle hDrv, int32 lReg, void* pvAdr);

int16 SpcGetAdr (drv_handle hDrv, int32 lReg, void** ppvAdr);

int16 SpcSetData (int16 nr, int16 ch, int32 start, int32 len, dataptr data);

int32 SpcSetData (int hDrv, int32 lCh, int32 lStart, int32 lLen, int16 nBytesPerSample, dataptr pvData)
(c) Spectrum GmbH 25

Delphi (Pascal) Programming Interface Software
Function SpcGetData
Reads data from the board from a specific memory channel. The board must first be initialized. The value „nr“ contains the index of the board
that you want to access, the „ch“ parameter contains the memory channel. „start“ and „len“ define the position of data to be read. „data“
is a pointer to the array that should hold the data. The function will return an error value in case of malfunction.

This function is only available on acquisition or I/O boards. The function is not available on generator boards.

Function SpcGetData

Under Linux the additional parameter nBytesPerSample must be used for this function. For all boards with 8 bit resolution the parameter is
„1“, for all boards with 12, 14 or 16 bit resolution this parameter has to be „2“, when reading timestamps this parameter has to be „8“.
Under Linux the value „hDrv“ must contain the handle that was given back by the open function of that specific board. Under Linux the return
value is not an error code but is the number of bytes that has been read.

Function SpcGetData (Linux)

Delphi (Pascal) Programming Interface

Type definition
All Spectrum driver functions are using pre-defined variable types to cover different operating systems and to use the same driver interface
for all programming languages. Under Delphi it is necessary to define these types once. This is also shown in the examples delivered on CD.

Delphi type definition:

In the example shown above the size of data is defined to „smallint“. This definition is only valid for boards
that have a sample resolution of 12, 14 or 16 bit. On 8 bit boards this has to be a „shortint“ type.

Include Driver
To include the driver functions into delphi it is necessary to first add them to the implementation section of the program file. There the name
of the function and the location in the dll is defined:

Driver implementation:

Examples
Examples for Delphi can be found on CD in the directory /Examples/delphi. There is one subdirectory for each board family. You’ll find
board specific examples for that family there. The examples are bus type independent. As a result that means that the MI30xx directory con-
tains examples for the MI.30xx, the MC.30xx and the MX.30xx families. The example directories contain a running project file for Borland
Delphi that can be directly loaded and compiled.

Driver functions
The driver contains five functions to access the hardware.

int16 SpcGetData (int16 nr, int16 ch, int32 start, int32 len, dataptr data);

int32 SpcGetData (int hDrv, int32 lCh, int32 lStart, int32 lLen, int16 nBytesPerSample, dataptr pvData)

type
 int8 = shortint;
 pint8 = ^shortint;
 int16 = smallint;
 pint16 = ^smallint;
 int32 = longint;
 pint32 = ^longint;
 data = array[1..MEMSIZE] of smallint;
 dataptr = ^data;

function SpcSetData (nr,ch:int16; start,len:int32; data:dataptr): int16; cdecl; external 'SPECTRUM.DLL';
function SpcGetData (nr,ch:int16; start,len:int32; data:dataptr): int16; cdecl; external 'SPECTRUM.DLL';
function SpcSetParam (nr:int16; reg,value: int32): int16; cdecl; external 'SPECTRUM.DLL';
function SpcGetParam (nr:int16; reg:int32; value:pint32): int16; cdecl; external 'SPECTRUM.DLL';
function SpcInitPCIBoards (count,PCIVersion: pint16): int16; cdecl; external 'SPECTRUM.DLL';
26 MX.70xx Manual

Software Visual Basic Programming Interface
Function SpcInitPCIBoard
This function initializes all installed PCI, PXI and CompactPCI boards. The boards are recognized automatically. All installation parameters
are read out from the hardware and stored in the driver. The number of PCI boards will be given back in the value Count and the version of
the PCI bus itself will be given back in the value PCIVersion.

Function SpcSetParam
All hardware settings are based on software registers that can be set by the function SpcSetParam. This function sets a register to a defined
value or executes a command. The board must first be initialized. The available software registers for the driver are listed in the board specific
part of the documentation below.

The value „nr“ contains the index of the board that you want to access, the value „reg“ is the register that has to be changed and the value
„value“ is the new value that should be set to this software register. The function will return an error value in case of malfunction.

Function SpcGetParam
The function SpcGetParam reads out software registers or status information. The board must first be initialized. The available software reg-
isters for the driver are listed in the board specific part of the documentation below.
The value „nr“ contains the index of the board that you want to access, the value „reg“ is the register that has to be read out and the value
„value“ is a pointer to a value that should contain the read parameter after function call. The function will return an error value in case of
malfunction.

Function SpcSetData
Writes data to the board for a specific memory channel. The board must first be initialized. The value „nr“ contains the index of the board
that you want to access, the „ch“ parameter contains the memory channel. „start“ and „len“ define the position of data to be written. „data“
is a pointer to the array holding the data. The function will return an error value in case of malfunction.

This function is only available on generator or i/o boards. The function is not available on acquisition boards.

Function SpcGetData
Reads data from the board from a specific memory channel. The board must first be initialized. The value „nr“ contains the index of the board
that you want to access, the „ch“ parameter contains the memory channel. „start“ and „len“ define the position of data to be read. „data“
is a pointer to the array that should hold the data. The function will return an error value in case of malfunction.

This function is only available on acquisition or i/o boards. The function is not available on generator boards.

Visual Basic Programming Interface
The Spectrum boards can be used together with Microsoft Visual Basic as well as with Microsoft Visual Basic for Applications. This allows
per example the direct access of the hardware from within Microsoft Excel. The interface between the programming language and the driver
is the same for both.

Include Driver
To include the driver functions into Basic it is necessary to first add them to the module definition section of the program file. There the name
of the function and the location in the dll is defined:

Module definition:

The module definition is already done for the examples and can be found in the Visual Basic examples directory. Please simply use the file
declnt.bas.

Public Declare Function SpcInitPCIBoards Lib "SpcStdNT.dll" Alias "_SpcInitPCIBoards@8" (ByRef Count As Integer,
ByRef PCIVersion As Integer) As Integer
Public Declare Function SpcInitBoard Lib "SpcStdNT.dll" Alias "_SpcInitBoard@8" (ByVal Nr As Integer, ByVal Typ
As Integer) As Integer
Public Declare Function SpcGetParam Lib "SpcStdNT.dll" Alias "_SpcGetParam@12" (ByVal BrdNr As Integer, ByVal
RegNr As Long, ByRef Value As Long) As Integer
Public Declare Function SpcSetParam Lib "SpcStdNT.dll" Alias "_SpcSetParam@12" (ByVal BrdNr As Integer, ByVal
RegNr As Long, ByVal Value As Long) As Integer
Public Declare Function SpcGetData8 Lib "SpcStdNT.dll" Alias "_SpcGetData@20" (ByVal BrdNr As Integer, ByVal
Channel As Integer, ByVal Start As Long, ByVal Length As Long, ByRef data As Byte) As Integer
Public Declare Function SpcSetData8 Lib "SpcStdNT.dll" Alias "_SpcSetData@20" (ByVal BrdNr As Integer, ByVal
Channel As Integer, ByVal Start As Long, ByVal Length As Long, ByRef data As Byte) As Integer
Public Declare Function SpcGetData16 Lib "SpcStdNT.dll" Alias "_SpcGetData@20" (ByVal BrdNr As Integer, ByVal
Channel As Integer, ByVal Start As Long, ByVal Length As Long, ByRef data As Integer) As Integer
Public Declare Function SpcSetData16 Lib "SpcStdNT.dll" Alias "_SpcSetData@20" (ByVal BrdNr As Integer, ByVal
Channel As Integer, ByVal Start As Long, ByVal Length As Long, ByRef data As Integer) As Integer
(c) Spectrum GmbH 27

Visual Basic Programming Interface Software
Visual Basic Examples
Examples for Visual Basic can be found on CD in the directory /Examples/vb. There is one subdirectory for each board family. You’ll find
board specific examples for that family there. The examples are bus type independent. As a result that means that the MI30xx directory con-
tains examples for the MI.30xx, the MC.30xx and the MX.30xx families. The example directories contain a running project file for Visual
Basic that can be directly loaded.

VBA for Excel Examples
Examples for VBA for Excel can be found on CD in the directory /Examples/excel. The example here simply show the access of the driver
and make a very small demo acquisition. It is necessary to combine these examples with the Visual Basic examples to have full board func-
tionality.

Driver functions
The driver contains five functions to access the hardware.

Function SpcInitPCIBoard
This function initializes all installed PCI, PXI and CompactPCI boards. The boards are recognized automatically. All installation parameters
are read out from the hardware and stored in the driver. The number of PCI boards will be given back in the value Count and the version of
the PCI bus itself will be given back in the value PCIVersion.

Function SpcInitPCIBoard:

Function SpcSetParam
All hardware settings are based on software registers that can be set by the function SpcSetParam. This function sets a register to a defined
value or executes a command. The board must first be initialized. The available software registers for the driver are listed in the board specific
part of the documentation below.

The value „nr“ contains the index of the board that you want to access, the value „reg“ is the register that has to be changed and the value
„value“ is the new value that should be set to this software register. The function will return an error value in case of malfunction.

Function SpcSetParam:

Function SpcGetParam
The function SpcGetParam reads out software registers or status information. The board must first be initialized. The available software reg-
isters for the driver are listed in the board specific part of the documentation below.
The value „nr“ contains the index of the board that you want to access, the value „reg“ is the register that has to be read out and the value
„value“ is a pointer to a value that should contain the read parameter after function call. The function will return an error value in case of
malfunction.

Function SpcGetParam:

Function SpcSetData
Writes data to the board for a specific memory channel. The board must first be initialized. The value „nr“ contains the index of the board
that you want to access, the „ch“ parameter contains the memory channel. „start“ and „len“ define the position of data to be written. „data“
is a pointer to the array holding the data. The function will return an error value in case of malfunction.

Function SpcSetData:

It is necessary to select the function with the matching data width from the above mentioned data write func-
tions. Use the SpcSetData8 function for boards with 8 bit resolution and use the SpcSetData16 function for
boards with 12, 14 and 16 bit resolution.

Function SpcInitPCIBoards (ByRef Count As Integer, ByRef PCIVersion As Integer) As Integer

Function SpcSetParam (ByVal BrdNr As Integer, ByVal RegNr As Long, ByVal Value As Long) As Integer

Function SpcGetParam (ByVal BrdNr As Integer, ByVal RegNr As Long, ByRef Value As Long) As Integer

Function SpcSetData8 (ByVal BrdNr As Integer, ByVal Channel As Integer, ByVal Start As Long, ByVal Length As
Long, ByRef data As Byte) As Integer

Function SpcSetData16 (ByVal BrdNr As Integer, ByVal Channel As Integer, ByVal Start As Long, ByVal Length As
Long, ByRef data As Integer) As Integer
28 MX.70xx Manual

Software Visual Basic Programming Interface
This function is only available on generator or i/o boards. The function is not available on acquisition boards.

Function SpcGetData
Reads data from the board from a specific memory channel. The board must first be initialized. The value „nr“ contains the index of the board
that you want to access, the „ch“ parameter contains the memory channel. „start“ and „len“ define the position of data to be read. „data“
is a pointer to the array that should hold the data. The function will return an error value in case of malfunction.

Function SpcGetData:

It is necessary to select the function with the matching data width from the above mentioned data read func-
tions. Use the SpcGetData8 function for boards with 8 bit resolution and use the SpcGetData16 function for
boards with 12, 14 and 16 bit resolution.

This function is only available on acquisition or i/o boards. The function is not available on generator boards.

Function SpcGetData8 (ByVal BrdNr As Integer, ByVal Channel As Integer, ByVal Start As Long, ByVal Length As
Long, ByRef data As Byte) As Integer

Function SpcGetData16 (ByVal BrdNr As Integer, ByVal Channel As Integer, ByVal Start As Long, ByVal Length As
Long, ByRef data As Integer) As Integer
(c) Spectrum GmbH 29

Overview Programming the Board
Programming the Board

Overview
The following chapters show you in detail how to program the different aspects of the board. For every topic there’s a small example. For
the examples we focussed on Visual C++. However as shown in the last chapter the differences in programming the board under different
programming languages are marginal. This manual describes the programming of the whole hardware family. Some of the topics are similar
for all board versions. But some differ a little bit from type to type. Please check the given tables for these topics and examine carefully which
settings are valid for your special kind of board.

Register tables
The programming of the boards is totally software register based. All software registers are described in the following form:

If no constants are given below the register table, the dedicated register is used as a switch. All such registers
are activated if written with a “1“ and deactivated if written with a “0“.

Programming examples
In this manual a lot of programming examples are used to give you an impression on how the actual mentioned registers can be set within
your own program. All of the examples are located in a seperated colored box to indicate the example and to make it easier to differ it from
the describing text.

All of the examples mentioned throughout the manual are basically written using the Visual C++ compiler for Windows. If you use Linux there
are some changes in the funtion’s parameter lists as mentioned in the relating software chapter.

To keep the examples as compatible as possible for users of both operational systems (Windows and Linux) all the functions that
contain either a board number (Windows) or a handle (Linux) use the common parameter name ’hDrv’. Windows users simply have
to set the parameter to the according board number (as the example below is showing), while Linux users can easily use the handle

that is given back for the according board by the initialization function.

Error handling
If one action caused an error in the driver this error and the register and value where it occurs will be saved.

The driver is then locked until the error is read out using the SPC_LASTERRORCODE function. All other functions
will lead to the same errorcode unless the error is cleared by reading SPC_LASTERRORCODE.

Register Value Direction Description

SPC_COMMAND 0 r/w Command register of the board.

SPC_START 10 Starts the board with the current register settings.

SPC_STOP 20 Stops the board manually.

// Windows users must set hDrv to the according board number before.
// Assuming that there is only one Spectrum board installed you’ll
// have to set hDrv like this:

hDrv = 0;

SpcGetParam (hDrv, SPC_LASTERRORCODE, &lErrorCode); // Any command just to show the hDrv usage

The name of the software regis-
ter as found in the regs.h file.
Could directly be used by C and
C++ compiler

The decimal value of the software register.
Also found in the regs.h file. This value must
be used with all programs or compilers that
cannot use the header file directly.

Describes whether
the register can be
read (r) and/or writ-
ten (w).

Short description of the function-
ality of the register. A more de-
tailled description is found
above or below this register.

Any constants that can be used to
program the register directly are
shown inserted beneath the register
table.

The decimal value of the constant. Also
found in the regs.h file. This value must be
used with all programs or compilers that
cannot use the header file directly.

Short description of
the use of this con-
stant.
30 MX.70xx Manual

Programming the Board Initialization
This means as a result that it is not necessary to check each driver call for an error but to check for an error before the board is started to see
whether all settings have been valid.

By reading all the error information one can easily examine where the error occured. The following table shows all the error related registers
that can be read out.

The error codes are described in detail in the appendix. Please refer to this error description and the descrip-
tion of the software register to examine the cause for the error message.

Example for error checking:

This short program then would generate a printout as:

Initialization

Starting the automatic initialization routine
Before you can access the boards in your program, you have to initialize them first. Therefore the Spectrum function SpcInitPCIBoards is used.
If it is called, all Spectrum boards in the host system are initialized automatically. If no errors occured during the initialization, the returned
value is 0 (ERR_OK). In any other cases something has gone wrong. Please see appendix for explanations of the different error codes.

If the process of initializing the boards was successful, the function returns the total number of Spectrum boards that have been found in your
system. The third return value is the revision of the PCI Bus, the Spectrum boards are installed in.

The following example shows how to start the initialization of the board and check for errors.

PCI Register

These registers are set by the driver after the initialization. The information is found in the on-board ROM, and can easily be read out by
your own application software. All of the following PCI registers are read only. You get access to all registers by using the Spectrum function
SpcGetParam with one of the following registers.

One of the following values are returned, when reading this register.

Register Value Direction Description

SPC_LASTERRORCODE 999999 r Error code of the last error that occured. The errorcodes are found in spcerr.h. If this register is read,
the driver will be unlocked.

SPC_LASTERRORREG 999998 r Software register that causes the error.

SPC_LASTERRORVALUE 999997 r The value that has been written to the faulty software register.

SpcSetParam (hDrv, SPC_MEMSIZE, -345); // faulty command
if (SpcSetParam (hDrv, SPC_COMMAND, SPC_START) != ERR_OK) // try to start and check for an error
 {
 SpcGetParam (hDrv, SPC_LASTERRORCODE, &lErrorCode); // read out the error information
 SpcGetParam (hDrv, SPC_LASTERRORREG, &lErrorReg);
 SpcGetParam (hDrv, SPC_LASTERRORVALUE, &lErrorValue);
 printf („Error %d when writing Register %d with Value %d !\n“, lErrorCode, lErrorReg, &lErrorValue);
 }

Error 101 when writing Register 10000 with Value -345 !

// ----- Initialization of PCI Bus Boards------------------------------------
if (SpcInitPCIBoards (&nCount, &nPCIBusVersion) != ERR_OK)
 return;
if (nCount == 0)
 {
 printf ("No Spectrum board found\n");
 return;
 }

Register Value Direction Description

SPC_PCITYP 2000 r Type of board as listed in the table below

Boardtype Value hexade-
zimal

Value dezimal Boardtype Value hexade-
zimal

Value dezimal

TYP_MX7005 27005h 159749 TYP_MX7011 27011h 159761

TYP_MX7010 27010h 159760
(c) Spectrum GmbH 31

Initialization Programming the Board
Hardware version
Since all of the MI, MC and MX boards from Spectrum are modular boards, they consist of one base board and one or two (only PCI and
CompactPCI) piggy-back modules. This register SPC_PCIVERSION gives information about the revision of either the base board and the mod-
ules. Normally you do not need this information but if you have a support question, please provide the revision together with it.

If your board has a piggy-back expansion module mounted (MC und MI series boards only) you can get the hardwareversion with the fol-
lowing register.

Date of production
This register informs you about the production date, which is returned as one 32 bit longword. The upper word is holding the information
about the year, while the lower byte informs about the month. The second byte (counting from below) is not used. If you only need to know
the production year of your board you have to mask the value accordingly. Normally you do not need this information, but if you have a
support question, please provide the revision within.

Serial number
This register holds the information about the serial number of the board. This numer is unique and should always be sent together with a
support question. Normally you use this information together with the register SPC_PCITYP to verify that multiple measurements are done with
the exact same board.

Maximum possible sample rate
This register gives you the maximum possible samplerate the board can run however. The information provided here does not consider any
restrictions in the maximum speed caused by special channel settings. For detailed information about the correlation between the maximum
samplerate and the number of activated chanels please refer th the according chapter.

Installed memory
This register returns the size of the installed on-board memory in bytes as a 32 bit integer value. If you want to know the ammount of samples
you can store, you must regard the size of one sample of your Spectrum board. All 8 bit boards can store only sample per byte, while all
other boards with 12, 14 and 16 bit use two bytes to store one sample.

The following example is written for a „two bytes“ per sample board (12, 14 or 16 bit board).

Register Value Direction Description

SPC_PCIVERSION 2010 r Board revision: bit 15..8 show revision of the base card, bit 7..0 the revision of the modules

Register Value Direction Description

SPC_PCIEXTVERSION 2011 r Board’s expansion module hardware revision as integer value.

Register Value Direction Description

SPC_PCIDATE 2020 r Production date: year in bit 31..16, month in bit 7..0, bit 15..8 are not used

Register Value Direction Description

SPC_PCISERIALNO 2030 r Serial number of the board

Register Value Direction Description

SPC_PCISAMPLERATE 2100 r Maximum samplerate in Hz as a 32 bit integer value

Register Value Direction Description

SPC_PCIMEMSIZE 2110 r Instaleld memory in bytes as a 32 bit integer value

SpcGetParam (hDrv, SPC_PCIMEMSIZE, &lInstMemsize);
printf ("Memory on board: %ld MBytes (%ld MSamples)\n", lInstMemsize /1024 / 1024, lInstMemsize /1024 / 1024 /2);
32 MX.70xx Manual

Programming the Board Initialization
Installed features and options
The SPC_PCIFEATURES register informs you about the options, that are installed on the board. If you want to know about one option being
installed or not, you need to read out the 32 bit value and mask the interesting bit.

The following example demonstrates how to read out the information about one feature.

Used interrupt line
This register holds the information of the actual used interrupt line for the board. This information is sometimes more easy in geting the interrupt
line of one specific board then using the hardware setups of your operating system.

Used type of driver
This register holds the information about the driver that is actually used to access the board. Although most users will use the boards within
a Windows system and most Windows users will use the WDM driver, it can be sometimes necessary of knowing the type of driver.

Driver version
This register informs Windows users about the actual used driver DLL. This information can also be obtained from the device manager. Please
refer to the „Driver Installation“ chapter. Linux users will get the revision of their kernel driver instead, because linux does not use any DLL.

Kernel Driver version
This register informs OS independent about the actual used kernel driver. Windows users can also get this information from the device man-
ager. Plese refer to the „Driver Installation“ chapter. Linux users can get the driver version by simply accessing the following register for the
kernel driver.

Register Value Direction Description

SPC_PCIFEATURES 2120 r PCI feature register. Holds the installed features and options as a bitfield, so the return value must be
masked with one of the masks below to get information about one certain feature.

PCIBIT_MULTI 1 Is set if the Option Multiple Recording / Multiple Replay is installed.

PCIBIT_DIGITAL 2 Is set if the Option Digital Inputs / Digital Outputs is installed.

PCIBIT_GATE 32 Is set if the Option Gated Sampling / Gated Replay is installed.

PCIBIT_SYNC 512 Is set if the Option Synchronization is installed for that certain board, regardless what kind of synchronization you
use. Boards without this option cannot be synchronized with other boards.

PCIBIT_TIMESTAMP 1024 Is set if the Option Timestamp is installed.

PCIBIT_STARHUB 2048 Is set on the board, that carrys the starhub piggy-back module. This flag is set in addition to the PCIBIT_SYNC flag
mentioned above. If on no synchronized board the starhub option is installed, the boards are synchronized with the
cascading option.

PCIBIT_XIO 8192 Is set if the Option Extra I/O is installed.

PCIBIT_AMPLIFIER 16384 Arbitrary Waveform Generators only: card has additional set of calibration values for amplifier card

SpcGetParam (hDrv, SPC_PCIFEATURES, &lFeatures);

if (lFeatures & PCIBIT_DIGITAL)
 printf("Option digital inputs is installed on your board");

Register Value Direction Description

SPC_PCIINTERRUPT 2300 r The used interrupt line of the board.

Register Value Direction Description

SPC_GETDRVTYPE 1220 r Gives information about what type of driver is actually used

DRVTYP_DOS 0 DOS driver is used (discontinued)

DRVTYP_LINUX32 1 Linux 32bit driver is used

DRVTYP_VXD 2 Windows VXD driver is used (only Windows 95) (discontinued)

DRVTYP_NTLEGACY 3 Windows NT Legacy driver is used (only Windows NT) (discontinued)

DRVTYP_WDM32 4 Windows WDM 32bit driver is used (Windows 98, Windows 2000). (discontinued)

DRVTYP_WDM32 4 Windows WDM 32bit driver is used (XP/Vista/Windows 7/Windows 8/Windows 10).

DRVTYP_WDM64 5 Windows WDM 64bit driver is used by 64bit application (XP64/Vista/Windows 7/Windows 8/Windows 10).

DRVTYP_WOW64 6 Windows WDM 64bit driver is used by 32bit application (XP64/Vista/Windows 7/Windows 8/Windows 10).

DRVTYP_LINUX64 7 Linux 64bit driver is used

Register Value Direction Description

SPC_GETDRVVERSION 1200 r Gives information about the driver DLL version

Register Value Direction Description

SPC_GETKERNELVERSION 1210 r Gives information about the kernel driver version.
(c) Spectrum GmbH 33

Powerdown and reset Programming the Board
Example program for the board initialization

The following example is only an exerpt to give you an idea on how easy it is to initialize a Spectrum board.

Powerdown and reset
Every Spectrum board can be set to powerdown mode by software. In this mode the board is therefore consuming less power than in normal
operation mode. The amount of saved power is board dependant. Please refer to the technical data section for details. The board can be set
to normal mode again either by performing a reset as mentioned below or by starting the board as described in the according chapters later
in this manual.

If the board is set to powerdown mode or a reset is performed the data in the on-board memory will be no
longer valid and therefore cannot be read out or replayed again.

Performing a board reset or powering down the board can be easily done by the related board commands mentioned in the following table.

// ----- Initialization of PCI Bus Boards -----------------------------------
if (SpcInitPCIBoards (&nCount, &nPCIBusVersion) != ERR_OK)
 return;

if (nCount == 0)
 {
 printf ("No Spectrum board found\n");
 return;
 }

// ----- request and print Board type and some information ------------------
SpcGetParam (hDrv, SPC_PCITYP, &lBrdType);
SpcGetParam (hDrv, SPC_PCIMEMSIZE, &lInstMemsize);
SpcGetParam (hDrv, SPC_PCISERIALNO, &lSerialNumber);

// ----- print the board type depending on bus. Board number is always the lower 16 bit of type -----
switch (lBrdType & TYP_SERIESMASK)
 {
 case TYP_MISERIES:
 printf ("Board found: MI.%x sn: %05d\n", lBrdType & 0xffff, lSerialNumber);
 break;

 case TYP_MCSERIES:
 printf ("Board found: MC.%x sn: %05d\n", lBrdType & 0xffff, lSerialNumber);
 break;

 case TYP_MXSERIES:
 printf ("Board found: MX.%x sn: %05d\n", lBrdType & 0xffff, lSerialNumber);
 break;
 }

printf ("Memory on board: %ld MBytes (%ld MSamples)\n", lInstMemsize /1024/1024, lInstMemsize /1024/1024 /2);
printf ("Serial Number: %05ld\n", lSerialNumber);

Register Value Direction Description

SPC_COMMAND 0 r/w Command register of the board.

SPC_POWERDOWN 30 Sets the board to powerdown mode. The data in the on-board memory is no longer valid and cannot be read out or
replayed again. The board can be set to normal mode again by the reset command or by starting the boards.

SPC_RESET 0 A software and hardware reset is done for the board. All settings are set to the default values. The data in the board’s
on-board memory will be no longer valid.
34 MX.70xx Manual

Digital I/Os Channel Selection
Digital I/Os

Channel Selection

For all 701x boards
One key setting that influences nearly all other possible settings is the channel enable register. An unique feature of the Spectrum boards is
the possibility to program the data width. All on-board memory can then be used by samples with the actual data width.

This description shows you the channel enable register for the complete board family. However your specific board may have less inputs/out-
puts bits depending on the board type you purchased does not allow you to set the maximum number of bits shown here.

The channel enable register is set as a bitfield, relating to the different modules. That means that on one module you use one of the relating
values for that module, either the value for 16 bit or for 32 bit mode. To activate more than one module the values have to be combined by
a bitwise OR. As there is only space for one module on a PXI board, you simply have to set the desired sample width.

Example showing how to activate 32 bits:

The following table shows all allowed settings for the channel enable register.

Any channel activation mask that is not shown here is not valid. If programming another channel activation
the driver automatically remaps this to the best matching activation mask. You can read out the channel en-
able register to see what channel activation mask the driver has set.

Reading out the channel enable register can be done directly after setting it or later like this:

For the 7005 board
As the 7005 board is a modified 7010 board and only a few of the channel settings are possible, the possible values are given in
addition to the chennal enable settings mentioned above.

With the 7005 series boards you can only use the CH0_8BIT and CH0_16BIT settings. If you want to use the board in any other mode than
the 16 bit mode, you have to set up the channel enable register to the CH0_8BIT value !

Register Value Direction Description

SPC_CHENABLE 11000 r/w Sets the channel enable information for the next board run.

CH0_8BITMODE 65536 Activates 8 bit mode for module 0. (Channel 0).

CH0_16BIT 1 Activates 16 bit mode for module 0. (Channel 0).

CH0_32BIT 3 Activates 32 bit mode for module 0. (Channel 0).

SpcSetParam (hDrv, SPC_CHENABLE, CH0_32BIT);

Activated channels and sam-
plewidth
Ch0
8 bit

Ch0
16 bit

Ch0
32 bit

Values to program Value as hex Value as decimal

x CH0_8BIT 10000h 65536
x CH0_16BIT 1h 1

x CH0_32BIT 3h 3

SpcGetParam (hDrv, SPC_CHENABLE, &lActivatedChannels);

printf ("Activated channels bitmask is: %x\n", lActivatedChannels);

Register Value Direction Description

SPC_CHENABLE 11000 r/w Sets the channel enable information for the next board run.

CH0_8BIT 65536 Activates 8 bit mode for module 0. (Channel 0). Also necessary for the bitmodes of the 7005 board.

CH0_16BIT 1 Activates 16 bit mode for module 0. (Channel 0).
(c) Spectrum GmbH 35

Settings of the I/O lines Digital I/Os
When you use a 7005 board, you have to program an additional register to select the desired sample width. This is necessary as the boards
is internally working with a divided clock and therefore needs to know the activated sample width. The following table is showing the dedi-
cated bitmode register and the possible values:

The following table shows all allowed settings for the channel enable and the bitmode register, when using the 7005 board.

Any channel activation mask that is not shown here is not valid. If programming another channel activation
the driver automatically remaps this to the best matching activation mask. You can read out the channel en-
able register to see what channel activation mask the driver has set.

Reading out the channel enable and the bitmode register can be done directely after setting it or later like this:

Important note on channels selection

As some of the manuals passages are used in more than one hardware manual most of the registers and
channel settings throughout this handbook are described for the maximum number of possible channels that
are available on one card of the current series. There can be less channels on your actual type of board or

bus-system. Please refer to the table(s) above to get the actual number of available channels.

Settings of the I/O lines

Settings for the inputs

Input termination
All inputs of Spectrum’s digital boards can be terminated wordwise with 110 Ohm by software programming. If you do so, please make sure
that your signal source is able to deliver the higher output currents. If no termination is used, the inputs have an impedance of several Kiloohm.
The following table shows the corresponding register to set the input termination.

Settings for the outputs

If a sample width lower than 16 bit is used for generating data, the unused output lines of the dedicated 16
bit output connector are set to logical 0, while the outputs of the other connectors are set to high-impedance
(tristate). This is necessary due to the internal structure of the board.

Register Value Direction Description

SPC_BITMODE 205000 r/w Sets the bitmode information for the 7005 board. Not available on all other 70xx boards.

1 Activates 1 bit mode for the 7005 board.

2 Activates 2 bit mode for the 7005 board.

4 Activates 4 bit mode for the 7005 board.

8 Activates 8 bit mode for the 7005 board.

Activated channels and samplewidth
Ch0
1 bit

Ch0
2 bit

Ch0
4 bit

Ch0
8 bit

Ch0
16 bit

Values to program to the
channel enable register

Value to program to the
bitmode register

x CH0_8BIT 1
x CH0_8BIT 2

x CH0_8BIT 4
x CH0_8BIT 8

x CH0_16BIT n.u.

SpcGetParam (hDrv, SPC_CHENABLE, &lActivatedChannels);
SpcGetParam (hDrv, SPC_BITMODE, &lActivatedBitmode);

printf ("Activated channels are: %ld \n", lActivatedChannels);
printf ("Activated bitmode is : %ld \n", lActivatedBitmode);

Register Value Direction Description

SPC_110OHM0L 30060 r/w A „1“ sets the 110 ohm termination for the bits 15..0 of channel0.
A „0“ sets the termination to high impedance.

SPC_110OHM0H 30160 r/w A „1“ sets the 110 ohm termination for the bits 31..16 of channel0.
A „0“ sets the termination to high impedance.
36 MX.70xx Manual

Digital I/Os Settings of the I/O lines
Programming the behavior after replay

Usually the used outputs of the digital I/O boards are set to logical 0 after replay. This is in most cases adequate as many pattern generators
generate signals with a relation to the system ground. In some cases it can be necesary to hold the last sample. To enable this mode you
simply have to set the following register:

Register Value Direction Description

SPC_HOLDLASTSAMPLE 201300 r/w Sets the behavior of the used outputs after replay for the entire board. If the value is 1 all outputs will
hold the last sample. If the value is 0 the outputs will be set to logical 0 after replay.
(c) Spectrum GmbH 37

Input modes Standard acquisition/generation modes
Standard acquisition/generation modes
The standard mode is the easiest and mostly used mode to acquire or generate digital data with a Spectrum digital I/O board. In standard
recording mode the board is working totally independant from the host system, after the board setup is done. The advantage of the Spectrum
boards is that regardless to the system usage the board will acquire or generate data samples with equidistant time intervals. The data is
stored in the on-board memory and is held there for being read out after the acquisition or for replay. This mode allows recording or gener-
ation of digital data at very high sample rates without the need to transfer the data into the memory of the host system at high speed. After
the recording is done (or before the generation can be started), the data must be transfered to the board via the PCI bus into or from PC
memory.

Input modes
To set up the I/O lines correctly, you have to programm the data direction registers of the board shown in the following table accordingly:

Standard posttrigger mode
This standard recording mode is the most common mode for
all digital acquisition boards, as this mode is similar to the
usage of a logic analyzer. The data is written to a pro-
grammed amount of the onboard memory (memsize). That
part of memory is used as a ringbuffer, and recording is
done continuously until a triggerevent is detected. After the
trigger event, a certain programmable amount of data is re-
corded (posttrigger) and then the recording finishes. Due to
the continuously ringbuffer recording, there are also sam-
ples prior to the triggerevent in the memory (pretrigger).

When the board is started the pretrigger is filled up with data first. While doing this the board’s trigger de-
tection is not armed. If you use a huge pretrigger size and a slow sample rate it can take up some time after
starting the board before a trigger event will be detected.

Output modes
The generated data is replayed from the on-board memory. These modes allows generating waveforms at very high sample rates without the
need to transfer the data into the board’s on-board memory at high speed. These modes are running totally independent from the PC and
don’t need any processing power after being started.

To set up the I/O lines correctly, you have to programm the data direction registers of the board shown in the following table accordingly:

Singleshot mode
The singleshot mode is the most simple output mode for the
Spectrum boards. It simply replays the programmed data
once after detecting the trigger event. The amount of memory
to be replayed can be programmed by software. Any trigger
source can be used to start the output. If output should be start-
ed immediately one can simply use the software trigger capa-
bilities of the board.

Register Value Direction Description

SPC_INOUT0 30070 r/w Defines the data direction of module 0 (channel 0). A „0“ sets an input (default), and a „1“ sets an
output.

SPC_INOUT1 30170 r/w Defines the data direction of module 1 (channel 1). A „0“ sets an input (default), and a „1“ sets an
output.

Register Value Direction Description

SPC_INOUT0 30070 r/w Defines the data direction of module 0 (channel 0). A „0“ sets an input (default), and a „1“ sets an
output.

SPC_INOUT1 30170 r/w Defines the data direction of module 1 (channel 1). A „0“ sets an input (default), and a „1“ sets an
output.

Register Value Direction Description

SPC_SINGLESHOT 41000 r/w Write a „1“ to enable the singleshot mode (a „0“ disables it)
38 MX.70xx Manual

Standard acquisition/generation modes Programming
Continuous Mode
After detecting the trigger event the programmed data is re-
played continuously. On reaching end of the programmed
memory size the output starts again with the first sample.
There’s no gap in output when switching from the last sample
to the first sample. The output runs until the users stops it by
software. If not stopped the continuous output runs indepen-
dent of any other PC components until the system is shut
down.

Posttrigger Mode
The posttrigger mode is normally only used when starting the
output board together with an acquisiton board.
The data is written to a programmed amount of the on-board
memory (memsize). After starting the board the output will im-
mediately start and continue to loop. At this point the mode is
similar to the continuous mode explained above. After detect-
ing a trigger event, a certain programmed amount of data is
replayed (posttrigger) and then the replay finishes automati-
cally.

Programming

Memory, Pre- and Posttrigger
At first you have to define, how many samples are to be recorded/replayed at all and how many of them should be acquired/generated
after the triggerevent has been detected.

You can access these settings by the registers SPC_MEMSIZE, which sets the total amount of data that is recorded/replayed, and the register
SPC_POSTTRIGGER, that defines the number of samples to be recorded/replayed after the triggerevent has been detected. The size of the
pretrigger results on the simple formula:

pretrigger = memsize - posttrigger

The maximum memsize that can be use for recording/generation is of course limited by the installed amount of memory and by the number
of channels to be recorded/replayed. The following table gives you an overview on the maximum memsize in relation to the installed memory.

Additional calculations for the 7005 bitstream board
As the boards are internally working in the 8 bit mode it is necessary to re-calculate the values for memsize and posttrigger that must be
written to the dedicated registers manually.

The calculation for the memory size has to
be done with the following formula:

The calculation for the posttrigger
value has to be done with the follow-
ing formula:

Register Value Direction Description

SPC_SINGLESHOT 41000 r/w Write a „0“ to disable the singleshot mode

SPC_OUTONTRIGGER 41100 r/w Write a „1“ to enable the continuous mode

Register Value Direction Description

SPC_SINGLESHOT 41000 r/w Write a „0“ to disable the singleshot mode

SPC_OUTONTRIGGER 41100 r/w Write a „0“ to disable the continuous mode

Register Value Direction Description

SPC_MEMSIZE 10000 r/w Sets the memory size in samples per channel.

SPC_POSTTRIGGER 10100 r/w Sets the number of samples to be recorded/replayed after the trigger event has been detected.

Value for SPC_MEMSIZE (Number of samples to record/replay)
8

-- (Number of bits)⋅=

Value for SPC_POSTTRIGGER (Number of samples for postcounter)
8

--- (Number of bits)⋅=
(c) Spectrum GmbH 39

Programming Standard acquisition/generation modes
The following example is about to give you an idea on how to setup a 7005 board for bitmode operation. It is assumed that you want to
acquire/generate 1024 data samples with a posttrigger at 256 samples.

Maximum memsize in MSamples for all 701x boards

How to read this table: If you have installed the standard amount of 64 MByte on your 7011 board and you want to replay samples with a
width of 32 bit, you have a total maximum memory of 64 MByte * 1/4 = 16 MSample for your data.

Maximum memsize in MSamples for the 7005 board

The setting shown in the table below are only valid for the 7005 boards.

How to read this table: If you have installed the standard amount of 64 MByte on your 7005 board and you want to replay samples with a
width of 2 bit, you have a total maximum memory of 64 MByte * 4 = 256 MSample for your data.

Maximum posttrigger in MSamples for all 701x boards
The maximum settings for the post counter are limited by the hardware, because the post counter has a limited range for counting. The settings
depend on the number of activated channels, as the table below is showing.

Maximum posttrigger in MSamples for the 7005 board

The setting shown in the table below are only valid for the 7005 boards.

The amount of memory that can be used either for the memsize and the postcounter values can only be set by certain steps. These steps are
results of the internal memory organization. For this reason these steps also define the minimum size for the data memory and the postcounter.
The values depend on the number of activated channels and on the type of board being used. The minimum stepsizes for setting up the mem-
size and the postcounter are shown in the table below.

SpcSetParam (hDrv, SPC_CHENABLE, CH0_8BITMODE); // Activate the 8 bit mode
SpcSetParam (hDrv, SPC_BITMODE, 2); // Additional setup for bitmode with 2 bits activated
SpcSetParam (hDrv, SPC_SAMPLERATE, 10000000); // Sample rate is set to 10 MHz

SpcSetParam (hDrv, SPC_MEMSIZE, 256); // Value is a re-calculation: 256 = (1024 / 8) * 2
SpcSetParam (hDrv, SPC_POSTTRIGGER, 64); // Value is a re-calculation: 64 = (256 / 8) * 2

Activated channels and samplewidth
70

10

70
11Ch0

8 bit
Ch0
16 bit

Ch0
32 bit

x 1/1 1/1
x 1/2 1/2

x n.a. 1/4

Activated channels and samplewidth

70
05Ch0

1 bit
Ch0
2 bit

Ch0
4 bit

Ch0
8 bit

Ch0
16 bit

x 8
x 4

x 2
x 1

x 1/2

Activated channels and samplewidth

70
10

70
11Ch0

8 bit
Ch0
16 bit

Ch0
32 bit

x 256 256
x 128 128

x n.a. 64

Activated channels and samplewidth

70
05Ch0

1 bit
Ch0
2 bit

Ch0
4 bit

Ch0
8 bit

Ch0
16 bit

x 2048
x 1024

x 512
x 256

x 128
40 MX.70xx Manual

Standard acquisition/generation modes Programming
Minimum and stepsize of memsize and posttrigger in samples for all 701x and 702x boards

Minimum and stepsize of memsize and posttrigger in samples for the 7005 board

The setting shown in the table below are only valid for the 7005 boards.

Activated channels and samplewidth

70
10

70
11Ch0

8 bit
Ch0
16 bit

Ch0
32 bit

x 64 64
x 32 32

x n.a. 16

Activated channels and samplewidth

70
05Ch0

1 bit
Ch0
2 bit

Ch0
4 bit

Ch0
8 bit

Ch0
16 bit

x 512
x 256

x 128
x 64

x 32
(c) Spectrum GmbH 41

Programming Standard acquisition/generation modes
Starting without interrupt (classic mode)

Command register

In this mode the board is started by writing the SPC_START value to the command register. All settings like for example the size of memory
and postcounter, the number of activated channels and the trigger settings must have been programmed before. If the start command has
been given, the setup data is transferred to the board and the board will start.
If your board has relays to switch between different settings a programmed time will be waited to prevent having the influences of the relays
settling time in the signal. For additional information please first see the chapter about the relay settling time. You can stop the board at any
time with the command SPC_STOP. This command will stop immediately.

Once the board has been started, it is running totally independent from the host system. Your program has full CPU time to do any calculations
or display. The status register shown in the table below shows the current status of the board. The most simple programming loop is simply
waiting for the status SPC_READY. This status shows that the board has stopped automatically.

The read only status register can be read out at any time, but it is mostly used for polling on the board’s status after the board has been
started. However polling the status will need CPU time.

Status register

The following shortened excerpt of a sample program gives you an example of how to start the board in classic mode and how to poll for
the SPC_READY flag. It is assumed that all board setup has been done before.

Starting with interrupt driven mode
In contrast to the classic mode, the interrupt mode has no need for polling for the board’s status. Starting your board in the interrupt driven
mode does in the main not differ from the classic mode. But there has to be done some additional programming to prevent the program from
hanging. The SPC_STARTANDWAIT command doesn’t return until the board has stopped. Big advantage of this mode is that it doesn’t waste
any CPU time for polling. The driver is just waiting for an interrupt and the System has full CPU time for other jobs. To benefit from this mode
it is necessary to set up a program with at least two different tasks: One for starting the board and to be blocked waiting for an interrupt. The
other one to make any kind of calculations or display activities.

Command register

If the board is started in the interrupt mode the task calling the start function will not return until the board
has finished. If no trigger event is found or the external clock is not present, this function will wait until the
program is terminated from the taskmanager (Windows) or from another console (Linux).

Register Value Direction Description

SPC_COMMAND 0 read/write Command register of the board.

SPC_START 10 Starts the board with the current register settings.

SPC_STOP 20 Stops the board manually.

Register Value Direction Description

SPC_STATUS 10 read Status register, of the board.

SPC_RUN 0 Indicates that the board has been started and is waiting for a triggerevent.

SPC_TRIGGER 10 Indicates that the board is running and a triggerevent has been detected.

SPC_READY 20 Indicates that the board has stopped.

// ----- start the board -----
nErr = SpcSetParam (hDrv, SPC_COMMAND, SPC_START);

// Here you can check for driver errors as mentioned in the relating chapter

// ----- Wait for Status Ready (polling for SPC_READY in a loop) -----
do
 {
 SpcGetParam (hDrv, SPC_STATUS, &lStatus);
 }
while (lStatus != SPC_READY);

printf ("Board has stopped\n");

Register Value Direction Description

SPC_COMMAND 0 read/write Command register, of the board.

SPC_STARTANDWAIT 11 Starts the board with the current register settings in the interrupt driven mode.

SPC_STOP 20 Stops the board manually.
42 MX.70xx Manual

Standard acquisition/generation modes Programming
To prevent the program from this deadlock, a second task must be used which can send the SPC_STOP signal to stop the board. Another
possibility, that does not require the need of a second task is to define a timeout value.

This is the easiest and safest way to use the interrupt driven mode. If the board started in the interrupts mode it definitely will not return until
either the recording has finished or the timeout time has expired. In that case the function will return with an error code. See the appendix
for details.

The following excerpt of a sample program gives you an example of how to start the board in the interrupt driven mode. It is assumed that
all board setup has been done before.

An example on how to get a second task that can do some monitoring on the running task and eventually send the SPC_STOP command can
be found on the Spectrum driver CD that has been shipped with your board. The latest examples can also be down loaded via our website
at www.spectrum-instrumentation.com.

Data organization
In standard mode tha data is organized on the board in two memory channels, named memory channel 0 and memory channel 1. Be aware
that these memory channels are something different than the board channels. The data in memory is organized depending on the used chan-
nels and the type of board. This is a result of the internal hardware structure of the board.

The samples are re-named for better readability:

• A0 is the 16 bit sample 0 of memory channel 0, D15..D0
• B4 is the 16 bit sample 4 of memory channel 0, D31..D16
• C5 is the 16 bit sample 5 of memory channel 1, D15..D0
• D2 is the 16 bit sample 2 of memory channel 1, D31..D16

All the samples shown in the table above are 16 bit samples. In all modes with a sample width of less than
16 bit the 16 bit samples can contain several “real“ samples. Please refer to the sample format section men-
tioned later.

Reading out the data with SpcGetData
The function SpcGetData enables you to read out the data that is stored in the on-board memory during any of the standard recording modes
easily after the acquisition has finished. Depending on your operating system, the function is called with a different amount of parameters.
Please refer to the relating chapter earlier in this manual. The examples in this section are written in Visual C++ for Windows, so the examples
differ a little bit for the use with linux.

As the data is read out individually for every memory channel, it is important to know where the data has been stored. Please refer to the
data organization section, to get the information you need first.

Assuming that you know the memory channel or channels that contain the acquired data, you now have to decide whether you want to read
out the whole memory or just one part of it. To select the area to be read out two values are needed by the function SpcGetData.

The value ’start’ as a 32 bit integer value
This value defines the start of the memory area to be read out in samples. This result is, that you do not need to care for the number of bytes
a single sample contains. If you want to read out the whole memory this value must be set to 0.

The value ’len’ as a 32 bit integer value
This value defines the number of samples that are read out, beginning with the first sample defined by the ’start’ value mentioned above. If
you want to read out the whole on-board memory you need to program the „len“ parameter to the before programmed memory size. At this

Register Value Direction Description

SPC_TIMEOUT 295130 read/write Defines a time in ms after which the function SPC_STARTANDWAIT terminates itself. Writing a zero
defines infinite wait

SpcSetParam (hDrv, SPC_TIMEOUT, 1000); // Define the timeout to 1000 ms = 1 second
nErr = SpcSetParam (hDrv, SPC_COMMAND, SPC_STARTANDWAIT); // Starts the board in the interrupt driven mode

if (nErr == ERR_TIMEOUT) // Checks for the timeout
 printf ("No trigger found. Timeout has expired.\n");

Activated channels and samplewidth Sample ordering in standard mode on memory channel 0 Sample ordering in standard mode on memory channel 1
Ch0
8 bit

Ch0
16 bit

Ch0
32 bit

Ch1
16 bit

Ch1
32 bit

x A0 A1 A2 A3 A4 A5 A6 A7 A8 A9
x A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

x A0 B0 A1 B1 A2 B2 A3 B3 A4 B4
x x A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

x x A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 C0 D0 C1 D1 C2 D2 C3 D3 C4 D4
(c) Spectrum GmbH 43

Programming Standard acquisition/generation modes
point please keep in mind that depending on the activated channels there may be more than one board channel in one memory channel.
This „len“ value must be a total memsize for all channels that are acquired in that memory channel. As a result that means if acquiring two
channels to memory channel 0 the „len“ value must be set to „2 * memsize“.

Multiplexed data
Depending on the activated channels and the board type several channels could be stored in one memory channel. As a result that means
that „start“ and „len“ parameter have to be multiplied by the number of channels per memory channel (module). If for example two channels
have been acquired into one memory channel a call like:

reads out data of both channels from memory channel 0 starting at sample position 4k and a length of 2k. The Data array must be of course
large enough to hold data of both channels (in that case 2 * 2k = 4k of data).

Standard mode
Reading out the data is really easy, if a recording modes is used that stores non multiplexed data in the dedicated memory channels. The
next example shows, how to read out the data after having recorded two channels that have been written without multiplexing to both memory
channels.

Example for SpcGetData, no memory allocation error checking performed:

If you use two channels for recording using only one memory channel or four channels, the data in the memory channel(s) is multiplexed and
needs to be unsorted by the user. The following example shows how to unsort the data for the recording of two channels using memory chan-
nel 0.

Writing data with SpcSetData
The function SpcSetData enables you to write data to the on-board memory before starting the generation. Depending on your operation
system, the function is called with a different amount of parameters. Please refer to the relating chapter earlier in this manual. The examples
in this section are written in Visual C++ for Windows, so the examples differ a little bit for the use with linux.

As the data is written individually for every memory channel, it is important to know where the data has to be stored. Please refer to the data
organization section, to get the information you need first.

The function SpcSetData has two parameters that allow you to write in any position of the replay memory. That can be very helpful if only
parts of the signal should be exchanged. However the user must make sure that the complete replay memory is filled with appropriate data.

The value ’start’ as a 32 bit integer value
This value defines the start of the memory area to be written in samples. This result is, that you do not need to care for the number of bytes a
single sample contains. If you want to write the whole memory at once this value must be set to 0.

The value ’len’ as a 32 bit integer value
This value defines the number of samples that are written, beginning with the first sample defined by the ’start’ value mentioned above. If you
want to write to the whole on-board memory you need to set a memsize value for the board before starting the generation. This memsize
must be a total memsize for all channels that are generated from that memory channel. As a result that means if generating two channels
from memory channel 0 the „len“ value must be set to „2 * memsize“.

SpcGetData (hDrv, 0, 2 * 4096, 2 * 2048, Data);

for (i = 0; i < 2; i++) // both memory channels have been used
 pnData[i] = (ptr16) malloc (lMemsize * lBytesPerSample); // allocate memory for the data pointers
 // with the maximum size (lMemsize)

SpcGetData (hDrv, 0, 0, lMemsize, (dataptr) pnData[0]); // no demultiplexing is necessary on channel 0
SpcGetData (hDrv, 1, 0, lMemsize, (dataptr) pnData[1]); // neither it is on channel 1

for (i = 0; i < 2; i++) // 2 channels to read out from 1 memory channel
 pnData[i] = (ptr16) malloc (lMemsize * lBytesPerSample); // allocate memory for the data pointers
 // with the maximum size (lMemsize) per channel

pnTmp = (ptr16) malloc (lMemsize * 2 * lBytesPerSample); // allocate temporary buffer for copy

SpcGetData (hDrv, 0, 0, 2 * lMemsize, (dataptr) pnTmp); // get both channels together
 // from memory channel 0

for (i = 0; i < lMemsize; i++) // split data in the two channels
 {
 pnData[0][i] = pnTmp[(2 * i)];
 pnData[1][i] = pnTmp[(2 * i) + 1];
 }

free (pnTmp); // free the temporary buffer
44 MX.70xx Manual

Standard acquisition/generation modes Programming
Multiplexed data
Depending on the activated channels and the board type several channels could be stored in one memory channel. As a result that means
that „start“ and „len“ parameter have to be multiplied by the number of channels per memory channel (module). If for example two channels
have are replayed from one memory channel a call like:

writes data of both channels to memory channel 0 starting at sample position 4k and a length of 2k. The Data array must of course hold data
of both channels (in that case 2 * 2k = 4k of data) multiplexed as shown above.

Standard mode
Writing data to the memory is really easy, if a replay mode is used, that stores non multiplexed data in the dedicated memory channels. The
next example shows, how to write the data before replaying two channels without multiplexing to both memory channels.

If you use two channels for replay using only one memory channel, the data in the memory channel(s) has to be multiplexed and needs to be
sorted by the user. The following example shows how to sort the data for the replay of two channels using memory channel 0.

Sample format
Either 8 bit as well as 16 bit samples are stored in memory as 16 bit integer values. Therefore 8 bit data is stored multiplexed in memory.
Due to the internal structure of the board the sample format depends on the used output mode (standard/non FIFO or FIFO mode) and on the
sample width. The following table shows the sample format for the standard mode. The format for the use in FIFO mode can be found in the
dedicated chapter of this manual.

Sample format for all the 70xx boards but the 7005 board

SpcSetData (hDrv, 0, 2 * 4096, 2 * 2048, Data);

for (i = 0; i < 2; i++) // both memory channels have been used
 pnData[i] = (ptr16) malloc (lMemsize * lBytesPerSample); // allocate memory for the data pointers
 // with the maximum size (lMemsize)
// generate or load data into pnData[0..1]

SpcSetData (hDrv, 0, 0, lMemsize, (dataptr) pnData[0]); // no multiplexing is necessary on channel 0
SpcSetData (hDrv, 1, 0, lMemsize, (dataptr) pnData[1]); // neither it is on channel 1

for (i = 0; i < 2; i++) // two channels to write to memory channel 0
 pnData[i] = (ptr16) malloc (lMemsize * lBytesPerSample); // allocate memory for the data pointers
 // with the maximum size (lMemsize) per channel

// generate or load data into pnData[0..1]

pnTmp = (ptr16) malloc (lMemsize * 2 * lBytesPerSample); // allocate temporary buffer for copy

for (i = 0; i < lMemsize; i++) // combine data of the two channels
 {
 pnTmp[2*i] = pnData[0][i];
 pnTmp[2*i+1] = pnData[1][i];
 }

SpcSetData (hDrv, 0, 0, 2 * lMemsize, (dataptr) pnTmp); // write both channels to memory channel 0

free (pnTmp); // free the temporary buffer

Bit Straight samples orden Alternating sample order

8 bit mode channel 0 16 bit mode channel x 32 bit mode channel x

D15 N+1 Sample Bit 7 (MSB) N Sample Bit 15 (MSB) N Sample Bit 15 N Sample Bit 31 (MSB)

D14 N+1 Sample Bit 6 N Sample Bit 14 N Sample Bit 14 N Sample Bit 30

D13 N+1 Sample Bit 5 N Sample Bit 13 N Sample Bit 13 N Sample Bit 29

D12 N+1 Sample Bit 4 N Sample Bit 12 N Sample Bit 12 N Sample Bit 28

D11 N+1 Sample Bit 3 N Sample Bit 11 N Sample Bit 11 N Sample Bit 27

D10 N+1 Sample Bit 2 N Sample Bit 10 N Sample Bit 10 N Sample Bit 26

D9 N+1 Sample Bit 1 N Sample Bit 9 N Sample Bit 9 N Sample Bit 25

D8 N+1 Sample Bit 0 (LSB) N Sample Bit 8 N Sample Bit 8 N Sample Bit 24

D7 N Sample Bit 7 (MSB) N Sample Bit 7 N Sample Bit 7 N Sample Bit 23

D6 N Sample Bit 6 N Sample Bit 6 N Sample Bit 6 N Sample Bit 22

D5 N Sample Bit 5 N Sample Bit 5 N Sample Bit 5 N Sample Bit 21

D4 N Sample Bit 4 N Sample Bit 4 N Sample Bit 4 N Sample Bit 20

D3 N Sample Bit 3 N Sample Bit 3 N Sample Bit 3 N Sample Bit 19

D2 N Sample Bit 2 N Sample Bit 2 N Sample Bit 2 N Sample Bit 18

D1 N Sample Bit 1 N Sample Bit 1 N Sample Bit 1 N Sample Bit 17

D0 N Sample Bit 0 (LSB) N Sample Bit 0 (LSB) N Sample Bit 0 (LSB) N Sample Bit 16
(c) Spectrum GmbH 45

Programming Standard acquisition/generation modes
Sample format for the 7005 board

The following sample formats are only valid, when using a 7005 board.

Bit 1 bit mode 2 bit mode 4 bit mode 8 bit mode 16 bit mode

D15 N+15 Sample Bit 0 N+7 Sample Bit 1 (MSB) N+3 Sample Bit 3 (MSB) N+1 Sample Bit 7 (MSB) N Sample Bit 15 (MSB)

D14 N+14 Sample Bit 0 N+7 Sample Bit 0 (LSB) N+3 Sample Bit 2 N+1 Sample Bit 6 N Sample Bit 14

D13 N+13 Sample Bit 0 N+6 Sample Bit 1 (MSB) N+3 Sample Bit 1 N+1 Sample Bit 5 N Sample Bit 13

D12 N+12 Sample Bit 0 N+6 Sample Bit 0 (LSB) N+3 Sample Bit 0 (LSB) N+1 Sample Bit 4 N Sample Bit 12

D11 N+11 Sample Bit 0 N+5 Sample Bit 1 (MSB) N+2 Sample Bit 3 (MSB) N+1 Sample Bit 3 N Sample Bit 11

D10 N+10 Sample Bit 0 N+5 Sample Bit 0 (LSB) N+2 Sample Bit 2 N+1 Sample Bit 2 N Sample Bit 10

D9 N+9 Sample Bit 0 N+4 Sample Bit 1 (MSB) N+2 Sample Bit 1 N+1 Sample Bit 1 N Sample Bit 9

D8 N+8 Sample Bit 0 N+4 Sample Bit 0 (LSB) N+2 Sample Bit 0 (LSB) N+1 Sample Bit 0 (LSB) N Sample Bit 8

D7 N+7 Sample Bit 0 N+3 Sample Bit 1 (MSB) N+1 Sample Bit 3 (MSB) N Sample Bit 7 (MSB) N Sample Bit 7

D6 N+6 Sample Bit 0 N+3 Sample Bit 0 (LSB) N+1 Sample Bit 2 N Sample Bit 6 N Sample Bit 6

D5 N+5 Sample Bit 0 N+2 Sample Bit 1 (MSB) N+1 Sample Bit 1 N Sample Bit 5 N Sample Bit 5

D4 N+4 Sample Bit 0 N+2 Sample Bit 0 (LSB) N+1 Sample Bit 0 (LSB) N Sample Bit 4 N Sample Bit 4

D3 N+3 Sample Bit 0 N+1Sample Bit 1 (MSB) N Sample Bit 3 (MSB) N Sample Bit 3 N Sample Bit 3

D2 N+2 Sample Bit 0 N+1 Sample Bit 0 (LSB) N Sample Bit 2 N Sample Bit 2 N Sample Bit 2

D1 N+1 Sample Bit 0 N Sample Bit 1 (MSB) N Sample Bit 1 N Sample Bit 1 N Sample Bit 1

D0 N Sample Bit 0 N Sample Bit 0 (LSB) N Sample Bit 0 (LSB) N Sample Bit 0 (LSB) N Sample Bit 0 (LSB)
46 MX.70xx Manual

FIFO Mode Overview
FIFO Mode

Overview

General Information
The FIFO mode allows to record data continuously and trans-
fer it online to the PC (acquisition boards) or allows to write
data continuously from the PC to the board (generation
boards). Therefore the on-board memory of the board is used
as a continuous buffer. On the PC the data can be used for
any calculation or can be written to hard disk while recording
is running (acquisition boards) or the data can be read from
hard disk and calculated online before writing it to the board.

FIFO mode uses interrupts and is supported by the drivers on 32 bit and 64 bit operating systems. Start of FIFO mode waits for a trigger
event. If you wish to start FIFO mode immediately, you may use the software trigger. FIFO mode can be used together with the options Multiple
Recording/Replay and Gated Sampling/Replay. Details on this can be found in the appropriate chapters about the options.

Background FIFO Read

On the hardware side the board memory is spilt in two buffers of the same length. These buffers can be up to half of the on-board memory
in size. In addition to the hardware buffers the driver holds up to 256 software buffers of the same length as the hardware buffers are. When-
ever a hardware buffer is full with data the hardware generates an interrupt and the driver transfers this hardware buffer to the next software
buffer that is available. While transfering one buffer to the PC, the other one is filled up with data. The driver is doing this job automatically
in the background.
After the driver has finsihed transferring the data, the application software gets a signal and can process data (e.g stores data to hard disk
or makes some calculations). After processing the data the application software tells the driver that he can again use the software buffer for
acquisition data.
This two stages buffering has big advantages when running FIFO mode at the speed limit. The software buffers extremly expand the acquisi-
tion time that can be buffered and protects the whole system against buffer overruns.
(c) Spectrum GmbH 47

Overview FIFO Mode
Background FIFO Write

On the hardware side the memory is split in two buffers of the same length. These buffers can be up to half of the on-board memory in size.
The driver holds up to 256 software buffers of the same length as the hardware buffers. Whenever a hardware buffer is empty and all data
replayed the hardware generates an interrupt and the driver transfers the next software buffer to the empty hardware buffer. The driver is
doing this job automatically in the background. After driver has finsihed transferring the data the application software gets a signal and can
generate data or load the next buffer from hard disk.
After processing the data the application software tells the driver that the data in the software buffer is valid and can again be used for data
generation. This two stages buffering has big advantages when running FIFO mode at the speed limit. The software buffers expand the gen-
eration time that can be buffered and protects the whole system against buffer underruns.

Speed Limitations
The FIFO mode is running continuously all the time. Therefore the data must be read out from the board (data acquisition) or written to the
board (data generation) at least with the same speed that it is recorded/replayed. If data is read out from the board or written to the board
more slowly, the hardware buffers will overrun at a certain point and FIFO mode is stopped.
One bottleneck with the FIFO mode is the PCI bus. The standard PCI bus is theoretically capable of transferring data with 33 MHz and 32
Bit. As a result a maximum burst transfer rate of 132 MByte per second can be achieved. As several devices can share the PCI bus this
maximum transfer rate is only available to a short transfer burst until a new bus arbitration is necessary. In real life the continuous transfer
rate is limited to approximately 100-110 MBytes per second. The maximum FIFO speed one can achieve heavily depends on the PC system
and the operating system and varies from system to system.
The maximum sample rate one can run in continuous FIFO mode depends on the number of activated channels:

The following values are only valid when using a 7005 board:

When using FIFO mode together with one of the options that allow to have gaps in the acquisition/generation like Multiple Recording/Mul-
tiple Replay or Gated Sampling/Gated Replay one can even run the board with higher sample rates. It just has to be sure that the average
sample rate (calculated with generation time and gap) does not exceed the above mentioned sample rate limitations.

Theoretical maximum sample rate PCI Bus Throughput
8 bit mode 100 MS/s [1 Byte per sample] * 100 MS/s = 100 MB/s
16 bit mode 50 MS/s [2 Bytes per sample] * 50 MS/s = 100 MB/s
32 bit mode 25 MS/s [4 Bytes per sample] * 25 MS/s = 100 MB/s
64 bit mode 12.5 MS/s [8 Bytes per sample] * 12.5 MS/s = 100 MB/s

Theoretical maximum sample rate PCI Bus Throughput
1 bit mode 125 MS/s [1/8 Byte per sample] * 125 MS/s = 16 MB/s
2 bit mode 125 MS/s [1/4 Byte per sample] * 125 MS/s = 31 MB/s
4 bit mode 125 MS/s [1/2 Byte per sample] * 125 MS/s = 63 MB/s
8 bit mode 100 MS/s [1 Byte per sample] * 100 MS/s = 100 MB/s
16 bit mode 50 MS/s [2 Bytes per sample] * 50 MS/s = 100 MB/s
48 MX.70xx Manual

FIFO Mode Programming
The sample rate that can be run in one of these mode is depending on the number of channels that have been activated. Due to the internal
structure of the board this is limited to a internal throughput of 250 MB/s (250 MS/s):

The following values are only valid when using a 7005 board:

Programming
The setup of FIFO mode is done with a few additional software registers described in this chapter. All the other settings can be used as de-
scribed before. In FIFO mode the register SPC_MEMSIZE and SPC_POSTTRIGGER are not used.

Software Buffers
This register defines the number of software buffers that should be used for FIFO mode. The number of hardware buffers is always two and
can not be changed by software.

When this manual was printed there are a total of 256 buffers possible. However if there are changes and enhancements to the driver in the
future it will be informative to read out the number of buffers the new driver version can hold.

The length of each buffer is defined in bytes. This length is used for hardware and software buffers as well. Both have the same length. The
maximum length that can be used is depending on the installed on-board memory.

Each FIFO buffer can be a maximum of half the memory. Be aware that the buffer length is given in overall bytes not in samples. Therefore
the value has to be calculated depending on the activated channels and the resolution of the board:

Analog acquisition or generation boards

Digital I/O (701x or 702x) or pattern generator boards (72xx)

Digital I/O board 7005 only

We at Spectrum achieved best results when programming the buffer length to a number of samples that can hold approximately 100 ms of
data. However if going to the limit of the PCI bus with the FIFO mode or when having buffer overruns it can be useful to have larger FIFO

Maximum sample rate that can be programmed Internal throughput
8 bit mode 125 MS/s [1 Byte per sample] x 125 MS/s = 125 MB/s
16 bit mode 125 MS/s [2 Bytes per sample] x 125 MS/s = 250 MB/s
32 bit mode 62.5 MS/s [4 Bytes per sample] x 62.5 MS/s = 250 MB/s
64 bit mode 31.25 MS/s [8 Bytes per sample] x 31.25 MS/s = 250 MB/s

Theoretical maximum sample rate PCI Bus Throughput
1 bit mode 125 MS/s [1/8 Byte per sample] * 125 MS/s = 16 MB/s
2 bit mode 125 MS/s [1/4 Byte per sample] * 125 MS/s = 31 MB/s
4 bit mode 125 MS/s [1/2 Byte per sample] * 125 MS/s = 63 MB/s
8 bit mode 125 MS/s [1 Byte per sample] * 125 MS/s = 125 MB/s
16 bit mode 125 MS/s [2 Bytes per sample] * 125 MS/s = 250 MB/s

Register Value Direction Description

SPC_FIFO_BUFFERS 60000 r/w Number of software buffers to be used for FIFO mode. Value has to be between 2 and 256

Register Value Direction Description

SPC_FIFO_BUFADRCNT 60040 r Read out the number of available FIFO buffers

Register Value Direction Description

SPC_FIFO_BUFLEN 60010 r/w Length of each buffer in bytes. Must be a multiple of 1024 bytes.

Buffer length to be programmed in Bytes
8 bit resolution 12 bit resolution 14 bit resolution 16 bit resolution

1 Channel 1 x [Samples in Buffer] 1 x 2 x [Samples in Buffer] 1 x 2 x [Samples in Buffer] 1 x 2 x [Samples in Buffer]
2 Channels 2 x [Samples in Buffer] 2 x 2 x [Samples in Buffer] 2 x 2 x [Samples in Buffer] 2 x 2 x [Samples in Buffer]
4 Channels 4 x [Samples in Buffer] 4 x 2 x [Samples in Buffer] 4 x 2 x [Samples in Buffer] 4 x 2 x [Samples in Buffer]
8 Channels 8 x [Samples in Buffer] 8 x 2 x [Samples in Buffer] 8 x 2 x [Samples in Buffer] 8 x 2 x [Samples in Buffer]

Buffer length to be programmed in Bytes
8 bit mode 16 bit mode 32 bit mode 64 bit mode
[Samples in Buffer] 2 x [Samples in Buffer] 4 x [Samples in Buffer] 8 x [Samples in Buffer]

Buffer length to be programmed in Bytes
1 bit mode 2 bit mode 4 bit mode 8 bit mode 16 bit mode

1 Channel 1/8 x [Samples in Buffer] 1/4 x [Samples in Buffer] 1/2 x [Samples in Buffer] [Samples in Buffer] 2 x [Samples in Buffer]
(c) Spectrum GmbH 49

Programming FIFO Mode
buffers to buffer more data in it.
When the goal is a fast update in FIFO mode smaller buffers and a larger number of buffers can be a better setup.

The driver handles the programmed number of buffers. To speed up FIFO transfer the driver uses buffers that are allocated and maintained
by the application program. Before starting the FIFO mode the addresses of the allocated buffers must be set to the driver.

Example of FIFO buffer setup. Neither memory allocation nor error checking is done in the example to improve readability:

When using 64 bit Linux systems it is necessary to program the buffer addresses using a special function as the SpcSetParam function
is limited to 32 bit as a parameter. Under 64 bit Linux systems all addresses are 64 bit wide. Please use the function SpcSetAdr as
described in the introduction and shown in the example below:

Buffer processing
The driver counts all the software buffers that have been transferred. This number can be read out from the driver to know the exact amount
of data that has been transferred.

If one knows before starting FIFO mode how long this should run it is possible to program the number of buffers that the driver should process.
After transferring this number of buffer the driver will automatically stop. If FIFO mode should run endless a zero must be programmed to this
register. Then the FIFO mode must be stopped by the user.

FIFO mode
In normal applications the FIFO mode will run in a loop and process one buffer after the other. There are a few special commands and reg-
isters for the FIFO mode:

The start command and the wait command both wait for the signal from the driver that the next buffer has to be processed. This signal is
generated by the driver on receiving an interrupt from the hardware. While waiting none of these commands waste cpu power (no polling
mode). If for any reason the signal is not coming from the hardware (e.g. trigger is not found) the FIFO mode must be stopped from a second
task with a stop command.

Register Value Direction Description

SPC_FIFO_BUFADR0 60100 r/w address of FIFO buffer 0. Must be allocated by application program

SPC_FIFO_BUFADR1 60101 r/w address of FIFO buffer 1. Must be allocated by application program

... ...

SPC_FIFO_BUFADR255 60355 r/w address of FIFO buffer 255. Must be allocated by application program

 // ----- setup FIFO buffers -----
 SpcSetParam (hDrv, SPC_FIFO_BUFFERS, 64); // 64 FIFO buffers used in the example
 SpcSetParam (hDrv, SPC_FIFO_BUFLEN, 8192); // Each FIFO buffer is 8 kBytes long

 // ----- allocate memory for data -----
 for (i = 0; i < 64; i++)
 pnData[i] = (ptr16) malloc (8192); // memory allocation for 12, 14, 16 bit analog boards
 // and digital boards
 // pbyData[i] = (ptr8) malloc (8192); // memory allocation for 8 bit analog boards

 // ----- tell the used buffer adresses to the driver -----
 for (i = 0; i < 64; i++)
 nErr = SpcSetParam (hDrv, SPC_FIFO_BUFADR0 + i, (int32) pnData[i]); // for 12, 14, 16 bit analog boards
 // and digital boards only
 // nErr = SpcSetParam (hDrv, SPC_FIFO_BUFADR0 + i, (int32) pbyData[i]); // for 8 bit analog boards only

 // ----- tell the used buffer adresses to the driver (Linux 32 and 64 bit systems) -----
 for (i = 0; i < 64; i++)
 nErr = SpcSetAdr (hDrv, SPC_FIFO_BUFADR0 + i, (void*) pnData[i]);

Register Value Direction Description

SPC_FIFO_BUFCOUNT 60020 r Number of transferred buffers until now

Register Value Direction Description

SPC_FIFO_BUFMAXCNT 60030 r/w Number of buffers to be transferred until automatic stop. Zero runs endless

Register Value Direction Description

SPC_COMMAND 0 w Command register. Allowed values for FIFO mode are listed below

SPC_FIFOSTART 12 Starts the FIFO mode and waits for the first data interrupt

SPC_FIFOWAIT 13 Waits for the next buffer interrupt

SPC_FIFOSTARTNOWAIT 14 Start the card and return immediately without waiting for the first data interrupt

SPC_STOP 20 Stops the FIFO mode
50 MX.70xx Manual

FIFO Mode Programming
This handshake command tells the driver that the application has finished it’s work with the software buffer. The both commands
SPC_FIFOWAIT (SPC_FIFOSTART) and SPC_FIFO_BUFFERS form a simple but powerful handshake protocol between application software
and board driver.

Backward compatibility: This register replaces the formerly known SPC_FIFO_BUFREADY0...
SPC_FIFO_BUFREADY15 commands. It has the same functionality but can handle more FIFO buffers. For back-
ward compatibility the older commands still work but are still limited to 16 buffers.

Example FIFO acquisition mode
This example shows the main loop of a FIFO acquisition. The example is a part of the FIFO examples that are available for each board on
CD. The example simply counts the buffers when it receives a new buffer from the driver and returns control immideately back to the driver.

FIFO acquisition example:

Example FIFO generation mode
This example shows the main loop of a FIFO generation. The example is a part of the FIFO examples that are available for each board on
CD. The example simply calls a routine for output data calculation and counts the buffers that has been processed.

FIFO generation example:

Register Value Direction Description

SPC_FIFO_BUFREADY 60050 w FIFO mode handshake. Application has finished with that buffer. Value is index of buffer

nBufIdx = 0;
lBufCount = 0;
lCommand = SPC_FIFOSTART;

printf ("Start\n");
do
 {
 nErr = SpcSetParam (hDrv, SPC_COMMAND, lCommand);
 lCommand = SPC_FIFOWAIT;

 // ----- perform any data calculation or hard disk recording (in example only counting buffers)-----
 printf ("FIFO Buffer %ld\n", lBufCount++);

 // ----- buffer is ready -----
 SpcSetParam (hDrv, SPC_FIFO_BUFREADY, nBufIdx);

 // ----- next Buffer -----
 nBufIdx++;
 if (nBufIdx == MAX_BUF)
 nBufIdx = 0;
 }
while (nErr == ERR_OK);

 // ----- fill the first buffers with data -----
 for (i=0; i<MAX_BUF; i++)
 vCalcOutputData (pnData[i], BUFSIZE);

 // ----- start the board -----
 nBufIdx = 0;
 lCommand = SPC_FIFOSTART;
 lBufCount = 0;

 printf ("Start\n");
 do
 {
 nErr = SpcSetParam (hDrv, SPC_COMMAND, lCommand);
 lCommand = SPC_FIFOWAIT;

 // ----- driver requests next buffer: calculate it or load if from disk -----
 printf ("Buffer %d\n", lBufCount);
 vCalcOutputData (pnData[nBufIdx], BUFSIZE);

 // ----- buffer is ready -----
 SpcSetParam (hDrv, SPC_FIFO_BUFREADY, nBufIdx);

 // ----- next Buffer -----
 lBufCount++;
 nBufIdx++;
 if (nBufIdx == MAX_BUF)
 nBufIdx = 0;
 }
 while (nErr == ERR_OK);
(c) Spectrum GmbH 51

Programming FIFO Mode
Before starting the FIFO output all software buffers must be filled once with data. The driver immediately
transfers data to the hardware after receiving the start command.

Data organization
When using FIFO mode data in memory is organized in some cases a little bit different then in standard mode. This is a result of the internal
hardware structure of the board. The organization of data is depending on the activated channels:

The samples are re-named for better readability:

• A0 is the 16 bit sample 0, D15..D0
• B4 is the 16 bit sample 4, D31..D16
• C5 is the 16 bit sample 5, D15..D0
• D2 is the 16 bit sample 2, D31..D16

All the samples shown in the table above are 16 bit samples. In all modes with a sample width of less than
16 bit the 16 bit samples can contain several “real“ samples. Please refer to the sample format section men-
tioned later.

The following example shows how to write the 16 bit samples when using both modules in FIFO mode:

Sample format
The sample format in FIFO mode does not differ from the one in standard mode. Please refer to the dedicated passage in the chapter about
the standard mode.

Activated channels and samplewidth Sample ordering in FIFO buffer
Ch0
8 bit

Ch0
16 bit

Ch0
32 bit

Ch1
16 bit

Ch1
32 bit

x A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
x A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

x A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 A9 B9
x x A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 A9 B9

x x A0 C0 B0 D0 A1 C1 B1 D1 A2 C2 B2 D2 A3 C3 B3 D3 A4 C4 B4 D4

for (i = 0; i < lBufferSizeInSamples; i+=2)
 {
 FIFOBuffer[i + 0] = Data[0][i/2];
 FIFOBuffer[i + 1] = Data[1][i/2];
 }
52 MX.70xx Manual

Clock generation Overview
Clock generation

Overview
The Spectrum boards offer a wide variety of different clock modes to match all the customers needs. All the clock modes are described in
detail with programming examples below. This chapter simply gives you an overview which clock mode to select:

Standard internal sample rate
PLL with internal 40 MHz reference. This is the easiest way to generate a sample rate with no need for additional external clock signals. The
sample rate has a fine resolution.

Quartz and divider
Internal quarz clock with divider. For applications that need a lower clock jitter than the PLL produces. The possible sample rates are restricted
to the values of the divider.

External reference clock
PLL with external 1 MHz to 125 MHz reference clock. This provides a very good clock accuracy if a stable external reference clock is used.It
also allows the easy synchronization with an external source.

Direct external clock
Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a
system clock or to feed in an exact matching sample rate.

Direct external clock is not available for MC.49xx/MX.49xx cards. Please use external reference clock mode
instead.

External clock with divider
The externally fed in clock can be divided to generate a low-jitter sample rate of a slower speed than the external clock available.

Direct external clock with divider is not available for MC.49xx/MX.49xx cards. Please use external refer-
ence clock mode instead.

There is a more detailed description of the clock generation part available as an application note. There some
more background information and details of the internal structure are explained.

PXI reference clock

The PXI 10 MHz reference clock is used in conjunction with the on-board PLL to generate the sampling clock. All PXI cards then have a fixed
phase relation between each other.

Internally generated sample rate

Standard internal sample rate
The internal sample rate is generated in default mode by a PLL and dividers out of an internal 40 MHz frequency reference. In most cases
the user does not need to care on how the desired sample rate is generated by multiplying and dividing internally. You simply write the
desired sample rate to the according register shown in the table below. If you want to make sure the sample rate has been set correctly you
can also read out the register and the driver will give you back the sample rate that is matching your desired one best.

If a sample rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock con-
nector and can be used to synchronize external equipment with the board.

Register Value Direction Description

SPC_SAMPLERATE 20000 w Defines the sample rate in Hz for internal sample rate generation.

r Read out the internal sample rate that is nearest matching to the desired one.

Register Value Direction Description

SPC_EXTERNOUT 20110 r/w Enables clock output on external clock connector. Only possible with internal clocking. (old name)

SPC_CLOCKOUT 20110 r/w Enables clock output on external clock connector. Only possible with internal clocking. (new name)
(c) Spectrum GmbH 53

Internally generated sample rate Clock generation
Example on writing and reading internal sample rate

Minimum internal sample rates
The minimum internal sampling rate is limited on all boards to 1 kHz and the maximum sampling rate depends on the specific type of board.
The maximum sampling rates for your type of board are shown in the tables below. When using less than 16 bit as done by 8 bit mode on
any board or 1, 2, 4 bit mode on the 7005 the minimum internal sampling rate is 2 MHz instead of 1 kHz.

Maximum internal sample rate in MS/s for the 701x boards

Maximum internal sample rate in MS/s in normal and FIFO mode for the 7005 board

The following values are only valid for the 7005 board.

Using plain quartz without PLL
In some cases it is useful for the application not to have the on-board PLL activated. Although the PLL used on the Spectrum boards is a low-
jitter version it still produces more clock jitter than a plain quartz oscillator. For these cases the Spectrum boards have the opportunity to switch
off the PLL by software and use a simple clock divider.

The sample rates that could be set are then limited to the quartz speed divided by one of the below mentioned dividers. The quartz used on
the board is similar to the maximum sample rate the board can achieve. As with PLL mode it’s also possible to set a desired sample rate and
read it back. The result will then again be the best matching sample rate.

Available divider values

 External reference clock

If you have an external clock generator with a extremly stable frequency, you can use it as a reference clock. You can connect it to the external
clock connector and the PLL will be fed with this clock instead of the internal reference. Due to the fact that the driver needs to know the
external fed in frequency for an exact calculation of the sample rate you must set the the SPC_REFERENCECLOCK register accordingly. The
driver automatically sets the PLL to achieve the desired sample rate. Therefore it examines the reference clock and the sample rate registers.

Example of reference clock:

SpcSetParam (hDrv, SPC_SAMPLERATE, 1000000); // Set internal sample rate to 1 MHz
SpcSetParam (hDrv, SPC_CLOCKOUT, 1); // enable the clock output of that 1 MHz
SpcGetParam (hDrv, SPC_SAMPLERATE, &lSamplerate); // Read back the sample rate that has been programmed
printf („Samplerate = %d\n“, lSamplerate); // print it. Output should be „Samplerate = 1000000“

Activated channels and samplewidth

70
10

70
11Ch0

8 bit
Ch0
16 bit

Ch0
32 bit

x 125 125
x 125 125

x n.a. 62.5

Activated channels and samplewidth

70
05Ch0

1 bit
Ch0
2 bit

Ch0
4 bit

Ch0
8 bit

Ch0
16 bit

x 125
x 125

x 125
x 125

x 125

Register Value Direction Description

SPC_PLL_ENABLE 20030 r/w A „1“ enables the PLL mode (default) or disables it by writing a 0 to this register

1 2 4 8 10 16 20 40 50 80 100 200
400 500 800 1000 2000

Register Value Direction Description

SPC_REFERENCECLOCK 20140 r/w Programs the external reference clock in the range from 1 MHz to 125 MHz.

0 Internal reference is used for internal sample rate generation.

External sample rate in Hz as an integer value External reference is used. You need to set up this register exactly to the frequency of the external fed in clock.

SpcSetParam (hDrv, SPC_EXTERNAL, 0); // Set to internal clock
SpcSetParam (hDrv, SPC_REFERENCECLOCK, 10000000); // Reference clock that is fed in is 10 MHz
SpcSetParam (hDrv, SPC_SAMPLERATE, 25000000); // We want to have 25 MHz as sample rate
54 MX.70xx Manual

Clock generation External clocking
Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a 110
Ohm termination on the board. If the termination is disabled, the impedance is several Kiloohm. Please make sure that your source is capable
of driving that current and that it still fulfills the clock input specification as given in the technical data section.

External clocking

Direct external clock
An external clock can be fed in on the external clock connector of the board. This can be any clock, that matches the specification of the
board. The external clock signal can be used to synchronize the board on a system clock or to feed in an exact matching sample rate.

The maximum values for the external clock is board dependant and shown in the table below.

Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a 110
Ohm termination on the board. If the termination is disabled, the impedance is several Kiloohm. Please make sure that your source is capable
of driving that current and that it still fulfills the clock input specification as given in the technical data section.

Minimum external sample rate
The minimum external sample rate has no limit and therefore goes down to DC (f > 0 Hz) and the maximum sample rate depends on the
specific type of board. The maximum sample rates for your type of board are shown in the tables below.

Maximum external sample rate in MS/s in normal mode for the 701x boards

Maximum external sample rate in MS/s in normal and FIFO mode for the 7005 board

The following values are only valid for the 7005 board.

An external sample rate above the mentioned maximum can cause damage to the board.

Ranges for external sample rate
Due to the internal structure of the board it is essential to know for the driver in which clock range the external clock is operating. The external
range register must be set according to the clock that is fed in externally.

Register Value Direction Description

SPC_CLOCK110OHM 20120 r/w A „1“ enables the 110 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

Register Value Direction Description

SPC_EXTERNALCLOCK 20100 r/w Enables the external clock input. If external clock input is disabled, internal clock will be used.

Register Value Direction Description

SPC_CLOCK110OHM 20120 r/w A „1“ enables the 110 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

Activated channels and samplewidth

70
10

70
11Ch0

8 bit
Ch0
16 bit

Ch0
32 bit

x 125 125
x 125 125

x n.a. 62.5

Activated channels and samplewidth

70
05Ch0

1 bit
Ch0
2 bit

Ch0
4 bit

Ch0
8 bit

Ch0
16 bit

x 125
x 125

x 125
x 125

x 125

Register Value Direction Description

SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use one of the below mentioned ranges
(c) Spectrum GmbH 55

External clocking Clock generation
The range must not be left by more than 5 % when the board is running. Remember that the ranges depend
on the activated channels as well, so a different board setup for external clocking must always include the
related clock ranges.

This table below shows the ranges that are defined by the different range registers mentioned above. The range depends on the activated
channels and the mode the board is used in. Please be sure to select the correct range. Otherwise it is possible that the board will not run
properly.

Range settings for all 701x boards

How to read this table? If you have activated channel 0 for 32 bit samplewidth and are using the board in standard mode (not FIFO) and
your external clock is known to be around 4 MS/s you have to set the EXRANGE_BURST_S for the external range.

Example:

Range settings for a 7005 board

The following setting are only valid when using a 7005 board.

How to read this table? If you have activated channel 0 for 2 bit samplewidth and are using the board in standard mode and your external
clock is known to be around 15 MS/s you have to set the EXRANGE_SINGLE for the external range.

Example:

External clock with divider
The extra clock divider can be used to divide an external fed in clock by a fixed value. The external clock must be > 1 MS/s. This divided
clock is used as a sample clock for the board.

Available divider values

EXRANGE_SINGLE 2 External Range Single

EXRANGE_BURST_S 4 External Range Burst S

EXRANGE_BURST_M 8 External Range Burst M

EXRANGE_BURST_L 16 External Range Burst X

EXRANGE_BURST_XL 32 External Range Burst XL

Activated channels and
samplewidth

Mode EXRANGE_SINGLE EXRANGE_BURST_S EXRANGE_BURST_M

Ch0
8 bit

Ch0
16 bit

Ch0
32 bit

x Standard/FIFO < 10 MS/s 10 MS/s to max
x Standard/FIFO < 5 MS/s 5 MS/s to 10 MS/s 10 MS/s to max

x Standard/FIFO < 2.5 MS/s 2.5 MS/s to 5 MS/s 5 MS/s to max

SpcSetParam (hDrv, SPC_CHENABLE, CH0_32BIT); // activate 32 bit samplewidth
SpcSetParam (hDrv, SPC_EXTERNALCLOCK, 1); // activate external clock
SpcSetParam (hDrv, SPC_EXTERNRANGE, EXRANGE_BURST_S); // set external range to Burst S

Activated channels and samplewidth Mode EXRANGE_SINGLE EXRANGE_BURST_S EXRANGE_BURST_M
Ch0
1 bit

Ch0
2 bit

Ch0
4 bit

Ch0
8 bit

Ch0
16 bit

x Standard/FIFO < 80 MS/s 80 MS/s to max
x Standard/FIFO < 40 MS/s 40 MS/s to max

x Standard/FIFO < 20 MS/s 20 MS/s to max
x Standard/FIFO < 10 MS/s 10 MS/s to max

x Standard/FIFO < 5 MS/s 5 MS/s to 10 MS/s 10 MS/s to max

SpcSetParam (hDrv, SPC_CHENABLE, CH0_8BITMODE); // activate 8 bit samplewidth
SpcSetParam (hDrv, SPC_BITMODE, 2); // set the samplewidth to 2 bit
SpcSetParam (hDrv, SPC_EXTERNALCLOCK, 1); // activate external clock
SpcSetParam (hDrv, SPC_EXTERNRANGE, EXRANGE_SINGLE); // set external range to Single

Register Value Direction Description

SPC_CLOCKDIV 20040 read/write Extra clock divider for external samplerate. Allowed values are listed below

1 2 4 8 10 16 20 40 50 80 100 200
400 500 800 1000 2000
56 MX.70xx Manual

Clock generation External clocking
PXI Reference Clock

The 10 MHz PXI system reference clock can be used as a reference clock for internal sample rate generation. With the above mentionned
software command the PXI reference clock is routed to the internal PLL. Afterwards you only have to program the sample rate register to the
desired sampling rate. The remaining internal calculations will be automatically done by the driver.

Example of PXI reference clock:

If you use more than one Spectrum board with the PXI reference clock source, there will be no stable phase
between all the connected boards.

Register Value Direction Description

SPC_REFERENCECLOCK 20140 read/write Programs the reference clock to either internal, external or PXI.

0 Internal reference is used for sample rate generation.

REFCLOCK_PXI -1 PXI 10 MHz reference clock is used for sample rate generation

SpcSetParam (hDrv, SPC_EXTERNALCLOCK, 0); // Set to internal clock
SpcSetParam (hDrv, SPC_REFERENCECLOCK, REFCLOCK_PXI); // PXI Reference clock (10 MHz) used
SpcSetParam (hDrv, SPC_SAMPLERATE, 25000000); // We want to have 25 MHz as sample rate
(c) Spectrum GmbH 57

General Description Trigger modes and appendant registers
Trigger modes and appendant registers

General Description
Concerning the trigger modes of the Spectrum MI, MC and MX digital I/O boards, you can choose between seven external TTL trigger modes,
six internal pattern trigger modes and one internal software trigger. This chapter is about to explain the different trigger modes and setting
up the board’s registers for the desired mode. Every digital Spectrum board has dedicated lines in the multipin connector for feeding in an
external trigger signal and for outputting a trigger signal of an external trigger event. Although two seperate lines for trigger in and out are
available through the multipin connector, it is not possible to output the internal software trigger event. The trigger outputs therefore can be
used only if an external trigger is fed in or your digital board has additional internal trigger modes besides the software trigger. This can be
useful to trigger other boards or other external equipment.

Software trigger

The software trigger is the easiest way of triggering any Spectrum
board. The acquisition or replay of data will start immediately af-
ter starting the board. The only delay results from the time the
board needs for its setup.

In addition to the softwaretrigger (free run) it is also possible to force a triggerevent by software while the board is waiting for an internal or
external trigger event. Therefore you can use the board command shown in the following table.

If you want to synchronize external equipment with your Spectrum board, you can additionally enable the external trigger output. As men-
tioned before there will be no output signal, if the internal software trigger mode is used.

Due to the structure of the digital boards the trigger output will be automatically enabled, when the external
TTL trigger input is used. Trigger output is not available if software trigger is used.

Example for setting up the software trigger:

External TTL trigger
Enabling the external trigger input is done, if you choose one of the following external trigger modes. The dedicated register for that operation
is shown below.

Register Value Direction Description

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_SOFTWARE 0 Sets the trigger mode to software, so that the recording/replay starts immediately.

Register Value Direction Description

SPC_COMMAND 0 r/w Command register of the board.

SPC_FORCETRIGGER 16 Forces a trigger event if the hardware is still waiting for a trigger event. Needs a base board hardware version > 7.x.

Register Value Direction Description

SPC_TRIGGEROUT 40100 r/w Enables the output driver of the external trigger connector to output an internal trigger event, except
the internal software trigger.

0 The trigger output is not used and the line driver is disabled. Will be ignored, when external trigger input is used.

1 The trigger output is used as an output that indicates a detected internal trigger event.

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_SOFTWARE); // External TTL trigger mode is used
SpcSetParam (hDrv, SPC_TRIGGEROUT , 0); // And the trigger output is disabled

Register Value Direction Description

SPC_TRIGGERMODE 40000 r/w

TM_TTLPOS 20000 Sets the trigger mode for external TTL trigger to detect positive edges.

TM_TTLNEG 20010 Sets the trigger mode for external TTL trigger to detect negative edges

TM_TTLBOTH 20030 Sets the trigger mode for external TTL trigger to detect positive and negative edges

TM_TTLHIGH_LP 20001 Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.

TM_TTLHIGH_SP 20002 Sets the trigger mode for external TTL trigger to detect HIGH pulses that are shorter than a programmed pulsewidth.
58 MX.70xx Manual

Trigger modes and appendant registers External TTL trigger
If you want to synchronize external equipment with your Spectrum board, you can additionally enable the external trigger output. As men-
tioned before there will be no output signal, if the internal software trigger mode is used.

Due to the structure of the digital boards the trigger output will be automatically enabled, when the external
TTL trigger input is used. Trigger output is not available if software trigger is used.

For the trigger input, you can decide whether it is 110 Ohm terminated or not. If you enable the termination, please make sure, that your
trigger source is capable to deliver the desired current. If termination is disabled, the input is at high impedance.

The following short example shows how to set up the board for external positive edge TTL trigger. The trigger input is 110 Ohm terminated.
The different modes for external TTL trigger are to be detailed described in the next few passages.

Edge triggers

Positive TTL trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The board will trigger on the first rising edge that is detected
after starting the board. The next triggerevent will then be detect-
ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.

Example on how to set up the board for positive TTL trigger:

Negative TTL trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The board will trigger on the first falling edge that is detected
after starting the board. The next triggerevent will then be detect-
ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.

TM_TTLLOW_LP 20011 Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.

TM_TTLLOW_SP 20012 Sets the trigger mode for external TTL trigger to detect LOW pulses that are shorter than a programmed pulsewidth.

Register Value Direction Description

SPC_TRIGGEROUT 40100 r/w Enables the output driver of the external trigger connector to output an internal trigger event, except
the internal software trigger.

0 The trigger output is not used and the line driver is disabled. Will be ignored, when external trigger input is used.

1 The trigger output is used as an output that indicates a detected internal trigger event.

Register Value Direction Description

SPC_TRIGGER110OHM 40110 r/w Sets the 110 Ohm termination, if the trigger connector is used as an input for external trigger signals.

SpcSetParam (hDrv, SPC_TRIGGERMODE , TM_TTLPOS); // External positive TTL edge trigger
SpcSetParam (hDrv, SPC_TRIGGER110OHM, 1); // and the 110 Ohm termination of the trigger input is used

Register Value Direction Description

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board

TM_TTLPOS 20000 Sets the trigger mode for external TTL trigger to detect positive edges

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_TTLPOS); // Setting up external TTL trigger to detect positive edges

Register Value Direction Description

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_TTLNEG 20010 Sets the trigger mode for external TTL trigger to detect negative edges.
(c) Spectrum GmbH 59

External TTL trigger Trigger modes and appendant registers
Positive and negative TTL trigger

This mode is for detecting the rising and falling edges of an ex-
ternal TTL signal. The board will trigger on the first rising or falling
edge that is detected after starting the board. The next trigger-
event will then be detected, if the actual recording/replay has fin-
ished and the board is armed and waiting for a trigger again.

Pulsewidth triggers

TTL pulsewidth trigger for long HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will trigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and
the board is armed and waiting for a trigger again.

TTL pulsewidth trigger for short HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are shorter than a programmed pulsewidth. If the pulse is
longer than the programmed pulsewidth, no trigger will be detect-
ed. The board will trigger on the first pulse matching the trigger
condition after starting the board. The next triggerevent will then
be detected, if the actual recording/replay has finished and the
board is armed and waiting for a trigger again.

Register Value Direction Description

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_TTLBOTH 20030 Sets the trigger mode for external TTL trigger to detect positive and negative edges.

Register Value Direction Description

SPC_PULSEWIDTH 44000 r/w Sets the pulsewidth in samples. Values from 2 to 255 are allowed.

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_TTLHIGH_LP 20001 Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.

Register Value Direction Description

SPC_PULSEWIDTH 44000 r/w Sets the pulsewidth in samples. Values from 2 to 255 are allowed.

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_TTLHIGH_SP 20002 Sets the trigger mode for external TTL trigger to detect HIGH pulses that are shorter than a programmed pulsewidth.
60 MX.70xx Manual

Trigger modes and appendant registers Pattern Trigger
TTL pulsewidth trigger for long LOW pulses

This mode is for detecting LOW pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will trigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and
the board is armed and waiting for a trigger again.

TTL pulsewidth trigger for short LOW pulses

This mode is for detecting LOW pulses of an external TTL signal
that are shorter than a programmed pulsewidth. If the pulse is
longer than the programmed pulsewidth, no trigger will be detect-
ed. The board will trigger on the first pulse matching the trigger
condition after starting the board. The next triggerevent will then
be detected, if the actual recording/replay has finished and the
board is armed and waiting for a trigger again.

Pattern Trigger

Overview of the pattern trigger registers
The pattern trigger modes are the most common modes, compared to other digital equipment like logic analyzers. The 6 different pattern
trigger modes enable you to observe nearly any part of the 16 or 32 bit digital data acquired by one module (channel). This chapter is about
to explain the different modes in detail. To enable the pattern trigger, you have to set the triggermode register accordingly. Therefore you
have to choose, if you either want only one module to be the trigger source, or if you want to combine the maximum of two modules to a
logical OR trigger. The following table shows the according registers for the two general channel trigger modes.

If you have set the general triggermode to channel trigger you must set the all of the channels to their modes according to the following table.

So even if you use TM_CHANNEL and only want to observe one channel, you need to deactivate all other
channels. You can do this by setting the channel specific register to the value TM_NOTRIGGER.

The tables lists the maximum of the available channel mode registers for your card’s series. So it can be that you have less channels installed
on your specific card and therefore have less valid channel mode registers. If you try to set a channel, that is not installed on your specific
card, a error message will be returned.

Register Value Direction Description

SPC_PULSEWIDTH 44000 r/w Sets the pulsewidth in samples. Values from 2 to 255 are allowed.

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_TTLLOW_LP 20011 Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.

Register Value Direction Description

SPC_PULSEWIDTH 44000 r/w Sets the pulsewidth in samples. Values from 2 to 255 are allowed.

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_TTLLOW_SP 20012 Sets the trigger mode for external TTL trigger to detect LOW pulses that are shorter than a programmed pulsewidth.

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_TTLHIGH_LP); // Setting up external TTL trigger to detect high pulses
SpcSetParam (hDrv, SPC_PULSEWIDTH , 50); // that are longer than 50 samples.

Register Value Direction Description

SPC_TRIGGERMODE 40000 r/w Sets the triggermode for the board.

TM_CHANNEL 20040 Enables the pattern trigger mode so that only one channel can be a trigger source.

TM_CHOR 35000 Enables the pattern trigger mode so that more than one channel can be a trigger source. (Logical OR)
(c) Spectrum GmbH 61

Pattern Trigger Trigger modes and appendant registers
So if you want to set up a two channel board to detect a pattern on the first input channel, you would have to setup the board like the following
example. Both of the examples either for the TM_CHANNEL and the TM_CHOR triggermode do not include the necessary settigs for the
patternmask. These settings are detailed described in the following paragraphs.

If you want to set up both channels to detect a triggerevent on either a detected condition on channel 0 and/or on channel 1 you would have
to set up your board as the following example shows.

Pattern trigger edge setup
For the pattern trigger modes that include an edge detection after the pattern has occured you have to define the edge, that should be de-
tected. This has to be done with the help of an additional triggeredge register shown in the table below.

Triggerpattern and Triggermask
All of the pattern trigger modes listed above require at least two registern to be set (except TM_NOTRIGGER of course). Some trigger modes
like the pattern trigger with pulsewidth and an edge detection require the setup of even more registers. Before explaining the different pattern
trigger modes and the necessary settings to select this mode, it is necessary to explain the functions of the different pattern trigger setup reg-
isters.

With the help of these two 32 bit registers you can decide the trigger condition seperately for every single bit of one channel. Therefore the
both registers are used as a bitmap. Every bit of the register corresponds with an input bit of the dedicated channel. So bit 0 of the registers
is for bit 0 of the input, bit 7 of the registers is for input 7 and so on.

Register Value Direction Description

SPC_TRIGGERMODE0 40200 r/w Sets the trigger mode for channel0. Channeltrigger must be activated with SPC_TRIGGERMODE.

SPC_TRIGGERMODE1 40201 r/w Sets the trigger mode for channel1. Channeltrigger must be activated with SPC_TRIGGERMODE.

TM_NOTRIGGER 10 Disables the trigger detection of the dedicated channel.

TM_TTLPOS 20000 Sets the trigger mode for external TTL trigger to detect positive edges.

TM_TTLNEG 20010 Sets the trigger mode for external TTL trigger to detect negative edges

TM_TTLBOTH 20030 Sets the trigger mode for external TTL trigger to detect positive and negative edges

TM_TTLHIGH_LP 20001 Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.

TM_TTLHIGH_SP 20002 Sets the trigger mode for external TTL trigger to detect HIGH pulses that are shorter than a programmed pulsewidth.

TM_TTLLOW_LP 20011 Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.

TM_TTLLOW_SP 20012 Sets the trigger mode for external TTL trigger to detect LOW pulses that are shorter than a programmed pulsewidth.

TM_PATTERN 21000 Wait for a defined pattern on the digital inputs of the dedicated channel.

TM_PATTERN_LP 21001 Wait for a defined pattern that is longer than a programmed pulsewidth present on the digital inputs of the dedicated
channel.

TM_PATTERN_SP 21002 Wait for a defined pattern that is shorter than a programmed pulsewidth present on the digital inputs of the dedicated
channel.

TM_PATTERNANDEDGE 22000 Wait for a defined pattern on the digital inputs and the following programmed edge on one of the bits of the dedi-
cated channel.

TM_PATTERNANDEDGE_LP 22001 Wait for a defined pattern that is longer than a programmed pulsewidth present and the following programmed edge
on one of the bits on the digital inputs of the dedicated channel.

TM_PATTERNANDEDGE_SP 22002 Wait for a defined pattern that is shorter than a programmed pulsewidth present and the following programmed edge
on one of the bits on the digital inputs of the dedicated channel.

SpcSetParam (hDrv, SPC_TRIGGERMODE , TM_CHANNEL); // Enable channel trigger mode
SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERN); // Set triggermode of channel 0 to pattern trigger
SpcSetParam (hDrv, SPC_TRIGGERMODE1, TM_NOTRIGGER); // Disable channel 1 concerning trigger detection

SpcSetParam (hDrv, SPC_TRIGGERMODE , TM_CHOR); // Enable OR trigger mode
SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERN); // Set triggermode of channel 0 to pattern trigger
SpcSetParam (hDrv, SPC_TRIGGERMODE1, TM_PATTERN); // Set triggermode of channel 1 to pattern trigger

Register Value Direction Description

SPC_TRIGGEREDGE0 46000 r/w Defines the trigger edge for channel 0, if a pattern end edge trigger is used.

SPC_TRIGGEREDGE1 446001 r/w Defines the trigger edge for channel 1, if a pattern end edge trigger is used.

TE_POS 10000 Sets the pattern and edge mode to detect positive edges.

TE_NEG 10010 Sets the pattern and edge mode to detect negative edges.

TE_BOTH 10020 Sets the pattern and edge mode to detect positive and negative edges.
62 MX.70xx Manual

Trigger modes and appendant registers Pattern Trigger
Use one or multiple bits for pattern detection
To set up the bits of one channel for patterndetection the triggermask must be set up like this:

Unlike all other software registers the pattern mask for the pattern detection mode is used as negative logic.
A zero on the dedicated bit is activating it for pattern detection, while a one is excvluding the bit from pattern
detection.

The pattern itself is defined by the trigger pattern register described in the following table:

Example program of how to detect a 0101 pattern on the four lower bits of channel 0:

All unused bits must be deactivated. These are the upper eight bits when using the 7xxx boards in 8 bit mode.
When using a 7005 board you must deactivate up to 15 bits (1 bit mode) depending on the chosen bitmode
(see dedicated chapter on setting up the inputs for further details).

Use one bit for edge detection
Instead or in addition to a pattern detection you can observe one bit of one channel for the edge detection. To program the observed bit you
have to set up the trigger mask like this:

In addition to the trigger mask register you have to set up the trigger pattern register like it is described in the following table as well.

The type of edge that has to occur to detect a trigger event must be additionally programmed to the trigger edge register shown in the table
below.:

Only one bit of the dedicated channel with its maximum of 32 bits can be used for edge detection. A bit that
is observed for its edge is automatically excluded from the pattern detection, as only one trigger condition
can be programmed for each bit.

All unused bits must be deactivated. These are the upper eight bits when using the 7xxx boards in 8 bit mode.
When using a 7005 board you must deactivate up to 15 bits (1 bit mode) depending on the chosen bitmode
(see dedicated chapter on setting up the inputs for further details).

Register Value Direction Description

SPC_TRIGGERMASK0 43100 r/w 32 bit wide bitfield. All bits of the dedicated channel that should be involved in pattern detection
must be set to 0.

SPC_TRIGGERMASK1 43101 r/w 32 bit wide bitfield. All bits of the dedicated channel that should be involved in pattern detection
must be set to 0.

Register Value Direction Description

SPC_TRIGGERPATTERN0 43000 r/w Must contain the pattern for the dedicated channel that should lead to a trigger event.

SPC_TRIGGERPATTERN1 43001 r/w Must contain the pattern for the dedicated channel that should lead to a trigger event.

0 The dedicated bit is observed to be be at LOW level.

1 The dedicated bit is observed to be at HIGH level.

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_CHANNEL); // Enable channel trigger mode
SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERN); // Enable pattern trigger for channel 0
SpcSetParam (hDrv, SPC_TRIGGERMODE1, TM_NOTRIGGER); // Exclude channel 1 from trigger detection
SpcSetParam (hDrv, SPC_TRIGGERMASK0, 0xFFFFFFF0); // Setup the lower 4 bits for pattern detection
SpcSetParam (hDrv, SPC_TRIGGERPATTERN0, 0xFFFFFFF5); // Setup the pattern for the lower nibble to 5h

Register Value Direction Description

SPC_TRIGGERMASK0 43100 r/w 32 bit wide bitfield. The bit of the dedicated channel that should be involved in edge detection must
be set to 1.

SPC_TRIGGERMASK1 43101 r/w 32 bit wide bitfield. The bit of the dedicated channel that should be involved in edge detection must
be set to 1.

Register Value Direction Description

SPC_TRIGGERPATTERN0 43000 r/w 32 bit wide bitfield. The bit of the dedicated channel that should be involved in edge detection must
be set to 0.

SPC_TRIGGERPATTERN1 43001 r/w 32 bit wide bitfield. The bit of the dedicated channel that should be involved in edge detection must
be set to 0.

Register Value Direction Description

SPC_TRIGGEREDGE0 46000 r/w Must contain the pattern for the dedicated channel that should lead to a trigger event.

SPC_TRIGGEREDGE1 46001 r/w Must contain the pattern for the dedicated channel that should lead to a trigger event.

TE_POS 10000 The programmed bit is observed for a rising edge.

TE_NEG 10010 The programmed bit is observed for a falling edge.

TE_BOTH 10020 The programmed bit is observed for a rising or a falling edge.
(c) Spectrum GmbH 63

Pattern Trigger Trigger modes and appendant registers
As a bit can only be used either for pattern or edge detection it is only possible to use either pattern or edge detection with a 7005
board recording one bit wide samples.

Exclude one or multiple bits from channel trigger detection
To exclude one bit of one channel from the trigger detection you have to program the observed bit of the trigger mask like this:

In addition to the trigger mask register you have to set up the trigger pattern register like it is described in the following table as well.

All unused bits must be deactivated. These are the upper eight bits when using the 7xxx boards in 8 bit mode.
When using a 7005 board you must deactivate up to 15 bits (1 bit mode) depending on the chosen bitmode
(see dedicated chapter on setting up the inputs for further details).

Conclusion
The table below is showing the different possible setups for the triggermask and the triggerpattern registers.

Detailed description of the pattern trigger modes

Pattern trigger

This is the most common trigger mode for digital sig-
nals used by common logic analyzers. You can define
a pattern for a programmable number of bits and if
this pattern occurs a trigger event will be detected.

The bits that should be used for trigger detection must
be enabled with the help of the triggermask register.
All used bits must be set to 0. It is important that you
disabled all unused bits by setting them to 1, as otherwise you might enable an unwanted additional edge detection on one bit (see pattern
and edge trigger). The pattern itself must be written to the triggerpattern register.

The setup used in the software programming example is corresponding with the pattern shown in the figure.

Register Value Direction Description

SPC_TRIGGERMASK0 43100 r/w 32 bit wide bitfield. The bit of the dedicated channel that should not be involved in any trigger detec-
tion must be set to 1.

SPC_TRIGGERMASK1 43101 r/w 32 bit wide bitfield. The bit of the dedicated channel that should not be involved in any trigger detec-
tion must be set to 1.

Register Value Direction Description

SPC_TRIGGERPATTERN0 43000 r/w 32 bit wide bitfield. The bit of the dedicated channel that should not be involved in any trigger detec-
tion must be set to 1.

SPC_TRIGGERPATTERN1 43001 r/w 32 bit wide bitfield. The bit of the dedicated channel that should not be involved in any trigger detec-
tion must be set to 1.

Bit N of register

SPC_TRIGGERMASKx SPC_TRIGGERPATTERNx Result

0 0 Pattern detection LOW level

0 1 Pattern detection HIGH level

1 0 Edge detection

1 1 Bit excluded from trigger detection

Register Value Direction set to Value

SPC_TRIGGERMODE 40000 r/w TM_CHANNEL 20040

SPC_TRIGGERMODE0 40200 r/w TM_PATTERN 21000

SPC_TRIGGERMASK0 43100 r/w The Bits used for pattern detection must be set to 0. Users choice

SPC_TRIGGERPATTERN0 43000 r/w The pattern to detect must be programmed here. Only bits defined with
the triggermask register are used.

Pattern

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_CHANNEL); // Enable the channel trigger mode for the board.

SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERN); // Enable the simple pattern trigger for channel 0.
SpcSetParam (hDrv, SPC_TRIGGERMASK0, 0xFFFFFFF0); // Enable the last four bits for pattern detection.
SpcSetParam (hDrv, SPC_TRIGGERPATTERN0, 0xFFFFFFF0); // Define the pattern. All four bits must be zero.
64 MX.70xx Manual

Trigger modes and appendant registers Pattern Trigger
Trigger for long patterns

This mode is similar to the simple pattern mode with
the addition of a pulsewidth counter. You can define
a pattern for a programmable number of bits. If the
this pattern occurs longer than a programmed pulse-
width a trigger event will be detected. If the pattern is
occuring for a shorter time, no trigger event will be de-
tected.

The bits that should be used for trigger detection must
be enabled with the help of the triggermask register.
All used bits must be set to 0. It is important that you disabled all unused bits by setting them to 1, as otherwise you might enable an unwanted
additional edge detection on one bit (see pattern and edge trigger). The pattern itself must be written to the triggerpattern register. The pulse-
width must be written seperately as a 16 bit value to the pulsewidth register.

The setup used in the software programming example is corresponding with the pattern shown in the figure.

Trigger for short patterns

This mode is similar to the simple pattern mode with
the addition of a pulsewidth counter. You can define
a pattern for a programmable number of bits. If the
this pattern occurs shorter than a programmed pulse-
width a trigger event will be detected. If the pattern is
occuring for a longer time, no trigger event will be de-
tected.
The bits that should be used for trigger detection must
be enabled with the help of the triggermask register.
All used bits must be set to 0. It is important that you
disabled all unused bits by setting them to 1, as otherwise you might enable an unwanted additional edge detection on one bit (see pattern
and edge trigger). The pattern itself must be written to the triggerpattern register. The pulsewidth must be written seperately as a 16 bit value
to the pulsewidth register.
The setup used in the software programming example is corresponding with the pattern shown in the figure.

Register Value Direction set to Value

SPC_TRIGGERMODE 40000 r/w TM_CHANNEL 20040

SPC_TRIGGERMODE0 40200 r/w TM_PATTERN_LP 21001

SPC_TRIGGERMASK0 43100 r/w The bits used for pattern detection must be set to 0. Users choice

SPC_TRIGGERPATTERN0 43000 r/w The pattern to detect must be programmed here. Only bits defined with
the triggermask register are used.

Pattern

SPC_PULSEWIDTH0 44000 r/w Defines the pulsewidth in samples. 2 to 65535

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_CHANNEL); // Enable the channel trigger mode for the board.

SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERN_LP); // Enable the „long pattern“ trigger for channel 0.
SpcSetParam (hDrv, SPC_TRIGGERMASK0, 0xFFFFFFF0); // Enable the last four bits for pattern detection.
SpcSetParam (hDrv, SPC_TRIGGERPATTERN0, 0xFFFFFFF0); // Define the pattern. All four bits must be zero.
SpcSetParam (hDrv, SPC_PULSEWIDTH0, 4); // Define the pulsewidth. Here the pattern must be
 // valid for more than 4 samples.

Register Value Direction set to Value

SPC_TRIGGERMODE 40000 r/w TM_CHANNEL 20040

SPC_TRIGGERMODE0 40200 r/w TM_PATTERN_SP 21002

SPC_TRIGGERMASK0 43100 r/w The bits used for pattern detection must be set to 0. Users choice

SPC_TRIGGERPATTERN0 43000 r/w The pattern to detect must be programmed here. Only bits defined with
the triggermask register are used.

Pattern

SPC_PULSEWIDTH0 44000 r/w Defines the pulsewidth in samples. 2 to 65535

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_CHANNEL); // Enable the channel trigger mode for the board.

SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERN_LP); // Enable the „short pattern“ trigger for channel 0.
SpcSetParam (hDrv, SPC_TRIGGERMASK0, 0xFFFFFFF0); // Enable the last four bits for pattern detection.
SpcSetParam (hDrv, SPC_TRIGGERPATTERN0, 0xFFFFFFF0); // Define the pattern. All four bits must be zero.
SpcSetParam (hDrv, SPC_PULSEWIDTH0, 4); // Define the pulsewidth. Here the pattern must be
 // valid for less than 4 samples.
(c) Spectrum GmbH 65

Pattern Trigger Trigger modes and appendant registers
Pattern and edge trigger

This trigger mode is similar to the simple pattern trig-
ger mode, but with the addition of an edge detection.
You can define a pattern for a programmable number
of bits and if this pattern occurs and then the pro-
grammed edge occures on the one programmed bit,
a trigger event is detected.If the pattern is wrong, no
trigger event will be detected. Even if the pattern is
right, but the edge is occuring either on the wrong bit
with the right edge or on the right bit with the wrong edge no trigger event will be detected.

The bits that should be used for pattern detection must be enabled with the help of the triggermask register. All used bits must be set to 0. It
is important that you set all other bits to 1 (including the one for edge detection), as the one possible bit for the edge detection is not available
for pattern detection. The pattern itself must be written to the triggerpattern register. The one bit that is to be used for edge detection must be
be set up to 0, while all bits that neither are used for edge or pattern detection must be programmed to 1 to disable any trigger detection for
those bits. The edge must be seperately programmed with the help of the triggeredge register.
The setup used in the software programming example is corresponding with the pattern and the edge shown in the figure.

Trigger for long patterns followed by an edge

This trigger mode is similar to the pattern and edge
trigger mode, but with the addition of an pulsewidth
counter. You can define a pattern for a programmable
number of bits and if this pattern occurs longer than a
programmed pulsewidth and is followed by the pro-
grammed edge on the one programmed bit, a trigger
event is detected.

If either the pattern is wrong or shorter than the pro-
grammed pulsewidth, no trigger event will be detect-
ed. Even if the pattern is right and long enough, but the edge is occuring either on the wrong bit with the right edge or on the right bit with
the wrong edge no trigger event will be detected.

The bits that should be used for pattern detection must be enabled with the help of the triggermask register. All used bits must be set to 0. It
is important that you set all other bits to 1 (including the one for edge detection), as the one possible bit for the edge detection is not available
for pattern detection. The pattern itself must be written to the triggerpattern register. The one bit that is to be used for edge detection must be
be set up to 0, while all bits that neither are used for edge or pattern detection must be programmed to 1 to disable any trigger detection for
those bits. The edge must be seperately programmed with the help of the triggeredge register.

The setup used in the software programming example is corresponding with the pattern, the pulsewidth and the edge shown in the figure.

Register Value Direction set to Value

SPC_TRIGGERMODE 40000 r/w TM_CHANNEL 20040

SPC_TRIGGERMODE0 40200 r/w TM_PATTERNANDEDGE 22000

SPC_TRIGGEREDGE0 46000 r/w TE_POS 10000

SPC_TRIGGERMASK0 43100 r/w The bits used for pattern detection must be set to 0, the bit used for edge
detection must be set to 1.

Users choice

SPC_TRIGGERPATTERN0 43000 r/w The pattern to detect must be programmed here. Only bits with the trig-
germask register set to 0 are used for pattern detection. The bit for edge
detection must be set to 0.

Pattern

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_CHANNEL); // Enable the channel trigger mode for the board.

SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERNANDEDGE); // Enable pattern and edge trigger for channel 0.
SpcSetParam (hDrv, SPC_TRIGGEREDGE0, TE_POS); // Set the edge to positive edges.

SpcSetParam (hDrv, SPC_TRIGGERMASK0, 0xFFFFFFF8); // Enable the last three bits for pattern detection.
 // Pattern bits must be zero, the edge bit must be 1.
SpcSetParam (hDrv, SPC_TRIGGERPATTERN0, 0xFFFFFFF0); // Define the pattern and set the edge bit to 0.
 // Therefore bit D3 is set to edge detection.

Register Value Direction set to Value

SPC_TRIGGERMODE 40000 r/w TM_CHANNEL 20040

SPC_TRIGGERMODE0 40200 r/w TM_PATTERNANDEDGE_LP 22001

SPC_TRIGGEREDGE0 46000 r/w TE_POS 10000

SPC_TRIGGERMASK0 43100 r/w The bits used for pattern detection must be set to 0, the bit used for edge
detection must be set to 1.

Users choice

SPC_TRIGGERPATTERN0 43000 r/w The pattern to detect must be programmed here. Only bits with the trig-
germask register set to 0 are used for pattern detection. The bit for edge
detection must be set to 0.

Pattern

SPC_PULSEWIDTH0 44000 r/w Defines the pulsewidth in samples. 2 to 65535
66 MX.70xx Manual

Trigger modes and appendant registers Pattern Trigger
SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_CHANNEL); // Enable the channel trigger mode for the board.

SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERNANDEDGE_LP); // Enable long-pattern and edge mode for channel 0.
SpcSetParam (hDrv, SPC_TRIGGEREDGE0, TE_POS); // Set the edge to positive edges.
SpcSetParam (hDrv, SPC_PULSEWIDTH0, 4); // Define the pulsewidth. Here the pattern must be
 // valid for more than 4 samples.

SpcSetParam (hDrv, SPC_TRIGGERMASK0, 0xFFFFFFF8); // Enable the last three bits for pattern detection.
 // Pattern bits must be zero, the edge bit must be 1.
SpcSetParam (hDrv, SPC_TRIGGERPATTERN0, 0xFFFFFFF0); // Define the pattern and set the edge bit to 0.
 // Therefore bit D3 is set to edge detection.
(c) Spectrum GmbH 67

Pattern Trigger Trigger modes and appendant registers
Trigger for short patterns followed by an edge

This trigger mode is similar to the pattern and edge
trigger mode, but with the addition of an pulsewidth
counter. You can define a pattern for a programmable
number of bits and if this pattern occurs shorter than a
programmed pulsewidth and is followed by the pro-
grammed edge on the one programmed bit, a trigger
event is detected.

If either the pattern is wrong or longer than the pro-
grammed pulsewidth, no trigger event will be detect-
ed. Even if the pattern is right and short enough, but the edge is occuring either on the wrong bit with the right edge or on the right bit with
the wrong edge no trigger event will be detected.

The bits that should be used for pattern detection must be enabled with the help of the triggermask register. All used bits must be set to 0. It
is important that you set all other bits to 1 (including the one for edge detection), as the one possible bit for the edge detection is not available
for pattern detection. The pattern itself must be written to the triggerpattern register. The one bit that is to be used for edge detection must be
be set up to 0, while all bits that neither are used for edge or pattern detection must be programmed to 1 to disable any trigger detection for
those bits. The edge must be seperately programmed with the help of the triggeredge register.

The setup used in the software programming example is corresponding with the pattern, the pulsewidth and the edge shown in the figure.

Register Value Direction set to Value

SPC_TRIGGERMODE 40000 r/w TM_CHANNEL 20040

SPC_TRIGGERMODE0 40200 r/w TM_PATTERNANDEDGE_SP 22002

SPC_TRIGGEREDGE0 46000 r/w TE_POS 10000

SPC_TRIGGERMASK0 43100 r/w The bits used for pattern detection must be set to 0, the bit used for edge
detection must be set to 1.

Users choice

SPC_TRIGGERPATTERN0 43000 r/w The pattern to detect must be programmed here. Only bits with the trig-
germask register set to 0 are used for pattern detection. The bit for edge
detection must be set to 0.

Pattern

SPC_PULSEWIDTH0 44000 r/w Defines the pulsewidth in samples. 2 to 65535

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_CHANNEL); // Enable the channel trigger mode for the board.

SpcSetParam (hDrv, SPC_TRIGGERMODE0, TM_PATTERNANDEDGE_SP); // Enable short-pattern and edge mode for channel 0.
SpcSetParam (hDrv, SPC_TRIGGEREDGE0, TE_POS); // Set the edge to positive edges.
SpcSetParam (hDrv, SPC_PULSEWIDTH0, 4); // Define the pulsewidth. Here the pattern must be
 // valid for less than 4 samples.

SpcSetParam (hDrv, SPC_TRIGGERMASK0, 0xFFFFFFF8); // Enable the last three bits for pattern detection.
 // Pattern bits must be zero, the edge bit must be 1.
SpcSetParam (hDrv, SPC_TRIGGERPATTERN0, 0xFFFFFFF0); // Define the pattern and set the edge bit to 0.
 // Therefore bit D3 is set to edge detection.
68 MX.70xx Manual

PXI Features Background on PXI
PXI Features

Background on PXI
PXI (PCI eXtension for instrumentation) was released as a standard based on PCI/CompactPCI bus speci-
fication and extends it by a bunch of additional lines especially designed for instrumentation purposes.
PXI also has a lot of very stringent system specifications, that make sure to have a sufficient power supply
and cooling power for each board. These specifications help setting up instrumentation systems and re-
duce the problems that might occur otherwise.
The PXI specifications are maintaned and enhanced by the PXI system alliance. Spectrum is also a member
of this alliance. You will find more background information on PXI on the PXI systems alliance homepage
www.pxisa.org.

The defined additional PXI lines shown in the drawing on the left allow the easy
synchronization of multiple cards without needing additional external components
or cables. With some restrictions it is also possible to synchronize PXI cards from
different manufacturers using the special PXI features of the boards.

As the PXI specifications do not force the manufacturers to make use of all of the
features, the PXI support of cards from different manufacturers may differ a lot. Be-
fore trying to connect a Spectrum card with cards of other manufacturers please
check carefully whether the PXI features match together. The Spectrum cards sup-
port all PXI features that are necessary to synchronize multiple cards. The features
and the programming is explained more in detail within the following sections.

PXI and CompactPCI
PXI is an enhancement of CompactPCI. All new PXI features are located on con-
nector lines that are not used by CompactPCI. As a result that means that a PXI
card which is not using any of the PXI features behaves like a standard Compact-
PCI card. The Spectrum PXI cards do not rely on the PXI features and therefore can
be used also in standard CompactPCI 3U systems. All features of the cards except
the special PXI features can then be used without limitations.

PXI Reference Clock
The PXI reference clock is a 10 MHz square wave signal with an accuracy of
100 ppm. This reference clock is located on the PXI backplane and is routed to
every PXI slot with the same trace length on the mainboard’s PCB. PXI cards from
Spectrum are able to use the PXI reference clock for sampling clock generation.
One big advantage of using the reference clock is the fact that all cards that are
synchronized to the reference clock are running with the same clock frequency.

PXI Star Trigger
One slot of the PXI system has special connections and is used as a star trigger
slot. Every PXI slot is connected with a special star trigger line to this slot. Each of

these connections has the same trace length as well. When using a special star trigger card it is possible to send out a trigger pulse to every
connected PXI card at the same time. Using a star trigger card together with the reference clock allows the synchronization of multiple cards
with a very high accuracy. All Spectrum PXI cards support the star trigger line.

PXI Trigger Bus
In addition to the star trigger, the PXI specification also defines an 8 line trigger bus that is connected to each PXI slot. The use of this trigger
bus is not specificated in detail but it is mostly used to provide trigger information throughout the system. However each manufacturer can
use this bus in a different way. If connecting Spectrum cards through this trigger bus with other manufacturer’s boards, it is therefore extremely
necessary to have a close look on how these boards are using this bus. On the Spectrum cards PXI trigger[0] to PXI trigger [5] can be indi-
vidually programmed as trigger input and/or trigger output. PXI trigger[7] is used for internal purposes and may not be used by any other
board when indending to use the Spectrum boards with PXI trigger.

As a PXI specification standard, these trigger lines must be in high impedance mode after powering up the system, to make sure not to destroy
any components.

PXI Interconnect Bus
There’s a special board-to-board interconnect bus between any two adjacent boards. These 13 lines can be used to route special analog and
digital signals in between adjacent boards. The Spectrum cards do not rely upon this bus and therefore don’t support it.
(c) Spectrum GmbH 69

Programming PXI Features PXI Features
Programming PXI Features
This chapter shows you how to program the different PXI features that have been mentioned above. Programming the PXI features is totally
independent from any other of the board’s registers. Before using any of the PXI features please make sure that the PXI-system you are oper-
ating in is supporting the desired features. There may be limitations especially when using PXI systems, that have more than 8 slots and there-
fore use bridge technology. Please refer to the system’s manual for more information on this.

PXI Reference Clock

The 10 MHz PXI system reference clock can be used as a reference clock for internal sample rate generation. With the above mentionned
software command the PXI reference clock is routed to the internal PLL. Afterwards you only have to program the sample rate register to the
desired sampling rate. The remaining internal calculations will be automatically done by the driver.

Example of PXI reference clock:

If you use more than one Spectrum board with the PXI reference clock source, there will be no stable phase
between all the connected boards.

PXI Trigger Modes
PXI trigger is set up in two steps. Each PXI card
has to be set up to use at least one of the PXI trig-
ger lines as trigger source. Also at least one PXI
card needs to be programmed to connect its in-
ternal trigger signal to one of the PXI trigger
lines. The picture on the right side gives you an
overview of the possible PXI trigger connections
on the Spectrum cards.

Please keep in mind, that the trigger input and
output via the star trigger lines can only be used,
if a star trigger card is installed in the system
which supports these lines.

PXI Trigger Output
One or more of the cards can be programmed
to give their internally recognized trigger on one
of the PXI trigger lines. The programming of the
card’s trigger recognition is done in exactly the
same way as described in the trigger chapter.
As soon as the PXI trigger output register is programmed, this internal trigger will not be used for triggering the card itself, but is routed to
the programmed PXI line. The figure is showing all of the possible PXI trigger connections.

A trigger event will be indicated via the trigger lines with a rising edge, which will go back to low level at the latest when the board stops.

Be aware not to enable multiple trigger outputs on the same PXI trigger line. If two or more trigger outputs
are working against each other the result is unpredictable and may even harm the hardware parts.

Register Value Direction Description

SPC_REFERENCECLOCK 20140 read/write Programs the reference clock to either internal, external or PXI.

0 Internal reference is used for sample rate generation.

REFCLOCK_PXI -1 PXI 10 MHz reference clock is used for sample rate generation

SpcSetParam (hDrv, SPC_EXTERNALCLOCK, 0); // Set to internal clock
SpcSetParam (hDrv, SPC_REFERENCECLOCK, REFCLOCK_PXI); // PXI Reference clock (10 MHz) used
SpcSetParam (hDrv, SPC_SAMPLERATE, 25000000); // We want to have 25 MHz as sample rate

Register Value Direction Description

SPC_PXITRGOUT 40300 r/w Select the PXI trigger line on which the internal trigger is routed.

PTO_OFF 0 Don’t route the internal trigger to a PXI trigger. Card is simply acting as slave.

PTO_LINE0 1 Route the internal trigger to PXI trigger[0]

PTO_LINE1 2 Route the internal trigger to PXI trigger[1]

PTO_LINE2 3 Route the internal trigger to PXI trigger[2]

PTO_LINE3 4 Route the internal trigger to PXI trigger[3]

PTO_LINE4 5 Route the internal trigger to PXI trigger[4]

PTO_LINE5 6 Route the internal trigger to PXI trigger[5]

PTO_LINESTAR 9 Route the internal trigger to the star trigger line. Use this way only with specially designed star trigger cards.
70 MX.70xx Manual

PXI Features Programming PXI Features
As one or multiple of the future PXI boards might make use of less or more than the actual seven trigger lines, there is a dedicated register,
organized as a bitfield, that indicates the possible trigger output lines for the actual board.

As mentioned in the section on PXI background, the PXI trigger line 7 is used for internal purposes. To be exact, this line is used for indicating,
that the pretrigger time of every single board has passed and the board is now ready for trigger detection. All boards have an open collector
output with a 4.7 kOhm pull-up resistor connected to line 7. A high level on this line then will enable the trigger detection for all the connected
boards.

As the figure is showing, it is not possible to output signal coming from a PXI trigger input to any PXI trigger
output. Therefore it is not possible to re-route any trigger signals.

PXI Trigger Input
Each card can react to one or multiple trigger events on the PXI bus. The trigger input must be programmed accordingly regarding the trigger
outputs of the other cards that are involved in the PXI trigger setup. As the Spectrum driver cannot know which other cards from other manu-
facturers are involved in the PXI trigger setup, it is not able to check the correct system setup automatically.

As one or multiple of the future PXI boards might make use of less or more than the actual seven trigger lines, there is a dedicated register
organized as a bitfield, that indicates the possible trigger input lines for the actual board.

Depending on the chosen sample rate and the used PXI slots of the trigger master and the trigger slave
boards a trigger jitter of 1 sample can occur.

Example of connecting three boards, board 0 is triggering all three boards:

Register Value Direction Description

SPC_PXITRGOUT_AVAILABLE 40301 r Indicates what PXI trigger lines can be used for trigger output. Only the lower two bytes are used.

1 Trigger line 0 is available for trigger output.

2 Trigger line 1 is available for trigger output.

4 Trigger line 2 is available for trigger output.

8 Trigger line 3 is available for trigger output.

16 Trigger line 4 is available for trigger output.

32 Trigger line 5 is available for trigger output.

64 Trigger line 6 is available for trigger output.

128 Trigger line 7 is available for trigger output.

256 Star Trigger line is available for trigger output.

Register Value Direction Description

SPC_PXITRGIN 40310 r/w Select the PXI trigger source that is used as an input. Multiple PXI trigger sources are OR connected.
This register acts a s a bitmap of the trigger sources.

PTI_OFF 0 Disables the PXI trigger input. Standard internal triggering is used.

PTI_LINE0 1 Select PXI trigger line 0 as a trigger source

PTI_LINE1 2 Select PXI trigger line 1 as a trigger source

PTI_LINE2 4 Select PXI trigger line 2 as a trigger source

PTI_LINE3 8 Select PXI trigger line 3 as a trigger source

PTI_LINE4 16 Select PXI trigger line 4 as a trigger source

PTI_LINE5 32 Select PXI trigger line 5 as a trigger source

PTI_LINESTAR 256 Select PXI star trigger line as a trigger source

Register Value Direction Description

SPC_PXITRGIN_AVAILABLE 40311 r Indicates what PXI trigger lines can be used for trigger input. Only the lower two bytes are used.

1 Trigger line 0 is available for trigger input.

2 Trigger line 1 is available for trigger input.

4 Trigger line 2 is available for trigger input.

8 Trigger line 3 is available for trigger input.

16 Trigger line 4 is available for trigger input.

32 Trigger line 5 is available for trigger input.

64 Trigger line 6 is available for trigger input.

128 Trigger line 7 is available for trigger input.

256 Star Trigger line is available for trigger input.

SpcSetParam (hDrv[0], SPC_TRIGGERMODE, SPC_SOFTWARE); // card 0 is used as trigger source, software trigger
SpcSetParam (hDrv[0], SPC_PXITRGOUT, PTO_LINE1); // card 0 is putting it’s internal trigger on line 1

SpcSetParam (hDrv[0], SPC_PXITRGIN, PTI_LINE1); // card 0 is using PXI line 1 as trigger source
SpcSetParam (hDrv[1], SPC_PXITRGIN, PTI_LINE1); // card 1 is using PXI line 1 as trigger source
SpcSetParam (hDrv[2], SPC_PXITRGIN, PTI_LINE1); // card 2 is using PXI line 1 as trigger source
(c) Spectrum GmbH 71

Programming PXI Features PXI Features
OR connecting Trigger
If the cards should react to any trigger of any other card in the system, the trigger lines can be easily combined as an OR conjunction by
software. The PXI trigger input register acts as a bitmap of all possible trigger sources. Simply set all bits in the register of the trigger lines
that are involved. Each card that is involved has to use a different trigger line for trigger output. As a result a maximum of 6 cards can be
connected in this way.

If combining the PXI trigger OR feature with the channel trigger OR feature of the card itself one can set up
systems that OR connect all trigger sources of all channels and therefore will trigger the complete system if
any of the trigger events occurs. This mode is only possible when using acquisition cards.

Example of connecting three boards, all trigger sources of all boards are OR connected:

SpcSetParam (hDrv[0], SPC_TRIGGERMODE, SPC_TTLPOS); // card 0 is using TTL trigger with positive edge
SpcSetParam (hDrv[0], SPC_PXITRGOUT, PTO_LINE2); // card 0 is putting it’s internal trigger on line 2

SpcSetParam (hDrv[1], SPC_TRIGGERMODE, SPC_TTLPOS); // card 1 is using TTL trigger with positive edge
SpcSetParam (hDrv[1], SPC_PXITRGOUT, PTO_LINE3); // card 1 is putting it’s internal trigger on line 3

SpcSetParam (hDrv[2], SPC_TRIGGERMODE, SPC_TTLPOS); // card 2 is using TTL trigger with positive edge
SpcSetParam (hDrv[2], SPC_PXITRGOUT, PTO_LINE4); // card 2 is putting it’s internal trigger on line 4

SpcSetParam (hDrv[0], SPC_PXITRGIN, PTI_LINE2 | PTI_LINE3 | PTI_LINE4); // All three lines as trig source
SpcSetParam (hDrv[1], SPC_PXITRGIN, PTI_LINE2 | PTI_LINE3 | PTI_LINE4); // All three lines as trig source
SpcSetParam (hDrv[2], SPC_PXITRGIN, PTI_LINE2 | PTI_LINE3 | PTI_LINE4); // All three lines as trig source
72 MX.70xx Manual

Multiple Recording Recording modes
Multiple Recording
The Multiple Recording mode allows the acquisition of data blocks with multiple trigger events without restarting the hardware. The on-board
memory will be divided into several segments of the same size. Each segment will be filled with data when a trigger event occures. As this
mode is totally done in hardware there is a very small rearm time from end of the acquisition of one segment until the trigger detection is
enabled again. You’ll find that rearm time in the technical data section of this manual.

Recording modes

Standard Mode
With every detected trigger event one data block is filled
with data. The length of one multiple recording segment is
set by the value of the posttrigger register. The total amount
of samples to be recorded is defined by the memsize regis-
ter.
In most cases memsize will be set to a a multiple of the seg-
ment size (postcounter). The table below shows the register
for enabling Multiple Recording. For detailed information
on how to setup and start the standard acquisition mode
please refer to the according chapter eralier in this manual.

When using Multiple Recording pretrigger is not available.

FIFO Mode
The Multiple Recording in FIFO Mode is similar to the Mul-
tiple Recording in Standard Mode. The segment size is also
set by the postcounter register.
In contrast to the Standard mode you cannot program a
certain total amount of samples to be recorded. The acqui-
sition is running until the user stops it. The data is read FIFO
block by FIFO block by the driver. These blocks are online
available for further data processing by the user program.
This mode sigficantly reduces the average data transfer
rate on the PCI bus. This enables you to use faster sample rates then you would be able to in FIFO mode without Multiple Recording. Usually
the FIFO blocks are multiples of the Multiple Recording segments.
The advantage of Multiple Recording in FIFO mode is that you can stream data online to the hostsystem. You can make realtime data pro-
cessing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Multiple Recording. For
detailed information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Trigger modes
In Multiple Recording modes all of the board’s trigger
modes are available except the software trigger. Depend-
ing on the different trigger modes, the chosen sample rate
the used channels and activated board synchronisation
(see according chapter for details about synchronizing
multiple boards) there are different delay times between
the trigger event and the first sampled data (see figure).
This delay is necessary as the board is equipped with dy-
namic RAM, which needs refresh cycles to keep the data
in memory when the board is not recording.

The delay is fix for a certain board setup. All possible de-
lays in samples between the trigger event and the first re-
corded sample are listed in the table below. A negative
amount of samples indicates that the trigger will be visible.

Register Value Direction Description

SPC_MULTI 220000 r/w Enables Multiple Recording mode.

SPC_MEMSIZE 10000 r/w Defines the total amount of samples to record per channel.

SPC_POSTTRIGGER 10100 r/w Defines the size of one Multiple Recording segment per channel.

Register Value Direction Description

SPC_MULTI 220000 r/w Enables Multiple Recording mode.

SPC_POSTTRIGGER 10100 r/w Defines the size of one Multiple Recording segment per channel.
(c) Spectrum GmbH 73

Trigger modes Multiple Recording
Resulting start delays

The following example shows how to set up the board for Multiple Recording in standard mode. The setup would be similar in FIFO mode,
but the memsize register would not be used.

Sample rate Clock source Mode Activated channels External
Trigger

Internal
Trigger

External
Trigger
Sync

Internal
Trigger
SyncCh 0,

8 bit
Ch 0,
16 bit

Ch 0,
32 bit

< 5 MS/s Internal clock Standard or FIFO X 0 0 +4 +4

< 5 MS/s External clock Standard or FIFO X +2 +2 +6 +6

> 5 MS/s Internal or External Standard or FIFO X +26 +26 +30 +30

< 5 MS/s Internal or External Standard or FIFO X +1 +3 +3 +5

> 5 MS/s Internal or External Standard or FIFO X +14 +16 +16 +18

< 2.5 MS/s Internal or External Standard or FIFO X +1 +3 +2 +4

> 2.5 MS/s Internal or External Standard or FIFO X +8 +10 +9 +11

SpcSetParam (hDrv, SPC_MULTI, 1); // Enables Multiple Recording

SpcSetParam (hDrv, SPC_POSTTRIGGER, 1024); // Set the segment size to 1024 samples
SpcSetParam (hDrv, SPC_MEMSIZE, 4096); // Set the total memsize for recording to 4096 samples
 // so that actually four segments will be recorded
SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_TTLPOS);// Set the triggermode to external TTL mode (rising edge)
74 MX.70xx Manual

Multiple Replay Output modes
Multiple Replay
The Multiple Replay mode allows the generation of data blocks with multiple trigger events without restarting the hardware. The on-board
memory will be divided into several segments of the same size. Each segment will be replayed when a trigger event occures.

Output modes

Standard Mode
With every detected trigger event one data block is replayed. The length of one Multiple Replay segment is set by the value of the posttrigger
register. The total amount of samples to be replayed is defined by the memsize register.

In most cases memsize will be set to a a multiple of the segment size (postcounter). The table below shows the register for enabling Multiple
Replay. For detailed information on how to setup and start the standard replay mode please refer to the according chapter earlier in this
manual.

Multiple Replay is not compatible with continuous output.

FIFO Mode
The Multiple Replay in FIFO Mode is similar to the Multiple
Replay in Standard Mode. The segment size is also set by
the postcounter register.
In contrast to the Standard mode you cannot programm a
certain total amount of samples to be replayed. The gener-
ation is running until the user stops it. The data is transfered
FIFO block by FIFO block by the driver to the board. These
blocks can be online generated by the user program. This
mode significantly reduces the average data transfer rate
on the PCI bus. This enables you to use faster sample rates then you would be able to in FIFO mode without Multiple Replay.Usually the FIFO
blocks are multiples of the Multiple Replay segments.
The advantage of Multiple Replay in FIFO mode is that you can stream data online from the host system to the board, so you can replay a
huge amount of data from the hard disk. The table below shows the dedicated register for enabling Multiple Replay. For detailed information
how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Trigger modes
In Multiple Replay mode all of the board’s trigger modes
are available except the software and pattern trigger. De-
pending on the different trigger modes, the chosen sample
rate, used channels and activated board synchronization,
(see relevant chapter for details about synchronizing multi-
ple boards) there are different delay times between the trig-
ger event and the first replayed data (see figure).

This internal delay is necessary as the board is equipped
with dynamic RAM, which needs refresh cycles to keep the
data in memory when the board is not replaying.

The delay is fixed for a certain board setup. All possible de-
lays in samples between the trigger event and the first re-
played sample are listed in the table below.

The patterntrigger modes of digital I/O boards cannot be used with multiple replay.

Register Value Direction Description

SPC_MULTI 220000 r/w Enables Multiple Replay mode.

SPC_MEMSIZE 10000 r/w Defines the total amount of samples to be replayed per channel.

SPC_POSTTRIGGER 10100 r/w Defines the size of one Multiple Replay segment per channel.

Register Value Direction Description

SPC_MULTI 220000 r/w Enables Multiple Replay mode.

SPC_POSTTRIGGER 10100 r/w Defines the size of one Multiple Replay segment per channel.
(c) Spectrum GmbH 75

Trigger modes Multiple Replay
Resulting start delays

The following example shows how to set up the board for Multiple Replay in standard mode. The setup would be similar in FIFO mode, but
the memsize register would not be used.

Sample rate Clock source Output Mode Activated channels External
Trigger

External
Trigger
with SyncCh 0,

8 bit
Ch 0,
16 bit

Ch 0,
32 bit

< 5 MS/s Internal clock Standard or FIFO X +15 +19

< 5 MS/s External clock Standard or FIFO X +14 +18

> 5 MS/s Internal clock Standard or FIFO X +44 +48

> 5 MS/s External clock Standard or FIFO X +47 +51

< 5 MS/s Internal or External Standard or FIFO X +9 +11

> 5 MS/s Internal or External Standard or FIFO X +26 +28

< 2.5 MS/s Internal or External Standard or FIFO X +7 +8

> 2.5 MS/s Internal or External Standard or FIFO X +15 +16

SpcSetParam (hDrv, SPC_MULTI, 1); // Enables Multiple Replay

SpcSetParam (hDrv, SPC_POSTTRIGGER, 1024); // Set the segment size to 1024 samples
SpcSetParam (hDrv, SPC_MEMSIZE, 4096); // Set the total memsize for replaying to 4096 samples
 // so that actually four segments will be replayed

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_TTLPOS); // Set the triggermode to external TTL mode (rising edge)
76 MX.70xx Manual

Gated Sampling Recording modes
Gated Sampling
The Gated Sampling mode allows the data acquisition controlled by an external gate signal. Data will only be recorded, if the programmed
gate condition is true.

Recording modes

Standard Mode
Data will be recorded as long as the gate signal fulfills the gate
condition that has had to be programmed before. At the end of
the gate interval the recording will be stopped and the board will
pause until another gates signal appears. If the total amount of
data to acquire has been reached the board stops immediately
(see figure). The total amount of samples to be recorded can be
defined by the memsize register.
The table below shows the register for enabling Gated Sam-
pling. For detailed information on how to setup and start the stan-
dard acquisition mode please refer to the according chapter
earlier in this manual.

When using Gated Sampling pretrigger is not available and postcounter has no function.

FIFO Mode
The Gated Sampling in FIFO Mode is similar to the Gated Sam-
pling in Standard Mode. In contrast to the Standard mode you
cannot program a certain total amount of samples to be record-
ed. The acquisition is running until the user stops it. The data is
read FIFO block by FIFO block by the driver. These blocks are
online available for further data processing by the user program.
The advantage of Gated Sampling in FIFO mode is that you can
stream data online to the hostsystem with a lower average data
rate than in conventional FIFO mode without gated sampling.
You can make realtime data processing or store a huge amount
of data to the hard disk. The table below shows the dedicated
register for enabling Gated Sampling. For detailed information how to setup and start the board in FIFO mode please refer to the according
chapter earlier in this manual.

Trigger modes

General information and trigger delay
Not all of the board’s trigger modes can be used in combi-
nation with Gated Sampling. All possible trigger modes are
listed below. Depending on the different trigger modes, the
chosen sample rate, the used channels and activated board
synchronisation (see according chapter for details about
synchronizing multiple boards) there are different delay
times between the trigger event and the first sampled data
(see figure). This start delay is necessary as the board is
equipped with dynamic RAM, which needs refresh cycles to
keep the data in memory when the board is not recording.
It is fix for a certain board setup. All possible delays in sam-
ples between the trigger event and the first recorded sample
are listed in the table below. A negative amount of samples
indicates that the trigger will be visible. Due to this delay a
part of the gate signal will not be used for acquisition and

Register Value Direction Description

SPC_GATE 220400 r/w Enables Gated Sampling mode.

SPC_MEMSIZE 10000 r/w Defines the total amount of samples to record per channel.

Register Value Direction Description

SPC_GATE 220400 r/w Enables Gated Sampling mode.
(c) Spectrum GmbH 77

Trigger modes Gated Sampling
the number of acquired samples will be less than the gate signal length. See table on the next page for further explanation.

End of gate alignment
Due to the structure of the on-board memory there is an-
other delay at the end of the gate interval.

Internally a gate-end signal can only be recognized at
an eight samples alignment. This alignment is a sum of
all channels that are activated together. Please refer to
the following chapter to see the alignment for each chan-
nel and mode combination.

So depending on what time your external gate signal
will leave the programmed gate condition it might hap-
pen that at maximum seven more samples are recorded,
before the board pauses (see figure).

The figure on the right is showing this end delay exem-
plarily for three possible gate signals. As all samples are
counted from zero. The eight samples alignment in the
upper two cases is reached at the end of sample 39,
which is therefore the 40th sample.

Alignement samples per channel
As described above there’s an alignement at the end of the gate signal. The alignement depends on the used mode (standard or FIFO) and
the selected channels. Please refer to this table to see how many samples per channel of alignement one gets.

Resulting start delays

Number of samples on gate signal
As described above there’s a delay at the start of the gate interval due to the internal memory structure. However this delay can be partly
compensated by internal pipelines resulting in a data delay that even can be negative showing the trigger event (acquisition mode only). This
data delay is listed in an extra table. But beneath this compensation there’s still the start delay that as a result causes the card to use less
samples than the gate signal length. Please refer to the following table to see how many samples less than the length of gate signal are used

Module 0
8 bit 16 bit 32 bit Mode Alignement
X Standard/FIFO 16 samples

X Standard/FIFO 8 samples
X Standard/FIFO 4 samples

Sample rate Clock source Mode Activated channels External
Trigger

Internal
Trigger

External
Trigger
Sync

Internal
Trigger
SyncCh 0,

8 bit
Ch 0,
16 bit

Ch 0,
32 bit

< 5 MS/s Internal clock Standard or FIFO X 0 0 +4 +4

< 5 MS/s External clock Standard or FIFO X +2 +2 +6 +6

> 5 MS/s Internal or External Standard or FIFO X +26 +26 +30 +30

< 5 MS/s Internal or External Standard or FIFO X +1 +3 +3 +5

> 5 MS/s Internal or External Standard or FIFO X +14 +16 +16 +18

< 2.5 MS/s Internal or External Standard or FIFO X +1 +3 +2 +4

> 2.5 MS/s Internal or External Standard or FIFO X +8 +10 +9 +11

Module 0
8 bit 16 bit 32 bit Mode Sampling clock less samples Sampling clock less samples
X Standard/FIFO < 10 MS/s 14 > 10 MS/s 24

X Standard/FIFO < 5 MS/s 7 > 5 MS/s 12
X Standard/FIFO < 2.5 MS/s 3 > 2.5 MS/s 6
78 MX.70xx Manual

Gated Sampling Trigger modes
Allowed trigger modes
As mentioned above not all of the possible trigger modes can be used as a gate condition. The following table is showing the allowed trigger
modes that can be used and explains the event that has to be detected for gate-start end for gate-end.

External TTL edge trigger
The following table shows the allowed trigger modes when using the external TTL trigger connector:

External TTL pulsewidth trigger
The following table shows the allowed pulsewidth trigger modes when using the external TTL trigger connector:

Pattern trigger
The following table shows the allowed trigger modes when using the internal pattern trigger modes:

Example program
The following example shows how to set up the board for Gated Sampling in standard mode. The setup would be similar in FIFO mode, but
the memsize register would not be used.

Mode Gate start will be detected on Gate end will be detected on

TM_TTLPOS positive edge on external trigger negative edge on external trigger

TM_TTL_NEG negative edge on external trigger positive edge on external trigger

Mode Gate start will be detected on Gate end will be detected on

TM_TTLHIGH_LP high pulse of external trigger longer than programmed pulsewidth negative edge on external trigger

TM_TTLLOW_LP low pulse of external trigger longer than programmed pulsewidth positive edge on external trigger

Mode Gate start will be detected on Gate end will be detected on

TM_PATTERN Pattern becomes valid Pattern changes

TM_PATTERN_LP Pattern becomes valid for a longer time than the programmed pulsewidth Pattern changes

SpcSetParam (hDrv, SPC_GATE, 1); // Enables Gated Sampling
SpcSetParam (hDrv, SPC_MEMSIZE, 4096); // Set the total memsize for recording to 4096 samples
SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_TTLPOS); // Sets the gate condition to external TTL mode, so that
 // recording will be done, if the signal is at HIGH level
(c) Spectrum GmbH 79

Output modes Gated Replay
Gated Replay
The Gated Replay mode allows the data generation controlled by an external gate signal. Data will only be output, if the programmed gate
condition is true.

Output modes

Standard Mode
Data will be replayed as long as the gate signal fulfills the gate
condition that has had to be programmed before. At the end of
the gate interval the replay will be stopped and the board will
pause until another gates condition is detected. If the total
amount of data to replay has been reached the board stops im-
mediately (see figure). The total amount of samples to be re-
played can be defined by the memsize register.
The table below shows the register for enabling Gated Replay.
For detailed information on how to setup and start the standard
generation mode please refer to the relevant chapter earlier in
this manual.

FIFO Mode
The Gated Replay in FIFO Mode is similar to the Gated Replay
in Standard Mode. In contrast to the Standard mode you cannot
program a certain total amount of samples to be replayed. The
generation is running until the user stops it. The data is transfered
to the board FIFO block by FIFO block by the driver. These
blocks can be online generated by the user program.
The advantage of Gated Replay in FIFO mode is that you can
stream data online from the host system to the board, so you can
replay a huge amount of data from the hard disk with a lower
average data rate than in conventional FIFO mode. The table be-
low shows the dedicated register for enabling Gated Replay. For
detailed information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Trigger modes

General information and trigger delay
Not all of the board’s trigger modes can be used in combi-
nation with Gated Replay. All possible trigger modes are
listed below. Depending on the different trigger modes, the
chosen sample rate, the used channels and activated board
synchronization (see according chapter for details about
synchronizing multiple boards) there are different delay
times between the trigger event and the first replayed sam-
ple(see figure). This start delay is necessary as the board is
equipped with dynamic RAM, which needs refresh cycles to
keep the data in memory when the board is not replaying.
It is fix for a certain board setup.

All possible start delays in samples between the trigger
event and the first replayed sample are listed in the table
below.

Register Value Direction Description

SPC_GATE 220400 r/w Enables Gated Replay mode.

SPC_MEMSIZE 10000 r/w Defines the total amount of samples to replay per channel.

Register Value Direction Description

SPC_GATE 220400 r/w Enables Gated Replay mode.
80 MX.70xx Manual

Gated Replay Trigger modes
Due to the structure of the on-board memory there is an-
other delay at the end of the gate interval.

Internally a gate-end signal can only be recognized at
an eight samples alignment.

So depending on what time your external gate signal
will leave the programmed gate condition it might hap-
pen that at maximum seven more samples are replayed,
before the board pauses (see figure).

The figure on the right is showing this end delay exem-
plarily for three possible gate signals. As all samples are
counted from zero. The eight samples alignment in the
upper two cases is reached at the end of sample 39,
which is therefore the 40th sample.

Alignement samples per channel
As described above there’s an alignement at the end of the gate signal. The alignement depends on the used mode (standard or FIFO) and
the selected channels. Please refer to this table to see how many samples per channel of alignement one gets.

Resulting start delays

Number of samples on gate signal
As described above there’s a delay at the start of the gate interval due to the internal memory structure. However this delay can be partly
compensated by internal pipelines resulting in a data delay that even can be negative showing the trigger event (acquisition mode only). This
data delay is listed in an extra table. But beneath this compensation there’s still the start delay that as a result causes the card to use less
samples than the gate signal length. Please refer to the following table to see how many samples less than the length of gate signal are used

Allowed trigger modes

As mentioned above not all of the possible trigger modes can be used as a gate condition. The following table is showing the allowed trig-

Module 0
8 bit 16 bit 32 bit Mode Alignement
X Standard/FIFO 16 samples

X Standard/FIFO 8 samples
X Standard/FIFO 4 samples

Sample rate Clock source Output Mode Activated channels External
Trigger

External
Trigger
with SyncCh 0,

8 bit
Ch 0,
16 bit

Ch 0,
32 bit

< 5 MS/s Internal clock Standard or FIFO X +15 +19

< 5 MS/s External clock Standard or FIFO X +14 +18

> 5 MS/s Internal clock Standard or FIFO X +44 +48

> 5 MS/s External clock Standard or FIFO X +47 +51

< 5 MS/s Internal or External Standard or FIFO X +9 +11

> 5 MS/s Internal or External Standard or FIFO X +26 +28

< 2.5 MS/s Internal or External Standard or FIFO X +7 +8

> 2.5 MS/s Internal or External Standard or FIFO X +15 +16

Module 0
8 bit 16 bit 32 bit Mode Sampling clock less samples Sampling clock less samples
X Standard/FIFO < 10 MS/s 14 > 10 MS/s 24

X Standard/FIFO < 5 MS/s 7 > 5 MS/s 12
X Standard/FIFO < 2.5 MS/s 3 > 2.5 MS/s 6
(c) Spectrum GmbH 81

Example program Gated Replay
ger modes that can be used and explains the event that has to be detected for gate-start end for gate-end.

External TTL edge trigger

The following table shows the allowed trigger modes when using the external TTL trigger connector:

External TTL pulsewidth trigger
The following table shows the allowed pulsewidth trigger modes when using the external TTL trigger connector:

Example program
The following example shows how to set up the board for Gated Replay in standard mode. The setup would be similar in FIFO mode, but the
memsize register would not be used.

Mode Gate start will be detected on Gate end will be detected on

TM_TTLPOS positive edge on external trigger negative edge on external trigger

TM_TTL_NEG negative edge on external trigger positive edge on external trigger

Mode Gate start will be detected on Gate end will be detected on

TM_TTLHIGH_LP high pulse of external trigger longer than programmed pulsewidth negative edge on external trigger

TM_TTLLOW_LP low pulse of external trigger longer than programmed pulsewidth positive edge on external trigger

SpcSetParam (hDrv, SPC_GATE, 1); // Enables Gated Replay
SpcSetParam (hDrv, SPC_MEMSIZE, 4096); // Set the total memsize of generation to 4096 samples
SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_TTLPOS); // Sets the gate condition to external TTL mode, so that
 // data is replayed, if the signal is at HIGH level
82 MX.70xx Manual

Appendix Error Codes

(c) Spectrum GmbH 83

Appendix

Error Codes
The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and
change the settings to run the program.

error name value (hex) value (dec.) error description
ERR_OK 0h 0 Execution OK, no error.
ERR_INIT 1h 1 The board number is not in the range of 0 to 15. When initialisation is executed: the board number is yet

initialised, the old definition will be used.
ERR_NR 2h 2 The board is not initialised yet. Use the function SpcInitPCIBoards first. If using ISA boards the function

SpcInitBoard must be called first.
ERR_TYP 3h 3 Initialisation only: The type of board is unknown. This is a critical error. Please check whether the board is

correctly plug in the slot and whether you have the latest driver version.
ERR_FNCNOTSUPPORTED 4h 4 This function is not supported by the hardware version.
ERR_BRDREMAP 5h 5 The board index remap table in the registry is wrong. Either delete this table or check it craefully for double

values.
ERR_KERNELVERSION 6h 6 The version of the kernel driver is not matching the version of the DLL. Please do a complete reinstallation of

the hardware driver. This error normally only occurs if someone copies the dll manually to the system direc-
tory.

ERR_HWDRVVERSION 7h 7 The hardware needs a newer driver version to run properly. Please install the driver that was delivered
together with the board.

ERR_ADRRANGE 8h 8 The address range is disabled (fatal error)
ERR_LASTERR 10h 16 Old Error waiting to be read. Please read the full error information before proceeding. The driver is locked

until the error information has been read.
ERR_ABORT 20h 32 Abort of wait function. This return value just tells that the function has been aborted from another thread.
ERR_BOARDLOCKED 30h 48 Access to the driver already locked by another program. Stop the other program before starting this one.

Only one program can access the driver at the time.
ERR_REG 100h 256 The register is not valid for this type of board.
ERR_VALUE 101h 257 The value for this register is not in a valid range. The allowed values and ranges are listed in the board spe-

cific documentation.
ERR_FEATURE 102h 258 Feature (option) is not installed on this board. It’s not possible to access this feature if it’s not installed.
ERR_SEQUENCE 103h 259 Channel sequence is not allowed.
ERR_READABORT 104h 260 Data read is not allowed after aborting the data acquisition.
ERR_NOACCESS 105h 261 Access to this register denied. No access for user allowed.
ERR_POWERDOWN 106h 262 Not allowed if powerdown mode is activated.
ERR_TIMEOUT 107h 263 A timeout occured while waiting for an interrupt. Why this happens depends on the application. Please

check whether the timeout value is programmed too small.
ERR_CHANNEL 110h 272 The channel number may not be accessed on the board: Either it is not a valid channel number or the chan-

nel is not accessible due to the actual setup (e.g. Only channel 0 is accessible in interlace mode)
ERR_RUNNING 120h 288 The board is still running, this function is not available now or this register is not accessible now.
ERR_ADJUST 130h 304 Automatic adjustion has reported an error. Please check the boards inputs.
ERR_NOPCI 200h 512 No PCI BIOS is found on the system.
ERR_PCIVERSION 201h 513 The PCI bus has the wrong version. SPECTRUM PCI boards require PCI revision 2.1 or higher.
ERR_PCINOBOARDS 202h 514 No SPECTRUM PCI boards found. If you have a PCI board in your system please check whether it is cor-

rectly plug into the slot connector and whether you have the latest driver version.
ERR_PCICHECKSUM 203h 515 The checksum of the board information has failed. This could be a critical hardware failure. Restart the sys-

tem and check the connection of the board in the slot.
ERR_DMALOCKED 204h 516 DMA buffer not available now.
ERR_MEMALLOC 205h 517 Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.
ERR_FIFOBUFOVERRUN 300h 768 Driver buffer overrun in FIFO mode. The hardware and the driver have been fast enough but the application

software didn’t manage to transfer the buffers in time.
ERR_FIFOHWOVERRUN 301h 769 Hardware buffer overrun in FIFO mode. The hardware transfer and the driver has not been fast enough.

Please check the system for bottlenecks and make sure that the driver thread has enough time to transfer
data.

ERR_FIFOFINISHED 302h 770 FIFO transfer has been finished, programmed number of buffers has been transferred.
ERR_FIFOSETUP 309h 777 FIFO setup not possible, transfer rate to high (max 250 MB/s).
ERR_TIMESTAMP_SYNC 310h 784 Synchronisation to external timestamp reference clock failed. At initialisation is checked wether there is a

clock edge present at the input.
ERR_STARHUB 320h 800 The autorouting function of the star-hub initialisation has failed. Please check whether all cables are mounted

correctly.

Pin assignment of the multipin connector
Pin assignment of the multipin connector
The 40 lead multipin connector is used for the additional digital inputs (on analog acquisition boards
only) or additional digital outputs (on analog generation boards only).

The connector mentioned here is either mounted on the bracket of a digital I/O board or on an extra
bracket.

The pin assignment is given in the table below.

Additions for boards with up to 32 bit (extra bracket)

Channel 0:

Main digital outputs

Channel 0:

Pin assignment of the multipin cable
The 40 lead multipin cable is used for the additional digital inputs
(on analog acquisition boards only) or additional digital outputs (on
analog generation boards only) as well as for the digital I/O or pat-
tern generator boards.

The flat ribbon cable is shipped with the boards that are equipped
with one or more of the above mentioned options. The cable ends
are assembled with two standard 20 pole IDC socket connector so
you can easily make connections to your type of equipment or DUT
(device under test).

The pin assignment is given in the table in the according chapter of
the appendix.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

D24 GND D25 GND D26 GND D27 GND D28 GND D29 GND D30 GND D31 GND n.c. GND n.c. GND

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

D16 GND D17 GND D18 GND D19 GND D20 GND D21 GND D22 GND D23 GND n-c- GND n.c. GND

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

D8 GND D9 GND D10 GND D11 GND D12 GND D13 GND D14 GND D15 GND Trigger in GND Clock in GND

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

D0 GND D1 GND D2 GND D3 GND D4 GND D5 GND D6 GND D7 GND Trigger out GND Clock out GND
84 MX.70xx Manual

Pin assignment of the multipin cable
IDC footprints
The 20 pole IDC connectors have the following footprints. For easy usage
in your PCB the cable footprint as well as the PCB top footprint are shown
here. Please note that the PCB footprint is given as top view.

The following table shows the relation between the card connector pin and the IDC pin:t

IDC footprint pin Card connector pin Card connector pin IDC footprint pin

1 A1, A21, A41, A61, B1, B21, B41 or B61 A2, A22, A42, A62, B2, B22, B42 or B62 2

3 A3, A23, A43, A63, B3, B23, B43 or B63 A4, A24, A44, A64, B4, B24, B44 or B64 4

5 A5, A25, A45, A65, B5, B25, B45 or B65 A6, A26, A46, A66, B6, B26, B46 or B66 6

7 A7, A27, A47, A67, B7, B27, B47 or B67 A8, A28, A48, A68, B8, B28, B48 or B68 8

9 A9, A29, A49, A69, B9, B29, B49 or B69 A10, A30, A50, A70, B10, B30, B50 or B70 10

11 A9, A29, A49, A69, B9, B29, B49 or B69 A12, A32, A52, A72, B12, B32, B52 or B72 12

13 A13, A33, A53, A73, B13, B33, B53 or B73 A14, A34, A54, A74, B14, B34, B54 or B74 14

15 A15, A35, A55, A75, B15, B35, B55 or B75 A16, A36, A56, A76, B16, B36, B56 or B76 16

17 A17, A37, A57, A77, B17, B37, B57 or B77 A18, A38, A58, A78, B18, B38, B58 or B78 18

19 A19, A39, A59, A79, B19, B39, B59 or B79 A20, A40, A60, A80, B20, B40, B60 or B80 20
(c) Spectrum GmbH 85

	Introduction
	Preface
	General Information
	Different models of the MX.70xx series
	The Spectrum type plate
	Hardware information
	Block diagram
	Order Information

	Hardware Installation
	System Requirements
	Warnings
	ESD Precautions
	Cooling Precautions
	Sources of noise

	Installing the board in the system
	Installing a single board without any options
	Installing a board with digital inputs/outputs

	Software Driver Installation
	Interrupt Sharing
	Important Notes on Driver Version 4.00
	Windows XP 32/64 Bit
	Installation
	Version control
	Driver - Update

	Windows Vista/7 32/64 Bit
	Installation
	Version control
	Driver - Update

	Windows NT / Windows 2000 32 Bit
	Installation
	Adding boards to the Windows NT / Windows 2000 driver
	Driver - Update
	Important Notes on Driver Version 4.00

	Linux
	Overview
	Installation with Udev support
	Installation without Udev support

	Software
	Software Overview
	C/C++ Driver Interface
	Header files
	Microsoft Visual C++
	Borland C++ Builder
	Linux Gnu C
	Other Windows C/C++ compilers
	National Instruments LabWindows/CVI
	Driver functions

	Delphi (Pascal) Programming Interface
	Type definition
	Include Driver
	Examples
	Driver functions

	Visual Basic Programming Interface
	Include Driver
	Visual Basic Examples
	VBA for Excel Examples
	Driver functions

	Programming the Board
	Overview
	Register tables
	Programming examples
	Error handling
	Initialization
	Starting the automatic initialization routine
	PCI Register
	Hardware version
	Date of production
	Serial number
	Maximum possible sample rate
	Installed memory
	Installed features and options
	Used interrupt line
	Used type of driver

	Powerdown and reset

	Digital I/Os
	Channel Selection
	For all 701x boards
	For the 7005 board
	Important note on channels selection

	Settings of the I/O lines
	Settings for the inputs
	Settings for the outputs

	Standard acquisition/generation modes
	Input modes
	Standard posttrigger mode

	Output modes
	Singleshot mode
	Continuous Mode
	Posttrigger Mode

	Programming
	Memory, Pre- and Posttrigger
	Starting without interrupt (classic mode)
	Starting with interrupt driven mode
	Data organization
	Reading out the data with SpcGetData
	Writing data with SpcSetData
	Sample format

	FIFO Mode
	Overview
	General Information
	Background FIFO Read
	Background FIFO Write
	Speed Limitations

	Programming
	Software Buffers
	Buffer processing
	FIFO mode
	Example FIFO acquisition mode
	Example FIFO generation mode
	Data organization
	Sample format

	Clock generation
	Overview
	Internally generated sample rate
	Standard internal sample rate
	Using plain quartz without PLL

	External clocking
	Direct external clock
	External clock with divider
	PXI Reference Clock

	Trigger modes and appendant registers
	General Description
	Software trigger
	External TTL trigger
	Edge triggers
	Pulsewidth triggers

	Pattern Trigger
	Overview of the pattern trigger registers
	Pattern trigger edge setup
	Triggerpattern and Triggermask

	PXI Features
	Background on PXI
	PXI and CompactPCI
	PXI Reference Clock
	PXI Star Trigger
	PXI Trigger Bus
	PXI Interconnect Bus

	Programming PXI Features
	PXI Reference Clock
	PXI Trigger Modes

	Multiple Recording
	Recording modes
	Standard Mode
	FIFO Mode

	Trigger modes

	Multiple Replay
	Output modes
	Standard Mode
	FIFO Mode

	Trigger modes

	Gated Sampling
	Recording modes
	Standard Mode
	FIFO Mode

	Trigger modes
	General information and trigger delay
	End of gate alignment
	Alignement samples per channel
	Number of samples on gate signal
	Allowed trigger modes
	Example program

	Gated Replay
	Output modes
	Standard Mode
	FIFO Mode

	Trigger modes
	General information and trigger delay
	Alignement samples per channel
	Number of samples on gate signal
	Allowed trigger modes

	Example program

	Appendix
	Error Codes
	Pin assignment of the multipin connector
	Additions for boards with up to 32 bit (extra bracket)
	Main digital outputs

	Pin assignment of the multipin cable
	IDC footprints

