

MI.72xx - 32 bit Digital Pattern Generator with programmable logic levels

- Standard PCI format
- Programmable output levels from -2,0 V up to +10,0 V
- Levels individually programmable per 4 bit
- Up to 40 MS/s at 32 bit
- Possible use of memory saving 8 bit mode
- All Outputs can be separately disabled (Tristate)
- Hardware controlled differential output possible (8 bit and 16 bit)
- Up to 512 MByte on-board memory
- Output in FIFO mode
- Synchronization possible

Product range overview

Model	8 bit	16 bit	32 bit
MI.7210	10 MS/s	10 MS/s	
MI.7211	10 MS/s	10 MS/s	5 MS/s
MI.7220	40 MS/s	40 MS/s	
MI 7221	40 MS/s	40 MS/s	40 MS/s

Software/Drivers

A large number of drivers and examples are delivered with the board or are available as an option:

- Windows NT/2000 32 bit drivers
- Windows XP/Vista/7/8/10, 32 and 64 bit driver
- Linux 32bit and 64bit drivers
- SBench 6.x Base version for Windows and Linux
- Microsoft Visual C++ examples
- Borland Delphi examples
- Microsoft Visual Basic & Excel examples
- Python examples
- LabWindows/CVI examples
- LabVIEW drivers and examples
- MATLAB drivers and examples
- Other 3rd party drivers (e.g. VEE,DASYLab) are partly available upon request

General Information

The MI.72xx pattern generator series gives the user the possibility to generate digital data with a wide range of output levels. For every 4 bit the LOW and HIGH levels can be programmed from -2.0 V up to +10.0 V. Even at high speeds you are not limited concerning the maximum output swing. This enables the user to drive devices of nearly any logic family, like ECL, PECL, TTL, LVDS, LVTTL, CMOS or LVCMOS. The potentially necessary differential signals are generated in hardware, so that only one data bit is used for each pair of differential signals. All outputs can be separately disabled allowing the easy connection with digital acquisition boards and the adaption to a wide range of test setups. The internal standard synchronisation bus allows synchronisation of several MI.xxxx boards. Therefore the MI.72xx board can be used as an enlargement to any digital or analog board.

Hardware block diagram

Software programmable parameters

sampling rate	1 kS/s to max sampling rate, external clock, ref clock
Output level	LOW/HIGH level p. nibble;-2,0 V up to +10,0 V in steps of 1mV
Clock mode	internal PLL, int.quartz, external, ext. divided, ext. reference clock
Clock impedance	110 Ohm / 50 kOhm
Trigger impedance	110 Ohm / 50 kOhm
Data Enable mask	programmable for every single bit
Trigger mode	External TTL, software
Memory depth	32 up to installed memory in steps of 32
Posttrigger	32 up to 256 M in steps of 32
Multiple Replay segment size	32 up to installed memory / 2 in steps of 32

Application examples

Semiconductor test	Production test	Burn-in test
Laboratory purposes	Pattern generator	Semiconductor development
Process control	ATE	

Possibilities and options

FIFO mode

The FIFO mode is designed for continuous data transfer between measurement board and PC memory (up to 100 MB /s) or hard disk (up to 50 MB/s). The control of the data stream is done automatically by the driver on interrupt request.

External trigger I/O

All boards could be triggered using an external TTL signal. It's possible to use positive or negative edge. An internally recognised trigger event could - activated by software - routed to the output connector to start external instruments.

External clock I/O

Using a dedicated connector a sampling clock can be fed in from an external system. It's also possible to output the internally used sampling clock to synchronise external equipment to this clock.

ECL Mode

C	n	When the ECL mode is activa- ted differential signals wich
		are needed for e.g. ECL inter-
C	o	facing are generated in hard-
		ware on the odd data

ferential signals wich eded for e.g. ECL interare generated in hardware on the odd data

outputs. This results in the use of only one data bit for every pair of differential outputs and allows a very efficiently use of memory.

Reference clock

The option to use a precise external reference clock (typically 10 MHz) is necessary to synchronize the instrument for high-quality

measurements with external equipment (like a signal source). It's also possible to enhance the stability of the sampling clock in this way. The driver automatically generates the requested sampling clock from the fed in reference clock.

Cascading

The cascading option synchronises up to 4 Spectrum boards internally. It's the easiest way to build up a multi channel system. There is a phase delay between two boards of about 500 pico seconds when this synchronisation option is used.

<u>Star-Hub</u>

The star-hub is an additional module allowing the phase stable synchronisation of up to 16 boards. Independent of the number of boards there is no phase delay between all channels. The star hub distributes trigger and clock information between all boards. As a result all connected boards are running with the same clock and the same trigger.

<u>Extra I/O</u>

The Extra I/O module adds 24 additional digital I/O lines and 4 analog outputs on an extra connector. These additional lines are independent from the standard function and can be controlled asynchronously. There is also an internal version available with 16 digital I/Os and 4 analog outputs that can be used directly at the rear board connector.

Multiple Replay

The Multiple Replay mode allows the fast output generation on several trigger events without restarting the hardware. With this option very fast repetition rates can be

achieved. The on-board memory is divided into several segments of the same size. Each segment can contain different data which will then be played with the occurrence of each trigger event.

Gated Replay

The Gated Sampling mode allows data replay controlled by an external gate signal. Data is only replayed if the gate signal has attained a

programmed level.

Singleshot output

When singleshot output is activated the data of the on-board memory is played exactly one time. The trigger source can be either one of the external trigger inputs or the software trigger. After the first trigger additional trigger events will be ignored.

Continuous output

When continuous output is activated the data of the on-board memory is replayed continuously until a stop command is executed. As trigger source one can use the external TTL trigger or the software trigger.

Technical Data

Internal samplerate 1 kS/s up to maximum (depending on model)		Dimension	312 mm x 107 mm				
External samplerate	mplerate DC up to maximum (depending on model)		Width (MI.721x)	1 full size slot			
Clock input impedance	npedance 110 Ohm / 50 kOhm 15 pF		:	Width (MI.722x)	1 full size slot and 1 half size slot		
Trigger input impedance	110 Ohm / 50	kOhm 15 pf	:				
Output impedance	approximately	80 Ohm		Output connector	40 pole half pitch (Hirose FX2 series)		
Data signal level	programmable from -2.0 V up to +10.0 V with an accuracy of ±10 mV 0.1 12.0 V			Power connector (MI.722x only)	soldered Y - cable with Molex 8981 (5,25" disc drive connector)		
Output swing							
	per pin	per nibble	per card	Operating temperature	0°C to 50°C		
Maxixmum output current	100 mA	200 mA	0.5 A (MI.721x only	 Storage temperature 	-10°C to 70°C		
Input signal level (trigger, clock)	3.3 V/ 5 V TTL	compatible		Humidity	10% to 90%		
Output signal level (trigger, clock)	5 V TTL						
	1 MHz	40 MHz					
Rise time ^a	2.00 ns	2.25 ns					
Fall time ^a	2.00 ns	2.25 ns					
Multi: Trigger to 1st sample delay	fixed						
Multi: Recovery time	< 20 samples (16 - 32 bit)						
	32 bit 16 bit	8 bit					
Trigger accuracy (samples)	1 1	2					
a. Tested with full output swing	g from -2.0 V to 1	10.0 V with no lo	ad				
Trigger input:Standard TTL level	Low: -0.5 High: 2.0 Trigger p	> level < 0.8 V) V > level < 5.5 ulse must be vali	V d ≥ 2 clock periods.	Clock input: Standard TTL level	Low: -0.5 V > level < 0.8 V High: 2.0 V > level < 5.5 V Rising edge. Duty cycle: 50% ± 5%		
Trigger output	Standard TTL, capable of driving 50 Ohm. Low < 0.4 V (@ 20 mA, max 64 mA) High > 2.4 V (@ -20 mA, max -48 mA) One positive edge after the first internal trigger			Clock output	Standard TTL, capable of driving 50 Ohm Low < 0.4 V (@ 20 mA, max 64 mA) High > 2.4 V (@ -20 mA, max -48 mA)		

Power consumption (maximum value)	Full speed			Power down mode		
	+5 V (PCI Bus)	+12 V (PCI Bus)	+12 V (Connector)	+5 V (PCI Bus)	+12 V (PCI Bus)	+12 V (Connector)
MI.7210 (16 bit output @ 10 MS/s) ^a	1.5 A (7.5 W)	0.35 A (4.2 W)	-	1.3 A (6.5 W)	0,07 A (0.9 W)	-
MI.7211 (32 bit output @ 5 MS/s) ^a	1.8 A (9.0 W)	0.40 A (4.8 W)	-	1.5 A (7.5 W)	0.15 A (1.8 W)	-
MI.7220 (16 bit output @ 40 MS/s) ^b	1.8 A (7.5 W)	0 A	1.8 A (21.6 W)	1.6 A (8.0 W)	0 A	0.2 A (2.4 W)
MI.7221 (32 bit output @ 40 MS/s) ^b	2.5 A (12.5 W)	0 A	3.6 A (43.2 W)	2.2 A (11.0 W)	0 A	0.5 A (4.8 W)

a. Tested with full output swing from -2.0 to 10.0 V with no load b. Tested with full output swing from -2.0 V to 10.0 V with 50 mA output current per pin

Order information

Order No	Description	Order No	Description
MI7210	MI.7210 with 16 MByte (128 MBit) memory, cables and drivers	MI7xxx-32M	Option: 32 MByte memory instead of 16 MByte standard mem
MI7211	MI.7211 with 16 MByte (128 MBit) memory, cables and drivers	MI7xxx-64M	Option: 64 MByte memory instead of 16 MByte standard mem
MI7220	MI.7220 with 16 MByte (128 MBit) memory, cables and drivers	MI7xxx-128M	Option: 128 MByte memory instead of 16 MByte standard mem
MI7221	MI.7221 with 16 MByte (128 MBit) memory, cables and drivers	MI7xxx-256M	Option: 256 MByte memory instead of 16 MByte standard mem
		MI7xxx-512M	Option: 512 MByte memory instead of 16 MByte standard mem
MI7xxx-smod	Star Hub: Synchronisation of 2 - 16 boards, one option per system	MI7xxx-up	Additional handling cost for later memory upgrade
MIxxxx.xio	Extra I/O, internal connector: 16 DI/O, 4 Analog out	MI7xxx-mr	Option Multiple Replay: Memory segmentation
MIxxxx-xmf	Extra I/O, external connector: 24 DI/O, 4 Analog out, incl. cable	MI7xxx-gs	Option Gated Replay: Gate signal controls replay
		MI7xxx-cs	Synchronisation of 2 - 4 boards, one option per system
MI72xx-dl	DASYLab driver for MI.72xx series		
MI72xx-hp	VEE driver for MI.72xx series		
MI72xx-lv	LabVIEW driver for MI.72xx series	Cab-d40-idc-100	Additional 40 pole flat ribbon cable with IDC socket connector, ca. 1 $\rm m$
MATLAB	MATLAB driver for all MI.xxxx, MC.xxxx and MX.xxxx series.	Cab-d40-d40-100	Additional 40 pole flat ribbon cable withFx2 connector, ca. 1 m

Technical changes and printing errors possible

Lechnical changes and printing errors possible SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation CmbH. Microsoft, Visual C++, Visual Basic, Windows 98, Windows NT, Windows 2000, Windows XP, Windows 7, Windows 7, Windows 8 and Windows 10 are trademarks of Spectrum Instrumentation CmbH. Microsoft, Visual C++, Visual Basic, Windows, Windows 98, Windows NT, Windows XP, National Instruments Corporation. MATLAB is a trademark/registered trademarks of The Mathworks, Inc. Delphi and C++, Builder are trademarks/registered trademarks/registered trademarks of The Mathworks, Inc. Delphi and C++, Builder are trademarks/registered trademarks of Embacradero Technologies, Inc. Keysight VEE, VEE Pro and VEE Onelab are trademarks/registered trademarks of the Mathworks, Inc. Delphi and C++, Builder are trademarks/registered trademarks of CHSC, IXI is a registered trademark of the UXI Consortium. PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Intel and Intel Xeon are trademarks of INDIA, CUDA, GeForce, Quadro and Tesla are trademarks/registered trademarks of NVIDIA, CUDA, GeForce, Quadro and Tesla are trademarks/registered trademarks of NVIDIA Corporation.