
SPECTRUM INSTRUME
PHONE: +49 (0)4102-6956-0
generatorNETBOX
DN2.60x-xx

Ethernet/LXI remote generator
with 14 bit resolution

Hardware Manual
Software Driver Manual

English version May 7, 2020
NTATION GMBH · AHRENSFELDER WEG 13-17 · 22927 GROSSHANSDORF · GERMANY
· FAX: +49 (0)4102-6956-66 · E-MAIL: info@spec.de · INTERNET: www.spectrum-instrumentation.com

(c) SPECTRUM INSTRUMENTATION GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY

SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH.
Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows Server are trademarks/registered trademarks of Microsoft Corporation.
LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.
Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc.
Keysight VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc.
FlexPro is a registered trademark of Weisang GmbH & Co. KG.
PCIe, PCI Express, PCI-X and PCI-SIG are trademarks of PCI-SIG.
PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group.
PXI is a trademark of the PXI Systems Alliance.
LXI is a registered trademark of the LXI Consortium.
IVI is a registered trademark of the IVI Foundation
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation.
AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
NVIDIA, CUDA, GeForce, Quadro and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation.

Introduction... 8
Preface ... 8
General Information ... 8
generatorNETBOX Overview ... 8
Internal Generator Modules ... 9

Differences between plain cards and generator modules inside the generatorNETBOX.. 9
Different models of the DN2.60x series... 9
Additional options .. 10

19“ Rack Mount Kit .. 10
DC Power Supply ... 10

AC Cable Options ... 11
 The Spectrum type plate ... 13
Hardware information... 14

Block diagram of generatorNETBOX DN2... 14
Block diagram of generatorNETBOX module DN2.60x ... 14
Technical Data ... 15
Dynamic Parameters ... 17

Order Information .. 17

Hardware Installation ... 19
Warnings.. 19

ESD Precautions ... 19
Opening the Chassis... 19
Cooling Precautions.. 19
Sources of noise ... 19

Installing 19“ rack mount option for DN2.. 20
Installing 19“ rack mount option for DN6.. 20
Setup of digitizerNETBOX/generatorNETBOX ... 21

Connections... 21
Back Side DN2 .. 21
Front Panel DN2 .. 21
Front Panel DN6 .. 22
Ethernet Default Settings .. 23

Detecting the digitizerNETBOX .. 24
Discovery Function.. 24
Finding the digitizerNETBOX/generatorNETBOX in the network... 24
Troubleshooting.. 25

Software Driver Installation... 26
Needed Software for operating ... 26
Location .. 26
Linux... 27

Overview .. 27
Standard Driver Installation.. 27
Standard Driver Update .. 28
Compilation of kernel driver sources (optional and local cards only) ... 28
Update of a self compiled kernel driver ... 28
Installing the library only without a kernel (for remote devices) ... 28
Control Center ... 29
3

Software ... 30
Software Overview... 30
Card Control Center ... 30

Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products.. 31
Wake On LAN of digitizerNETBOX/generatorNETBOX .. 31
Netbox Monitor ... 32
Device identification ... 32
Hardware information... 33
Firmware information .. 33
Software License information.. 34
Driver information... 34
Installing and removing Demo cards ... 34
Feature upgrade... 35
Software License upgrade.. 35
Performing card calibration ... 35
Performing memory test ... 35
Transfer speed test .. 35
Debug logging for support cases .. 36
Device mapping ... 36

Accessing the hardware with SBench 6... 37
C/C++ Driver Interface... 37

Header files ... 37
General Information on Windows 64 bit drivers... 38
Microsoft Visual C++ 6.0, 2005 and newer 32 Bit... 38
Microsoft Visual C++ 2005 and newer 64 Bit.. 38
C++ Builder 32 Bit ... 38
Linux Gnu C/C++ 32/64 Bit ... 39
C++ for .NET... 39
Other Windows C/C++ compilers 32 Bit .. 39
Other Windows C/C++ compilers 64 Bit .. 39

Driver functions .. 39
Delphi (Pascal) Programming Interface .. 45

Driver interface .. 45
Examples... 46

.NET programming languages ... 47
Library .. 47
Declaration.. 47
Using C#... 47
Using Managed C++/CLI.. 48
Using VB.NET .. 48
Using J# .. 48

Python Programming Interface and Examples... 49
Driver interface .. 49
Examples... 50

Java Programming Interface and Examples.. 51
Driver interface .. 51
Examples... 51

LabVIEW driver and examples ... 52
MATLAB driver and examples .. 52

Integrated Webserver.. 53
Home Screen ... 53
LAN Configuration ... 53
Status.. 54
Security ... 54
Documentation ... 54
Firmware Update.. 55
Power ... 55
Downloads .. 55
Logging... 55
Access .. 56
Embedded Server ... 56
Login/Logout ... 56
4

IVI Driver... 57
About IVI... 57
General Concept of the Spectrum IVI driver ... 57
Supported Spectrum Hardware .. 58

Supported data acquisition card families: .. 58
Supported digitizerNETBOX families... 58
Supported generatorNETBOX families... 58

IVI Compliance .. 58
Supported Operating Systems .. 58
Supported Standard Driver Features.. 59
IVIScope Supported Class Capabilities.. 59
IVIDigitizer Supported Class Capabilities... 59
IVIFGen Supported Class Capabilities ... 60

Find more Information on IVI.. 60
General Information on IVI... 60
IVI Getting Started Guides and Videos .. 60

Installation... 60
Installer ... 60
Shared Components ... 60
Installation Procedure .. 60
Installation of the IVI driver package ... 61

Configuration Store .. 62
General Information.. 62
Repeated Capabilities ... 62

Programming the Board .. 63
Overview .. 63
Register tables ... 63
Programming examples... 63
Initialization... 64
Initialization of Remote Products ... 64
Error handling.. 64
Gathering information from the card... 65

Card type.. 65
Hardware version... 66
Firmware versions... 66
Production date .. 67
Last calibration date (analog cards only) ... 67
Serial number .. 67
Maximum possible sampling rate ... 67
Installed memory .. 67
Installed features and options ... 68
Miscellaneous Card Information ... 69
Function type of the card ... 69
Used type of driver ... 69

Reset... 70
digitizerNETBOX/generatorNETBOX specific registers.. 71

Analog Outputs ... 72
Channel Selection .. 72

Important note on channel selection .. 73
Setting up the outputs.. 73

Output Amplifiers ... 73
Output offset .. 73
Maximum Output Range.. 74
Output Filters ... 74
Differential Output .. 75
Double Out Mode .. 75
Programming the behaviour in pauses and after replay ... 76
Read out of output features .. 76
5

Generation modes... 77
Overview .. 77

Setup of the mode .. 77
Commands.. 77

Card Status.. 78
Acquisition cards status overview ... 79
Generation card status overview .. 79
Data Transfer ... 79

Standard Single Replay modes .. 81
Card mode .. 81
Memory setup .. 81
Continuous marker output .. 83
Example .. 83

FIFO Single replay mode... 84
Card mode .. 84
Length of FIFO mode... 84
Difference to standard single mode... 84
Example (FIFO replay)... 85

Limits of segment size, memory size.. 86
Buffer handling .. 87
Output latency ... 90
Data organisation .. 91
Sample format ... 91
Hardware data conversion .. 91

Clock generation ... 92
Overview .. 92

The different clock modes .. 92
Clock Mode Register... 93

Internally generated sample rate .. 93
Standard internal sampling clock (PLL)... 93
Using plain Quartz1 without PLL ... 94
Using plain Quartz2 without PLL (optional)... 94

External reference clock .. 94
External clocking.. 95

Direct external clock ... 95
External clock with divider ... 96

Trigger modes and appendant registers .. 98
General Description.. 98
Trigger Engine Overview... 98
Trigger masks .. 98

Trigger OR mask .. 98
Trigger AND mask.. 100

Software trigger ... 101
Force- and Enable trigger .. 101
Delay trigger ... 102
External TTL trigger ... 102

Edge and level triggers ... 103
Pulsewidth triggers.. 104

Mode Multiple Replay.. 106
Trigger Modes ... 106
Programming examples... 106
Replay modes .. 106

Standard Mode.. 106
FIFO Mode .. 107

Limits of segment size, memory size.. 107
Programming the behaviour in pauses and after replay ... 108

Mode Gated Replay... 109
Generation Modes ... 109

Standard Mode.. 109
Examples of Standard Gated Replay with the use of SPC_LOOPS parameter ... 109
FIFO Mode .. 109

Limits of segment size, memory size.. 110
Allowed trigger modes.. 110

Edge and level triggers ... 110
Pulsewidth triggers.. 113
Programming examples ... 114
Programming the behaviour in pauses and after replay ... 114
6

Sequence Replay Mode ... 115
Theory of operation .. 115

Define segments in data memory .. 115
Define steps in sequence memory ... 115

Programming... 116
Gathering information... 116
Setting up the registers .. 116
Changing sequences or step parameters during runtime .. 118
Changing data patterns during runtime ... 118

Synchronization ... 118
Programming example .. 119

Option Star-Hub .. 120
Star-Hub introduction .. 120

Star-Hub trigger engine ... 120
Star-Hub clock engine ... 121

Software Interface .. 121
Star-Hub Initialization.. 121
Setup of Synchronization and Clock ... 123
Setup of Trigger ... 124
Trigger Delay on synchronized cards .. 124
Run the synchronized cards ... 124
Error Handling ... 125
Excluding cards from trigger synchronization ... 125
SH-Direct: using the Star-Hub clock directly without synchronization.. 125

Option Embedded Server... 127
Acessing the Embedded Server .. 127

SSH Connection ... 127
Login .. 127
Mounting network folders .. 127
Access to NTP (Network Time Protocol) ... 127
Editors... 128
Installing packages ... 128

Programming... 128
Accessing the cards .. 128
Examples... 128
Autostart.. 128
LEDs.. 129

Appendix .. 130
Error Codes ... 130

Spectrum Knowledge Base .. 131
Details on M2i cards clock and trigger I/O section .. 132
7

Preface Introduction
Introduction

Preface
This manual provides detailed information on the hardware features of your Spectrum instrument. This information includes technical data,
specifications, block diagrams and a connector description.

In addition, this guide takes you through the process of installing and recognizing your hardware and also describes the installation of the
delivered driver package for each operating system.

Finally this manual provides you with the complete software information of the hardware and the related driver. The reader of this manual
will be able to control the instrument from any PC system with one of the supported operating systems and one of the supported operating
software packages.

Please note that this manual provides no description for specific driver parts such as those for IVI, LabVIEW or MATLAB. These driver manuals
are available on USB-Stick or on the Spectrum website.

For any new information on the board as well as new available options or memory upgrades please contact our website
www.spectrum-instrumentation.com. You will also find the current driver package with the latest bug fixes and new features on our site.

Please read this manual carefully before you install any hardware or software. Spectrum is not responsible
for any hardware failures resulting from incorrect usage.

General Information
The DN2.60x series allows data replay on up to 8 channels in the medium speed segment. Due to the proven design of 14 bit AWG cards,
reliable generator products can be offered. These products are available in several versions and different speed grades making it possible
for the user to find a individual solution.

The generatorNETBOX products can be used with maximum update rates (sample rates) of up to 125 MS/s. The installed memory of up to
1 GSample per generator unit will be used for fast data generation. It can completely be used by the current active channels. If using slower
sample rates the memory can be switched to a FIFO buffer and data will be transferred online over Ethernet from the PC memory or from
hard disk.

Application examples: Laboratory equipment, Radar, Laser, prototype design, production test

generatorNETBOX Overview
The series of generatorNETBOX products are remote powerful generator instru-
ments with GBit Ethernet connection following the LXI Core 2011 standard. The
proven internal generator modules, a stable chassis, an embedded remote con-
troller, sufficient air cooling and standard BNC connectors form an unique in-
strument that opens a lot of new application areas.

The generatorNETBOX can be either directly connected to a PC or Laptop or it
can be connected to a company/institute LAN and can be accessed from any
PC within that LAN. Using the generatorNETBOX offers the following benefits
and new possibilities compared to generator plug-in cards:

• Use a powerful generator without opening the PC and without mounting
hardware inside the PC.

• Share the generator within a group of engineers that only need the instru-
ment from time to time.

• Place the generator directly near the signal sinks and control it remotely from the desk.
• Use the instrument at different location without moving a complete system. One just needs the generatorNETBOX, a few cables and a Lap-

top.
• Use the generator as a mobile data actuation device with the DC power option.
8 generatorNETBOX DN2.60x Manual

Introduction Internal Generator Modules
Internal Generator Modules
The generatorNETBOX products internally consist of generator modules that are accessed and programmed in a similiar way as the Spectrum
generator cards themselves.

Accessing the generatorNETBOX by software therefore is nearly identical to accessing the same plug-in cards.
Throughout the manual all programming and software useage will be described for the internal generator
modules.

Differences between plain cards and generator modules inside the generatorNETBOX

Different models of the DN2.60x series
The following overview shows the different available models of the DN2.60x series. They differ in the number of internally mounted generator
modules and the number of available channels.

• DN2.603-04

• DN2.603-08

Feature Plain M2i-Express Card Installed inside generatorNETBOX DN2.60x
Trigger Input B Only available as part of option BaseXIO Available as standard
Option BaseXIO Option can be ordered with purchase Not available
Option Star-Hub Option can be ordered and allows to connect 5 or 16 cards Option installed internally in all generatorNETBOXes with 2 modules
Standard Memory 256 MSamples per card 512 MSamples per module
Maximum Memory 1 GSamples per card 1 GSamples per module

Feature Plain M4i-Express Card Installed inside generatorNETBOX
DN2.66x

Installed inside generatorNETBOX
DN6.66x

Option Star-Hub Option can be ordered and allows to connect
8 cards

Option installed internally in all digitizerNETBOXes
with 2 modules

Option installed internally in all models

Standard Memory 2 GSamples per card: M4i.66xx 2 GSamples per module: DN6.66x 2 GSamples per module: DN6.66x
Maximum Memory 2 GSamples per card: M4i.66xx 2 GSamples per module: DN6.66x 2 GSamples per module: DN6.66x

Feature Plain M2p-Express Card Installed inside digitizerNETBOX
DN2.65x

Installed inside digitizerNETBOX
DN6.65x

Option Star-Hub Option can be ordered and allows to connect
either 6 or 16 cards

Option installed internally in all models
with two internal modules

Option installed internally in all models

Standard Memory 512 MSamples per card 512 MSamples per module 512 MSamples per module
Maximum Memory 512 MSamples per card 512 MSamples per module 512 MSamples per module
(c) Spectrum GmbH 9

Additional options Introduction
Additional options

19“ Rack Mount Kit
The rack mount kit allows to mount the
digitizerNETBOX/generatorNETBOX into a standard 19“
rack. The digitizerNETBOX/generatorNETBOX DN2 rec-
quires two height units of the 19“ rack.

Multiple digitizerNETBOX/generatorNETBOX products can
be mounted one on top of the other.

It is not possible to mount two digitizerNETBOX/generatorNETBOX DN2 products side by side into one 19“ slot.

DC Power Supply
The DC power supply option is factory mounted and allows the connection of a DC signal directly to the digitizerNETBOX/generatorNETBOX.

10 generatorNETBOX DN2.60x Manual

Introduction AC Cable Options
AC Cable Options
The system is delivered with a connection cable meeting your countries power connection. Other power cables can be ordered separately
to connect your products with your local power connection system. A comprehensive list of all world-wide power plugs in use can be found
on the IEC (Interbational Electrotechnical Commission) website: http://www.iec.ch/worldplugs/

The following power cable options are available from Spectrum:

001: Universal Type for IEC Plug Type E and Type F
The power cable is suitable for Continental Europe, Korea and others.

 Cab-Pwr-001: 180 cm cable to CEE 7/VII

002: IEC Plug Type B
The power cable complies to standards UL 62 and UL 1581 and is suitable for US, Canada, Taiwan and others.

 Cab-Pwr-002: 180 cm cable for NEMA5-15P

003: IEC Plug Type G
The power cable is suitable for United Kingdom, Ireland, Hong Kong, Saudi Arabia and others.

 Cab-Pwr-003: 180 cm cable to BS 1363A

004: IEC Plug Type J
The power cable is suitable for Switzerland and others.

 Cab-Pwr-004: 180 cm cable for SEV type 12

005: IEC Plug Type I
The power cable is suitable for Mainland China, Australia, New Zealand, Argentina and others.

 Cab-Pwr-005: 180 cm cable for AS 3112

006: IEC Plug Type M
The power cable is suitable for India, Singapore, South Africa and others.

 Cab-Pwr-006: 180 cm cable for IEC 83-B

007: IEC Plug Type K
The power cable is suitable for Denmark and others.

 Cab-Pwr-007: 180 cm cable for SR 107-2-D

008: IEC Plug Type H
The power cable is suitable for Israel.

 Cab-Pwr-008: 180 cm cable for SI 32

009: IEC Plug Type B
The power cable complies to standard JIS C3306 and is suitable for Japan.

 Cab-Pwr-009: 180 cm cable for NEMA5-15P
(c) Spectrum GmbH 11

AC Cable Options Introduction
010: IEC Plug Type L
The power cable is suitable for Italy, Chile and others.

 Cab-Pwr-010: 180 cm cable for CEI 23-16

12 generatorNETBOX DN2.60x Manual

Introduction The Spectrum type plate

 The Spectrum type plate

The Spectrum type plate, which consists of the following components, can be found on the back of all netbox products. Please check whether
the printed information is the same as the information on your delivery note. All this information can also be read out by software:

The digitizerNETBOX/generatorNETBOX type, consisting of the abbrevaition for the digitizerNETBOX/generatorNETBOX chassis
type (DN2 in this example), the model type (496 in this example) and the number of channels (16 in this example)

The MAC address of the device. The MAX address is fixed and cannot be changed by the user. To check the MAC address by
software one can use the integrated web pages of the digitizerNETBOX/generatorNETBOX.

The installed complete data acquisition memory of the digitizerNETBOX/generatorNETBOX. As in our example there are two inter-
nal digitizer/generator modules installed the memory is shared between them. Each internal digitizer/generator module has
512 MSamples installed.

The serial number of the digitizerNETBOX/generatorNETBOX itself. This is the serial number also found on the delivery note.

Installed options of the digitizerNETBOX/generatorNETBOX.

The serial number of the first internal digitizer/generator module.

The serial number of the second internal digitizer/generator module.

The hardware version of the digitizerNETBOX/generatorNETBOX. The hardware and firmware versions of the installed
digitizer/generator modules are found using the Spectrum Control Center.

The date of production of the digitizerNETBOX/generatorNETBOX consisting of the calendar week and the year.

Please always supply us with the above information, especially the serial number in case of support request. That
allows us to answer your questions as soon as possible. Thank you.
(c) Spectrum GmbH 13

Hardware information Introduction
Hardware information

Block diagram of generatorNETBOX DN2

Block diagram of generatorNETBOX module DN2.60x

14 generatorNETBOX DN2.60x Manual

Introduction Hardware information
Technical Data

Analog Outputs

Trigger

Clock

Clock and Filter

Resolution 14 bit
Output amplitude software programmable ±100 mV up to ±3 V in 1 mV steps (Amp option: ±333 mV up to ±10 V in 3 mV steps)
Output offset software programmable ±3 V in 1 mV steps (Amp option: ±10 V in 3 mV steps)
Filters software programmable no filter or one of 3 different filters as defined in technical data section
DAC Differential non linearity (DNL) DAC only ±1.5 LSB typical
DAC Integral non linearity (INL) DAC only ±1.0 LSB typical
Output resistance < 1 Ohm
Minimum output load 35 Ohm (not short circuit protected)
Max output swing in 50 Ohm ± 3 V (offset + amplitude)
Max slew rate (no filter) > 0.9 V/ns
Crosstalk @ 1 MHz signal ±3 V < -80 dB
Output accuracy < 1%

Running mode software programmable Singleshot, FIFO mode (Streaming), Repeated Replay, Single Restart, Sequence Mode
Trigger edge software programmable Rising edge, falling edge or both edges
Trigger pulse width software programmable 0 to [64k - 1] samples in steps of 1 sample
Trigger delay software programmable 0 to [64k - 1] samples in steps of 1 sample
Memory depth software programmable 8 up to [installed memory / number of active channels] samples in steps of 4
Multiple Replay segment size software programmable 8 up to [installed memory / 2 / active channels] samples in steps of 4
Multiple Replay, Gated Replay: re-arming time < 4 samples
Trigger output delay One positive edge after internal trigger event
Internal/External trigger accuracy 1 sample
External trigger type (input and output) 3.3V LVTTL compatible (5V tolerant with base card hardware version > V20)
External trigger input Low ≤ 0.8 V, High ≥ 2.0 V, ≥ 8 ns in pulse stretch mode, ≥ 2 clock periods all other modes
External trigger maximum voltage -0.5 V up to +5.7 V (internally clamped to 5.0V, 100 mA max. clamping current)
Trigger impedance software programmable 50 Ohm / high impedance (> 4kOhm)
External trigger output type 3.3 V LVTTL
External trigger output levels Low ≤ 0.4 V, High ≥ 2.4 V, TTL compatible
External trigger output drive strength Capable of driving 50 ohm load, maximum drive strength ±128 mA
Output delay trigger to 1st sample 15/16 clocks (2/1 channel/module)
Gate end to last replayed sample 15/16 clocks (2/1 channel/module)
Gate end alignment 2 samples (1 ch), 1 sample (2 or 4 ch)

Clock Modes software programmable internal PLL, internal quartz, external clock, external divided, external reference clock, sync
Internal clock range (PLL mode) software programmable 1 kS/s to max using internal reference, 50kS/s to max using external reference clock
Internal clock accuracy ≤ 20 ppm
Internal clock setup granularity ≤1% of range (100M, 10M, 1M, 100k,...): Examples: range 1M to 10M: stepsize ≤ 100k
External reference clock range software programmable ≥ 1.0 MHz and ≤ 125.0 MHz
External clock impedance software programmable 50 Ohm / high impedance (> 4kOhm)
External clock range see „Dynamic Parameters“ table below
External clock delay to internal clock 5.4 ns
External clock type/edge 3.3V LVTTL compatible, rising edge used
External clock input Low level ≤ 0.8 V, High level ≥ 2.0 V, duty cycle: 45% - 55%
External clock maximum voltage -0.5 V up to +3.8 V (internally clamped to 3.3V, 100 mA max. clamping current)

(not 5V tolerant)
External clock output type 3.3 V LVTTL
External clock output levels Low ≤ 0.4 V, High ≥ 2.4 V, TTL compatible
External clock output drive strength Capable of driving 50 ohm load, maximum drive strength ±128 mA
Synchronization clock divider software programmable 2 up to [8k - 2] in steps of 2
ABA mode clock divider for slow clock software programmable 8 up to 524280 in steps of 8

M2i.6011
M2i.6012

M2i.6021
M2i.6022

M2i.6030
M2i.6031
M2i.6033
M2i.6034

DN2.603-xx
max internal clock 20 MS/s 62.5 MS/s 125 MS/s
max external clock 20 MS/s 62.5 MS/s 125 MS/s
-3 dB bandwidth no filter > 10 MHz > 30 MHz > 60 MHz
Filter 3: Characteristics 4th order Butterworth 5th order Butterworth
Filter 3: -3 dB bandwidth 5 MHz (typ. 5.4 MHz) 10 MHz (typ. 11.4 MHz) 25 MHz (typ. 26.5 MHz)
Filter 2: Characteristics 4th order Butterworth 4th order Butterworth
Filter 2: -3 dB bandwidth 1 MHz (typ. 1.2 MHz) 2 MHz (typ. 2.4 MHz) 5 MHz (typ. 5.8 MHz)
Filter 1: Characteristics 4th order Butterworth 4th order Butterworth
Filter 1: -3 dB bandwidth 100 kHz (typ. 96 kHz) 200 kHz (typ. 200 kHz) 500 kHz (typ. 495 kHz)
(c) Spectrum GmbH 15

Hardware information Introduction
Sequence Replay Mode

Connectors

Option digitizerNETBOX/generatorNETBOX embedded server (DN2.xxx-Emb, DN6.xxx-Emb)

Ethernet specific details

Power connection details

Serial connection details (DN2.xxx with hardware ≥ V11)

Certification, Compliance, Warranty

Environmental and Physical Details DN2.xxx

Number of sequence steps software programmable 1 up to 512 (sequence steps can be overloaded at runtime)
Number of memory segments software programmable 2 up to 256 (segment data can be overloaded at runtime)
Minimum segment size software programmable 32 samples in steps of 8 samples.
Maximum segment size software programmable Installed on-board memory (in samples) / active channels / number of sequence segments

(round up to the next power of two)
Loop Count software programmable 1 to 1M loops
Sequence Step Commands software programmable Loop for #Loops, Next, Loop until Trigger, End Sequence
Special Commands software programmable Data Overload at runtime, sequence steps overload at runtime
Limitations for synchronized products Software commands changing the sequence as well as „Loop until trigger“ are not synchronized

between cards. This also applies to multiple AWG modules in a generatorNETBOX.

Analog Inputs 9 mm BNC female (one for each single-ended input) Cable-Type: Cab-9m-xx-xx
Trigger A Input/Output programmable direction 9 mm BNC female Cable-Type: Cab-9m-xx-xx
Trigger B Input 9 mm BNC female Cable-Type: Cab-9m-xx-xx
Clock Input/Output programmable direction 9 mm BNC female Cable-Type: Cab-9m-xx-xx

CPU Intel Quad Core 2 GHz
System memory 4 GByte RAM
System data storage Internal 128 GByte SSD
Development access Remote Linux command shell (ssh), no graphical interface (GUI) available
Accessible Hardware Full access to Spectrum instruments, LAN, front panel LEDs, RAM, SSD
Integrated operating system OpenSuse 12.2 with kernel 4.4.7.
Internal PCIe connection DN2.20, DN2.46, DN2.47, DN2.49, DN2.59, DN2.60 PCIe x1, Gen1

DN6.46, DN6.49, DN6.59
DN2.22, DN2.44, DN2.66 PCIe x1, Gen2
DN6.22, DN6.44, DN6.66

LAN Connection Standard RJ45
LAN Speed Auto Sensing: GBit Ethernet, 100BASE-T, 10BASE-T
LAN IP address programmable DHCP (IPv4) with AutoIP fall-back (169.254.x.y), fixed IP (IPv4)
Sustained Streaming speed DN2.20, DN2.46, DN2.47, DN2.49, DN2.60 up to 70 MByte/s

DN6.46, DN6.49
DN2.59, DN2.22, DN2.44, DN2.66 up to 100 MByte/s
DN6.59, DN6.22, DN6.44, DN6.66

Used TCP/UDP Ports Webserver: 80
VISA Discovery Protocol: 111, 9757
Spectrum Remote Server: 1026, 5025

mDNS Daemon: 5353
UPNP Daemon: 1900

Mains AC power supply Input voltage: 100 to 240 VAC, 50 to 60 Hz
AC power supply connector IEC 60320-1-C14 (PC standard coupler)
Power supply cord power cord included for Schuko contact (CEE 7/7)

Serial connection (RS232) For diagnostic purposes only. Do not use, unless being instructed by a Spectrum support agent.

EMC Immunity Compliant with CE Mark
EMC Emission Compliant with CE Mark
Product warranty 5 years starting with the day of delivery
Software and firmware updates Life-time, free of charge

Dimension of Chassis without connectors or bumpers L x W x H 366 mm x 267 mm x 87 mm
Dimension of Chassis with 19“ rack mount option L x W x H 366 mm x 482.6 mm x 87 mm (2U height)
Weight (1 internal acquisition/generation module) 6.3 kg, with rack mount kit: 6.8 kg
Weight (2 internal acquisition/generation modules) 6.7 kg, with rack mount kit 7.2 kg
Warm up time 20 minutes
Operating temperature 0°C to 40°C
Storage temperature -10°C to 70°C
Humidity 10% to 90%
Dimension of packing (single DN2) L x W x H 470 mm x 390 mm x 180 mm
Volume weight of Packing (single DN2) 7.0 kgs
16 generatorNETBOX DN2.60x Manual

Introduction Order Information
Power Consumption

MTBF

Dynamic Parameters

Dynamic parameters are measured at the given output level and 50 Ohm termination with a high resolution data acquisition card and are calculated from the spectrum. The sample rate
that is selected is the maximum possible one. All available channels are activated for the tests. SNR and SFDR figures may differ depending on the quality of the used PC. SNR = Signal to
Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range

Order Information
The generatorNETBOX is equipped with a large internal memory and supports standard replay, FIFO replay (streaming), Multiple Replay,
Gated Replay, Continuous Replay (Loop), Single-Restart as well as Sequence. Operating system drivers for Windows/Linux 32 bit and 64
bit, drivers and examples for C/C++, IVI (Function Generator class), LabVIEW (Windows), MATLAB (Windows and Linux), .NET, Delphi,
Java, Python and a Professional license of the oscilloscope software SBench 6 are included.

The system is delivered with a connection cable meeting your countries power connection. Additional power connections with other standards
are available as option.

generatorNETBOX DN2 - Ethernet/LXI Interface

Options

Calibration

BNC Cables
The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz.

230 VAC 12 VDC 24 VDC

4 channel version, standard memory 0.14 A 32 W TBD TBD TBD TBD
8 channel version, standard memory TBD TBD TBD TBD TBD TBD
4 channel version, 1 x 1 GSample memory TBD TBD TBD TBD TBD TBD
8 channel version, 2 x 1 GSample memory TBD TBD TBD TBD TBD TBD

MTBF 100000 hours

M2i.6011
M2i.6012

M2i.6011
M2i.6012

M2i.6011
M2i.6012

M2i.6021
M2i.6022

M2i.6021
M2i.6022

M2i.6030
M2i.6031
M2i.6033
M2i.6034
DN2.603-xx

M2i.6030
M2i.6031
M2i.6033
M2i.6034
DN2.603-xx

M2i.6030
M2i.6031
M2i.6033
M2i.6034
DN2.603-xx

M2i.6030
M2i.6031
M2i.6033
M2i.6034
DN2.603-xx

max internal / external clock 20 MS/s 20 MS/s 20 MS/s 62.5 MS/s 62.5 MS/s 62.5 MS/s 62.5 MS/s 125 MS/s 125 MS/s
min internal clock 1 kS/s 1 kS/s 1 kS/s 1 kS/s 1 kS/s 1 kS/s 1 kS/s 1 kS/s 1 kS/s
min external clock DC DC DC DC DC DC DC DC DC
Test - Samplerate 20 MS/s 20 MS/s 20 MS/s 62.5 MS/s 62.5 MS/s 62.5 MS/s 62.5 MS/s 125 MS/s 125 MS/s
Output Frequency 80 kHz 800 kHz 4 MHz 170 kHz 1.7 MHz 400 kHz 4 MHz 400 kHz 4 MHz
Output Level ±2 V ±2 V ±2 V ±2 V ±2 V ±2 V ±2 V ±2 V ±2 V
Used Filter 100 kHz 1 MHz 5 MHz 200 kHz 2 MHz 500 kHz 5 MHz 500 kHz 5 MHz
SNR (typ) > 61.5 dB > 60.2 dB > 54.5 dB > 61.5 dB > 59.5 dB > 61.5 dB > 55.0 dB > 61.0 dB > 56.0 dB
THD (typ) < -70.4 dB < -67.5 dB < -45.0 dB < -72.7 dB < -62.5 dB < -71.5 dB < -55.6 dB < -71.5 dB < -56.0 dB
SFDR (typ), excl harm. > 85.5 dB > 72.0 dB > 60.0 dB > 81.5 dB > 68.5 dB > 82.8 dB > 66.5 dB > 72.0 dB > 67.0 dB

Order no. D/A
Resolution

Bandwidth Single-Ended
Channels

Update Rate Installed
Memory

Available
Memory
Options

DN2.603-04 14 Bit 60 MHz 4 channels 125 MS/s (2 channels)
60 MS/s (4 channels)

1 x 512MS 1 x 1GS

DN2.603-08 14 Bit 60 MHz 8 channels 125 MS/s (4 channels)
60 MS/s (8 channels)

2 x 512MS 2 x 1GS

Order no. Option
DN2.xxx-Rack 19“ rack mounting set for self mounting
DN2.xxx-Emb Extension to Embedded Server: CPU, more memory, SSD. Access via remote Linux secure shell (ssh)
DN2.xxx-1x1GS Memory extension to 1 x 1 GSample for 46x-04, 46x-08, 49x-04, 49x-08 versions
DN2.xxx-2x1GS Memory extension to 2 x 1 GSample for 46x-16 and 49x-16 versions
DN2.xxx-DC12 12 VDC internal power supply. Replaces AC power supply. Accepts 9 V to 18 V DC input. Screw terminals.
DN2.xxx-DC24 24 VDC internal power supply. Replaces AC power supply. Accepts 18 V to 36 V DC input. Screw terminals
DN2.xxx-BTPWR Boot on Power On: the digitizerNETBOX/generatorNETBOX automatically boots if power is switched on.

Order no. Option
DN2.xxx-Recal Recalibration of complete digitizerNETBOX/generatorNETBOX DN2 including calibration protocol

for Connections Connection Length to SMA male to SMA female to BNC male to SMB female
All BNC male 80 cm Cab-9m-3mA-80 Cab-9m-3fA-80 Cab-9m-9m-80 Cab-9m-3f-80
All BNC male 200 cm Cab-9m-3mA-200 Cab-9m-3fA-200 Cab-9m-9m-200 Cab-9m-3f-200
(c) Spectrum GmbH 17

Order Information Introduction

18 generatorNETBOX DN2.60x Manual

Hardware Installation Warnings
Hardware Installation

Warnings

ESD Precautions
The digitizerNETBOX/generatorNETBOX products internally contain electronic components that can be damaged by electrostatic discharge
(ESD). The grounded chassis itself gives a very good protection against ESD.

Before installing the board in your system or protective conductive packaging, discharge yourself by touching
a grounded bare metal surface or approved anti-static mat before picking up this ESD sensitive product.

Opening the Chassis
There are no components inside the chassis that need any operating by the user. In contrary there are a lot of components that may be harmed
when operated unproperly by a use.

As Spectrum only gives a warranty on the complete instrument, opening the chassis will make you loose the
warranty.

Cooling Precautions
The high performance digitizers/generators of the digitizerNETBOX/generatorNETBOX operate with components having very high power
consumption. Therefore the digitizerNETBOX/generatorNETBOX models have sufficient cooling fans.

Make sure that the air inlets and air outlets are free and uncovered and in case of a DN6 ensure that the installed filters at the inlet are cleaned
regularly.

DN2 airflow:

DN6 airflow:

Sources of noise
The digitizerNETBOX/generatorNETBOX is using electrical components with very high resolution and high sensitivity. The signal inputs will
acquire your signals with a high quality but will also collect spurious noise signals from various sources - especially if using the inputs in high
impedance mode. To minimize this effect the cabeling must be made with care.

Keep away the cables from any sources that may inject noise into the signals like other instruments, crossing
or even worse running in parallel with other cables with high frequency signals on them. If possible use dif-
ferential signalling to minimize the effectes of injected noise.

A standard GND screw on the back of the chassis allows to connect the metal chassis to measurement ground
to reduce noise based on ground loops and ground level differences.

(c) Spectrum GmbH 19

Installing 19“ rack mount option for DN2 Hardware Installation
Installing 19“ rack mount option for DN2
This option has to be ordered separately. It can be ordered together with the digitizerNETBOX/generatorNETBOX at the time of purchase or
it can be ordered later on, if it is becoming necessary to mount the digitizerNETBOX/generatorNETBOX into a 19“ rack. In any case the
digitizerNETBOX/generatorNETBOX comes pre-configured as a standalone unit, which has then to manually be converted to the rackmount
configuration by the user.

Step 1
The rackmount option comes with the required Torx T20 size screw driv-
er to un-mount the default screws holding the bumper feet.

Unscrew these 8 Torx T20 screws with the provided screw driver and
keep them together with the un-mounted bumpers for possible later use
in case the rackmount option shall be un-mounted again in the future.

Step 2
Mount the 19“ rack mount extension using the four phillips-head screws
that are also provided with each rack mount extension. Two screws are
required for each rack mounting bracket.

Care should be taken to not overtighten the screws.

Installing 19“ rack mount option for DN6
Installing the rack mount extension for the DN6 series follows the same
principles as for the DN2 models shown above.

Step 1
Unscrew the existing bumper corner pieces with the provided screw
driver and keep them together with the un-mounted bumpers for possi-
ble later use in case the rackmount option shall be un-mounted again in
the future.

Step 2
Mount the 19“ rack mount extension using the four phillips-head screws
that are also provided with each rack mount extension. Two screws are
required for each rack mounting bracket. Care should be taken to not
overtighten the screws.

In addition to using the provided rack mount extension for fastening the DN6 device within the 19“ rack, the
user must take additional measures, suitable for the used rack, to provide adequate mechanical support at
the backside of the device.

This support is required for DN6 devices due to their higher weight compared to DN2 devices.
20 generatorNETBOX DN2.60x Manual

Hardware Installation Setup of digitizerNETBOX/generatorNETBOX

Setup of digitizerNETBOX/generatorNETBOX

Connections
First of all the digitizerNETBOX/generatorNETBOX needs to be connected to both power line and LAN environment:

Power
Connect the power line cable to a matching power source. First connect the cable to the digitizerNETBOX/generatorNETBOX, second con-
nect the cable to the power plug. Please check the technical data section to see the requirements for the power supply.

If using a DC power option please be sure to have the external DC power source switched off while connect-
ing the power lines. Only switch on the power supply after all connections have been done and are checked.

Ethernet
Connect the digitizerNETBOX/generatorNETBOX to either your company LAN or directly to your PC. Please use a standard Cat-5 or better
Ethernet cable for the connection.

Back Side DN2
The right hand pictures
shows the back side of
one digitizerNET-
BOX/generatorNETBOX
with standard AC power
supply. The different
power supply options are
described later in this
chapter. The picture is
taken from a digitizer-
NETBOX hardware revi-
soon V8. Older version
look different.

Please see the table be-
low for a description of
the different marked ar-
eas:

Front Panel DN2
The right-hand drawing
gives you an overview on
one digitizerNETBOX
DN2 front panel.
Depending on the version
of the digitizerNETBOX or
generatorNETBOX you
have the area 7 may differ
in terms of number of chan-
nels or grouping of the
channels.

Area Name Description
Power Label The label shows the power specification in detail. Please check the listed specification before connection the power line

Power Connector (AC) Standard three pole power connector. A matching power cable is included in the delivery. Separate power cables for other country standards are
available upon request.

GND Screw THis screw is directly connected to Chassis ground and be used to add a low resistance ground connection to the system

Type plate The type plate shows exact type, option, serieal number, versions and production week. A more detailed desctiption of the type plate is found in a
separate chapter of the manual

Debug Port (DSUB) This port is for debug purposes only. Please only connect a cable when asked by the Spectrum support group. The debug connector is a feature of
hardware revision V8 and is not available on earlier versions

LAN Connection A standard Ethernet port. Please connect the device with your PC/Laptop or company LAN before start
(c) Spectrum GmbH 21

Setup of digitizerNETBOX/generatorNETBOX Hardware Installation
In area 8 a version with 4 BNC connectors is shown. Other versions with 5 SMA, 6 BNC or 7 SMA connectors are also available. Please
see the table below for the different connections.

Front Panel DN6
The right-hand drawing
gives you an overview on
one digitizerNETBOX
DN6 front panel.
Depending on the version
of the digitizerNETBOX
or generatorNETBOX
you have, the area 7 may
differ in terms of number
of channels or grouping
of the channels.

In area 8 a version with
4 BNC connectors is
shown. Other versions
with 5 SMA, 6 BNC or 7 SMA connectors are also available. Please see the table below for the different connections.

Area Name Status Description
Power On/Off press while device stopped digitizerNETBOX/generatorNETBOX is started

short press while device is running digitizerNETBOX/generatorNETBOX is closing the embedded controller and is going into standby mode
long press while device is running digitizerNETBOX/generatorNETBOX is aborted and is going into standby. Please only use this stop method

if the digitizerNETBOX/generatorNETBOX is not responding
Power LED LED off no power connected to the device

LED orange power is connected, device is in standby mode
LED green device has started and is working

LAN LED LED off Only off during boot up, turning to either red or green afterwards. If permanently off, contact support.
LED red Error while trying to get a LAN connection
LED green Device is connected to LAN.
LED green flashing Device is connected to LAN. Flashing indicates LAN ID (see webserver)

Connected LED LED off Device is not in use
LED green Device is in use by other PC

Arm/Trigger LED off No trigger detected, device is waiting for trigger event, or not armed at all
LED green Trigger detected, acquisition is running or already finished

LAN Reset press once Does a reset of the LAN settings to default state. The reset button needs to be pressed for 4 seconds to issue
the reset. The reset command is then issued immediatley independent of the current run state of the device.

Signal Connections Connect your input signals here. For differential connections use even channels for positive phase and odd
channels for negative phase.

Control Connections
(4 BNC connector
version, for M2i module
based products)

Trig-A I/O Trigger A with programmable input or output. This is the main external trigger
Trig-B In Trigger B, input only. This trigger is referenced in the manual as TRIG_XIO0
Clock I/O Clock with programmable input or output
TS-Ref In Timestamp Reference Clock Input

Control Connections
(5 SMA connector
version, for M3i module
based products))

Clock In External clock input
Clock Out External clock output
Trig-A In Trigger A, input only. This is the main external trigger. The trigger line is reference in the manual as EXT0
Trig-B I/O Trigger B/Multi Purpose X0 with programmable direction. The connection is referenced in the manual as X0
TS_Ref In Timestamp Reference Clock Input

Control Connections
(6 BNC connector
version, for M2p module
based products))

Clock In External clock input
Trig In Trigger, input only. This is the main external trigger. The trigger line is reference in the manual as EXT0
X0 Out Multi Purpose X0, output only. Clock output available. The connection is referenced in the manual as X0
X1 I/O Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X2 I/O Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2
X3 I/O Multi Purpose X3 with programmable direction. The connection is referenced in the manual as X3

Control Connections
(7 SMA connector
version, for M4i module
based products))

Clock In External clock input
Clock Out External clock output
Trig0 In Trigger 0, input only. This is the main external trigger. The trigger line is reference in the manual as EXT0
Trig1 In Trigger 1, input only. This is the secondary external trigger. This line is reference in the manual as EXT1
X0 I/O Multi Purpose X0 with programmable direction. The connection is referenced in the manual as X0
X1 I/O Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X2 I/O Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2

Area Name Status Description
Power On/Off press while device stopped digitizerNETBOX/generatorNETBOX is started

short press while device is running digitizerNETBOX/generatorNETBOX is closing the embedded controller and is going into standby mode
long press while device is running digitizerNETBOX/generatorNETBOX is aborted and is going into standby. Please only use this stop method

if the digitizerNETBOX/generatorNETBOX is not responding
Power LED LED off no power connected to the device

LED orange power is connected, device is in standby mode
LED green device has started and is working

LAN LED LED off Only off during boot up, turning to either red or green afterwards. If permanently off, contact support.
LED red Error while trying to get a LAN connection.
LED green Device is connected to LAN.
LED green flashing Device is connected to LAN. Flashing indicates LAN ID (see webserver).
22 generatorNETBOX DN2.60x Manual

Hardware Installation Setup of digitizerNETBOX/generatorNETBOX
Ethernet Default Settings
The digitizerNETBOX/generatorNETBOX is started with the following Ethernet configuration:

Connected LED LED off Device is not in use
LED green Device is in use by other PC

Arm/Trigger LED off No trigger detected, device is waiting for trigger event, or not armed at all
LED green Trigger detected, acquisition is running or already finished

LAN Reset press once Does a reset of the LAN settings to default state. The reset button needs to be pressed for 4 seconds to issue
the reset. The reset command is then issued immediatley independent of the current run state of the device.

Signal Connections Connect your input signals here. For differential connections use even channels for positive phase and odd
channels for negative phase.

Control Connections
(4 BNC connector
version, for M2i module
based products)

Trig-A I/O Trigger A with programmable input or output. This is the main external trigger
Trig-B In Trigger B, input only. This trigger is referenced in the manual as TRIG_XIO0
Clock I/O Clock with programmable input or output
TS-Ref In Timestamp Reference Clock Input

Control Connections
(6 BNC connector
version, for M2p module
based products))

Clock In External clock input
Trig In Trigger, input only. This is the main external trigger. The trigger line is reference in the manual as EXT0
X0 Out Multi Purpose X0, output only. Clock output available. The connection is referenced in the manual as X0
X1 I/O Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X2 I/O Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2
X3 I/O Multi Purpose X3 with programmable direction. The connection is referenced in the manual as X3

Control Connections
(7 SMA connector
version, for M4i module
based products)

Clock In External clock input
Clock Out External clock output
Trig0 In Trigger 0, input only. This is the main external trigger. The trigger line is reference in the manual as EXT0
Trig1 In Trigger 1, input only. This is the secondary external trigger. This line is reference in the manual as EXT1
X0 I/O Multi Purpose X0 with programmable direction. The connection is referenced in the manual as X0
X1 I/O Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X2 I/O Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2

Setting Default Setup
DHCP enabled
Auto IP enabled
Host Name Default hostname as netbox type + serial number Example: DN2_465-08_sn8085

Area Name Status Description
(c) Spectrum GmbH 23

Detecting the digitizerNETBOX Hardware Installation
Detecting the digitizerNETBOX
Before accessing the digitizerNETBOX/generatorNETBOX one has to determine the IP address of the digitizerNETBOX/generatorNETBOX.
Normally that can be done using one of the two methods described below:

Discovery Function
The digitizerNETBOX/generatorNETBOX responds to the VISA described Discovery function. The next chapter will show how to install and
use the Spectrum control center to execute the discovery function and to find the Spectrum hardware. As the discovery function is a standard
feature of all LXI devices there are other software packages that can find the digitizerNETBOX/generatorNETBOX using the discovery func-
tion:

• Spectrum control center (limited to Spectrum remote products)
• free LXI System Discovery Tool from the LXI consortium (www.lxistandard.org)
• Measurement and Automation Explorer from National Instruments (NI MAX)
• Keysight Connection Expert from Keysight Technologies

Additionally the discovery procedure can also be started from ones own specific application:

Finding the digitizerNETBOX/generatorNETBOX in the network
As the digitizerNETBOX/generatorNETBOX is a standard network device it has its own IP address and host name and can be found in the
computer network. The standard host name consist of the model type and the serial number of the digitizerNETBOX/generatorNETBOX. The
serial number is also found on the type plate on the back of the digitizerNETBOX/generatorNETBOX chassis.

As default DHCP (IPv4) will be used and an IP address will be automatically set. In case no DHCP server is found, an IP will be obtained
using the AutoIP feature. This will lead to an IPv4 address of 169.254.x.y (with x and y being assigned to a free IP in the network) using a
subnet mask of 255.255.0.0.

The default IP setup can also be restored, by using the „LAN Reset“ button on the device.

If a fixed IP address should be used instead, the parameters need to be set according to the current LAN requirements.

#define TIMEOUT_DISCOVERY 5000 // timeout value in ms

const uint32 dwMaxNumRemoteCards = 50;

char* pszVisa[dwMaxNumRemoteCards] = { NULL };
char* pszIdn[dwMaxNumRemoteCards] = { NULL };

const uint32 dwMaxIdnStringLen = 256;
const uint32 dwMaxVisaStringLen = 50;

// allocate memory for string list
for (uint32 i = 0; i < dwMaxNumRemoteCards; i++)
 {
 pszVisa[i] = new char [dwMaxVisaStringLen];
 pszIdn[i] = new char [dwMaxIdnStringLen];
 memset (pszVisa[i], 0, dwMaxVisaStringLen);
 memset (pszIdn[i], 0, dwMaxIdnStringLen);
 }

// first make discovery - check if there are any LXI compatible remote devices
dwError = spcm_dwDiscovery ((char**)pszVisa, dwMaxNumRemoteCards, dwMaxVisaStringLen, TIMEOUT_DISCOVERY);

// second: check from which manufacturer the devices are
spcm_dwSendIDNRequest ((char**)pszIdn, dwMaxNumRemoteCards, dwMaxIdnStringLen);

// Use the VISA strings of these devices with Spectrum as manufacturer
// for accessing remote devices without previous knowledge of their IP address
24 generatorNETBOX DN2.60x Manual

Hardware Installation Detecting the digitizerNETBOX
Windows 7, Windows 8, Windows 10
Under Windows 7, Windows 8 and
Windows 10 the digitizerNETBOX and
generatorNETBOX devices are listed under the
„other devices“ tree with their given host name.

A right click on the digitizerNETBOX or
generatorNETBOX device opens the properties
window where you find further information on the
device including the IP address.

From here it is possible to go the website of the
device where all necessary information are found
to access the device from software.

Troubleshooting
If the above methods do not work please try one of the following steps:

• Ask your network administrator for the IP address of the digitizerNETBOX/generatorNETBOX and access it directly over the IP address.
• Check your local firewall whether it allows access to the device and whether it allows to access the ports listed in the technical data sec-

tion.
• Check with your network administrator whether the subnet, the device and the ports that are listed in the technical data section are acces-

sible from your system due to company security settings.

(c) Spectrum GmbH 25

Needed Software for operating Software Driver Installation
Software Driver Installation
Before using the digitizerNETBOX/generatorNETBOX a software package and the appropriate API drivers must be installed that matches the
operating system. The installation is done in different ways depending on the used operating system. The driver that is on USB-Stick supports
all products of the digitizerNETBOX/generatorNETBOX family as well as all cards of the M2i/M3i/M4i/M4x/M2p series. That means that
you can use the same driver for all products of these families.

Needed Software for operating
The digitizerNETBOX/generatorNETBOX comes fully installed and ready to start. However to operate the digitizerNETBOX or
generatorNETBOX from the client PC there need to be some software packages to be installed there:

Spectrum driver API
The Spectrum API is installed automatically under Windows when installing the Card Control Center. Under Linux it is necessary to install the
matching driver API for your Linux client system before installing the Card Control Center.

Spectrum Card Control Center
This software is the maintenance tool for all Spectrum products. In here the digitizerNETBOX/generatorNETBOX can be searched inside the
LAN (Discovery function), all hardware information is found, updates and product tests can be done. The Card Control Center and all of its
functions are explained in greater detail later on in this manual.

The card control center is available for Windows and Linux, both 32 bit and 64 bit (Windows 32 bit version also runs on WOW64)

SBench 6
SBench 6 allows to operate the digitizerNETBOX/generatorNETBOX in all hardware modes, displays data, streams to hard disk and allows
to make calculations and exports. The digitizerNETBOX/generatorNETBOX is equipped with a full SBench 6 Professional license. Even if you
want to operate the digitizerNETBOX/generatorNETBOX from your self written software it is recommended that you install SBench 6 to do
first hardware tests and to validate your own software results with the software from the hardware manufacturer. For SBench 6 a dedicated
manual is installed with the software package.

SBench 6 is available for Windows and Linux, both 32 bit and 64 bit (Windows 32 bit version also runs on WOW64)

Examples and Drivers
If you intend to operate the digitizerNETBOX/generatorNETBOX from a self written program, be it IVI based, C++, C#, LabVIEW, MATLAB
or something else, it is necessary to install the matching drivers and examples for the platform you want to run.

Location
The needed software for operating the digitizerNETBOX/generatorNETBOX can be found on three different locations. Please choose the one
most convinient for you.

Install software packages from USB-Stick
The USB-Stick that is delivered together with the digitizerNETBOX/generatorNETBOX contains the complete software and documentation
package that is available for your digitizerNETBOX/generatorNETBOX. You find the software packages at the following locations on the
USB-Stick:

Install software packages from the internet
All software packages are found on the downlaod page under www.spectrum-instrumentation.com

Inhere the latest versions and updates are available.

Install software packages from the digitizerNETBOX/generatorNETBOX
For easy installation or for installation on machines that don’t have access to a USB thumb drive, all software packages are also available
for download directly from the digitizerNETBOX/generatorNETBOX.

Please go to the download page of the integrated webserver and download and execute the software packages.

Software Package Operating System Location
Card Control Center Windows \Install\Win
SBench 6 Windows \Install\Win
LabVIEW, MATLAB, IVI Windows \Install\Win
C++, C#, VB.NET, Delphi, Python, Java, LabWindows/CVI... Windows \Examples\...

Driver API Linux /Driver/linux/install_libonly.sh
Card Control Center Linux /Install/linux/SBench6
SBench 6 Linux /Install/linux/spcm_control_center
MATLAB (64bit only) Linux /Install/linux
C++, Python, Java Linux /Examples/...
26 generatorNETBOX DN2.60x Manual

Software Driver Installation Linux

Linux

Overview
The Spectrum M2i/M3i/M4i/M4x/M2p cards and digitizerNETBOX/generatorNETBOX products are delivered with Linux drivers suitable
for Linux installations based on kernel 2.6, 3.x, 4.x or 5.x, single processor (non-SMP) and SMP systems, 32 bit and 64 bit systems. As each
Linux distribution contains different kernel versions and different system setup it is in nearly every case necessary, to have a directly matching
kernel driver for card level products to run it on a specific system. For digitizerNETBOX/generatorNETBOX products the library is suffcient
and no kernel driver has to be installed.

Spectrum delivers pre-compiled kernel driver modules for a number of common distributions with the cards. You may try to use one of these
kernel modules for different distributions which have a similar kernel version. Unfortunately this won’t work in most cases as most Linux system
refuse to load a driver which is not exactly matching. In this case it is possible to get the kernel driver sources from Spectrum. Please contact
your local sales representative to get more details on this procedure.

The Standard delivery contains the pre-compiled kernel driver modules for the most popular Linux distribu-
tions, like Suse, Debian, Fedora and Ubuntu. The list with all pre-compiled and readily supported distribu-
tions and their respective kernel version can be found under:
http://spectrum-instrumentation.com/en/supported-linux-distributions or via the shown QR code.

The Linux drivers have been tested with all above mentioned distributions by Spectrum. Each of these distri-
butions has been installed with the default setup using no kernel updates. A lot more different distributions
are used by customers with self compiled kernel driver modules.

Standard Driver Installation
The driver is delivered as installable kernel modules together with libraries to access the kernel driver. The installation script will help you with
the installation of the kernel module and the library.

This installation is only needed if you are operating real locally installed cards. For software emulated demo
cards, remotely installed cards or for digitizerNETBOX/generatorNETBOX products it is only necessary to in-
stall the libraries without a kernel as explained further below.

Login as root
It is necessary to have the root rights for installing a driver.

Call the install.sh <install_path> script
This script will install the kernel module and some helper scripts to a given directory. If you do not specify a directory it will use your home
directory as destination. It is possible to move the installed driver files later to any other directory.

The script will give you a list of matching kernel modules. Therefore it checks for the system width (32 bit or 64 bit) and the processor (single
or smp). The script will only show matching kernel modules. Select the kernel module matching your system. The script will then do the follow-
ing steps:

• copy the selected kernel module to the install directory (spcm.o or spcm.ko)
• copy the helper scripts to the install directory (spcm_start.sh and spc_end.sh)
• copy and rename the matching library to /usr/lib (/usr/lib/libspcm_linux.so)

Udev support
Once the driver is loaded it automatically generates the device nodes under /dev. The cards are automatically named to /dev/spcm0,
/dev/spcm1,...

You may use all the standard naming and rules that are available with udev.

Start the driver
Starting the driver can be done with the spcm_start.sh script that has been placed in the install directory. If udev is installed the script will only
load the driver. If no udev is installed the start script will load the driver and make the required device nodes /dev/spcm0... for accessing
the drivers. Please keep in mind that you need root rights to load the kernel module and to make the device nodes!

Using the dedicated start script makes sure that the device nodes are matching your system setup even if new hardware and drivers have
been added in between. Background: when loading the device driver it gets assigned a „major“ number that is used to access this driver.
All device nodes point to this major number instead of the driver name. The major numbers are assigned first come first served. This means
that installing new hardware may result in different major numbers on the next system start.
(c) Spectrum GmbH 27

Linux Software Driver Installation
Get first driver info
After the driver has been loaded successfully some information about the installed boards can be found in the /proc/spcm_cards file. Some
basic information from the on-board EEProm is listed for every card.

Stop the driver
You may want to unload the driver and clean up all device nodes. This can be done using the spcm_end.sh script that has also been placed
in the install directory

Standard Driver Update
A driver update is done with the same commands as shown above. Please make sure that the driver has been stopped before updating it.
To stop the driver you may use the spcm_end.sh script.

Compilation of kernel driver sources (optional and local cards only)
The driver sources are only available for existing customers on special request and against a signed NDA. The driver sources are not part of
the standard delivery. The driver source package contains only the sources of the kernel module, not the sources of the library.

Please do the following steps for compilation and installation of the kernel driver module:

Login as root
It is necessary to have the root rights for installing a driver.

Call the compile script make_spcm_linux_kerneldrv.sh
This script will examine the type of system you use and compile the kernel with the correct settings. If using a kernel 2.4 the makefile expects
two symbolic links in your system:

• /usr/src/linux pointing to the correct kernel source directory
• /usr/src/linux/.config pointing to the currently used kernel configuration

The compile script will then automatically call the install script and install the just compiled kernel module in your home directory. The rest of
the installation procedure is similar as explained above.

Update of a self compiled kernel driver
If the kernel driver has changed, one simply has to perform the same steps as shown above and recompile the kernel driver module. However
the kernel driver module isn’t changed very often.

Normally an update only needs new libraries. To update the libraries only you can either download the full Linux driver
(spcm_linux_drv_v123b4567) and only use the libraries out of this or one downloads the library package which is much smaller and doesn’t
contain the pre-compiled kernel driver module (spcm_linux_lib_v123b4567).

The update is done with a dedicated script which only updates the library file. This script is present in both driver archives:

Installing the library only without a kernel (for remote devices)
The kernel driver module only contains the basic hardware functions that are necessary to access locally installed card level products. The
main part of the driver is located inside a dynamically loadable library that is delivered with the driver. This library is available in 3 different
versions:

• spcm_linux_32bit_stdc++6.so - supporting libstdc++.so.6 on 32 bit systems
• spcm_linux_64bit_stdc++6.so - supporting libstdc++.so.6 on 64 bit systems

The matching version is installed automatically in the /usr/lib directory by the kernel driver install script for card level products. The library
is renamed for easy access to libspcm_linux.so.

For digitizerNETBOX/generatorNETBOX products and also for evaluating or using only the software simulated demo cards the library is in-
stalled with a separate install script:

cat /proc/spcm_cards

sh install_libonly.sh

sh install_libonly.sh
28 generatorNETBOX DN2.60x Manual

Software Driver Installation Linux
To access the driver library one must include the library in the compilation:

To start programming the cards under Linux please use the standard C/C++ examples which are all running under Linux and Windows.

Control Center
The Spectrum Control Center is also available for Linux and needs to be installed sepa-
rately. The features of the Control Center are described in a later chapter in deeper de-
tail. The Control Center has been tested under all Linux distributions for which Spectrum
delivers pre-compiled kernel modules. The following packages need to be installed to run
the Control Center:

• X-Server
• expat
• freetype
• fontconfig
• libpng
• libspcm_linux (the Spectrum linux driver library)

Installation
Use the supplied packages in either *.deb or *.rpm format found in the driver section of
the USB-Stick by double clicking the package file root rights from a X-Windows window.

The Control Center is installed under KDE, Gnome or Unity in the system/system tools
section. It may be located directly in this menu or under a „More Programs“ menu. The
final location depends on the used Linux distribution. The program itself is installed as
/usr/bin/spcmcontrol and may be started directly from here.

Manual Installation
To manually install the Control Center, first extract the files from the rpm matching your distribution:

You get the directory structure and the files contained in the rpm package. Copy the binary spcmcontrol to /usr/bin. Copy the .desktop file
to /usr/share/applications. Run ldconfig to update your systems library cache. Finally you can run spcmcontrol.

Troubleshooting
If you get a message like the following after starting spcmcontrol:

Run ldd spcm_control in the directory where spcm_control resides to see the dependencies of the program. The output may look like this:

As seen in the output, one of the libraries isn’t found inside the library cache of the system. Be sure that this library has been properly installed.
You may then run ldconfig. If this still doesn’t help please add the library path to /etc/ld.so.conf and run ldconfig again.

If the libspcm_linux.so is quoted as missing please make sure that you have installed the card driver properly before. If any other library is
stated as missing please install the matching package of your distribution.

gcc -o test_prg -lspcm_linux test.cpp

rpm2cpio spcmcontrol-{Version}.rpm > ~/spcmcontrol-{Version}.cpio
cd ~/
cpio -id < spcmcontrol-{Version}.cpio

spcm_control: error while loading shared libraries: libz.so.1: cannot open shared object file: No such file
or directory

libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x4019e000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x401ad000)
libz.so.1 => not found
libdl.so.2 => /lib/libdl.so.2 (0x402ba000)
libpthread.so.0 => /lib/tls/libpthread.so.0 (0x402be000)
libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x402d0000)
(c) Spectrum GmbH 29

Software Overview Software
Software
This chapter gives you an overview about the structure of the drivers and the software, where to find and how to use the examples. It shows
in detail, how the drivers are included using different programming languages and deals with the differences when calling the driver functions
from them.

This manual only shows the use of the standard driver API. For further information on programming drivers
for third-party software like LabVIEW, MATLAB or IVI an additional manual is required that is available on
USB-Stick or by download on the internet.

Software Overview

The Spectrum drivers offer you a common and fast API for using all of the board hardware features. This API is the same on all supported
operating systems. Based on this API one can write own programs using any programming language that can access the driver API. This
manual describes in detail the driver API, providing you with the necessary information to write your own programs.
The drivers for third-party products like LabVIEW or MATLAB are also based on this API. The special functionality of these drivers is not subject
of this document and is described with separate manuals available on the USB-Stick or on the website.

Card Control Center
A special card control center is available on USB-Stick and from the internet for all
Spectrum M2i/M3i/M4i/M4x/M2p cards and for all digitizerNETBOX or
generatorNETBOX products. Windows users find the Control Center installer on the
USB-Stick under „Install\win\spcmcontrol_install.exe“.

Linux users find the versions for the different stdc++ libraries under /In-
stall/linux/spcm_control_center/ as RPM packages.

When using a digitizerNETBOX/generatorNETBOX the Card Control Center install-
ers for Windows and Linux are also directly available from the integrated webserver.

The Control Center under Windows and Linux is available as an executive program.
Under Windows it is also linked as a system control and can be accessed directly
from the Windows control panel. Under Linux it is also available from the KDE Sys-
tem Settings, the Gnome or Unity Control Center. The different functions of the Spectrum card control center are explained in detail in the
following passages.

To install the Spectrum Control Center you will need to be logged in with administrator rights for your oper-
ating system. On all Windows versions, starting with Windows Vista, installations with enabled UAC will ask
you to start the installer with administrative rights (run as administrator).
30 generatorNETBOX DN2.60x Manual

Software Card Control Center
Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products
The Discovery function helps you to find and identify the Spectrum LXI
instruments like digitizerNETBOX/generatorNETBOX available to
your computer on the network. The Discovery function will also locate
Spectrum card products handled by an installed Spectrum Remote
Server somewhere on the network. The function is not needed if you
only have locally installed cards.

Please note that only remote products are found that are currently not
used by another program. Therefore in a bigger network the number
of Spectrum products found may vary depending on the current usage
of the products.

Execute the Discovery function by pressing the „Discovery“ button.
There is no progress window shown. After the discovery function has
been executed the remotely found Spectrum products are listed under
the node Remote as separate card level products. Inhere you find all
hardware information as shown in the next topic and also the needed
VISA resource string to access the remote card.

Please note that these information is also stored on your system and
allows Spectrum software like SBench 6 to access the cards directly
once found with the Discovery function.

After closing the control center and re-opening it the previously found
remote products are shown with the prefix cached, only showing the
card type and the serial number. This is the stored information that allows other Spectrum products to access previously found cards. Using
the „Update cached cards“ button will try to re-open these cards and gather information of it. Afterwards the remote cards may disappear if
they’re in use from somewhere else or the complete information of the remote products is shown again.

Enter IP Address of digitizerNETBOX/generatorNETBOX manually

If for some reason an automatic discovery is not suitable, such as the case where the remote
device is located in a different subnet, it can also be manually acessed by its type and IP ad-
dress.

Wake On LAN of digitizerNETBOX/generatorNETBOX
Cached digitizerNETBOX/generatorNETBOX products that are currently in standby mode can
be woken up by using the „Wake remote device“ entry from the context menu.

The Control Center will broadcast a standard Wake On LAN „Magic Packet“, that is sent to the
device’s MAC address.

It is also possible to use any other Wake On LAN software to wake a digitizerNETBOX by send-
ing such a „Magic Packet“ to the MAC address, which must be then entered manually.

It is also possible to wake a digitizerNETBOX/generatorNETBOX from your own application
software by using the SPC_NETBOX_WAKEONLAN register. To wake a
digitizerNETBOX/generatorNETBOX with the MAC address „00:03:2d:20:48“, the following
command can be issued:

spcm_dwSetParam_i64 (NULL, SPC_NETBOX_WAKEONLAN, 0x00032d2048ec);
(c) Spectrum GmbH 31

Card Control Center Software
Netbox Monitor
The Netbox Monitor permanently monitors whether the digitizerNETBOX/generatorNETBOX is still available through LAN. This tool is helpful
if the digitizerNETBOX is located somewhere in the company LAN or located remotely or directly mounted inside another device. Starting
the Netbox Monitor can be done in two different ways:

• Starting manually from the Spectrum Control Center using the context menu as shown above
• Starting from command line. The Netbox Monitor program is automatically installed together with the Spectrum Control Center and is

located in the selected install folder. Using the command line tool one can place a simple script into the autostart folder to have the Net-
box Monitor running automatically after system boot. The command line tool needs the IP address of the
digitizerNETBOX/generatorNETBOX to monitor:

The Netbox Monitor is shown as a small window with the type of digitizerNETBOX/generatorNETBOX in the title and the IP ad-
dress under which it is accessed in the window itself. The Netbox Monitor runs completely independent of any other software and
can be used in parallel to any application software. The background of the IP address is used to display the current status of the
device. Pressing the Escape key or alt + F4 (Windows) terminates the Netbox Monitor permanently.

After starting the Netbox Monitor it is also displayed as a tray icon under Windows. The tray icon itself shows the status
of the digitizerNETBOX/generatorNETBOX as a color. Please note that the tray icon may be hidden as a Windows
default and need to be set to visible using the Windows tray setup.

Left clicking on the tray icon will hide/show the small Netbox Monitor status window. Right clicking on the tray icon as
shown in the picture on the right will open up a context menu. In here one can again select to hide/show the Netbox
Monitor status window, one can directly open the web interface from here or quit the program (including the tray icon)
completely.

The checkbox „Show Status Message“ controls whether the tray icon should emerge a status message on status change. If enabled (which is
default) one is notified with a status message if for example the LAN connection to the digitizerNETBOX/generatorNETBOX is lost.

The status colors:

• Green: digitizerNETBOX/generatorNETBOX available and accessible over LAN
• Cyan: digitizerNETBOX/generatorNETBOX is used from my computer
• Yellow: digitizerNETBOX/generatorNETBOX is used from a different computer
• Red: LAN connection failed, digitizerNETBOX/generatorNETBOX is no longer accessible

Device identification
Pressing the Identification button helps to identify a certain device in either a remote location, such as inside
a 19“ rack where the back of the device with the type plate is not easily accessible, or a local device installed
in a certain slot. Pressing the button starts flashing a visible LED on the device, until the dialog is closed, for:

• On a digitizerNETBOX or generatorNETBOX: the LAN LED light on the front plate of the device
• On local or remote M4i, M4x or M2p card: the indicator LED on the card’s bracket

This feature is not available for M2i/M3i cards, either local or remote, other than inside a digitizerNETBOX or generatorNETBOX.

NetboxMonitor 192.168.169.22
32 generatorNETBOX DN2.60x Manual

Software Card Control Center
Hardware information
Through the control center you can easily get the main information
about all the installed Spectrum hardware. For each installed card
there is a separate tree of information available. The picture shows the
information for one installed card by example. This given information
contains:

• Basic information as the type of card, the production date and its
serial number, as well as the installed memory, the hardware revi-
sion of the base card, the number of available channels and
installed acquisition modules.

• Information about the maximum sampling clock and the available
quartz clock sources.

• The installed features/options in a sub-tree. The shown card is
equipped for example with the option Multiple Recording, Gated
Sampling, Timestamp and ABA-mode.

• Detailed Information concerning the installed acquisition modules.
In case of the shown analog acquisition card the information con-
sists of the module’s hardware revision, of the converter resolution
and the last calibration date as well as detailed information on the
available analog input ranges, offset compensation capabilities
and additional features of the inputs.

Firmware information
Another sub-tree is informing about the cards firmware ver-
sion. As all Spectrum cards consist of several programmable
components, there is one firmware version per component.

Nearly all of the components firmware can be updated by
software. The only exception is the configuration device,
which only can receive a factory update.

The procedure on how to update the firmware of your Spec-
trum card with the help of the card control center is described
in a dedicated section later on.

The procedure on how to update the firmware of your
digitizerNETBOX/generatorNETBOX with the help of the in-
tegrated Webserver is described in a dedicated chapter later
on.
(c) Spectrum GmbH 33

Card Control Center Software
Software License information
This sub-tree is informing about installed possible software li-
censes.

As a default all cards come with the demo professional li-
cense of SBench6, that is limited to 30 starts of the software
with all professional features unlocked.

The number of demo starts left can be seen here.

Driver information
The Spectrum card control center also offers a way to
gather information on the installed and used Spectrum
driver.

The information on the driver is available through a
dedicated tab, as the picture is showing in the example.

The provided information informs about the used type,
distinguishing between Windows or Linux driver and the
32 bit or 64 bit type.

It also gives direct information about the version of the
installed Spectrum kernel driver, separately for
M2i/M2iM3i cards and M4i/M4x/M2p cards and the
version of the library (which is the *.dll file under Win-
dows).

The information given here can also be found under
Windows using the device manager form the
control panel. For details in driver details within the con-
trol panel please stick to the section on driver installation
in your hardware manual.

Installing and removing Demo cards
With the help of the card control center one can install demo cards
in the system. A demo card is simulated by the Spectrum driver in-
cluding data production for acquisition cards. As the demo card is
simulated on the lowest driver level all software can be tested in-
cluding SBench, own applications and drivers for third-party prod-
ucts like LabVIEW. The driver supports up to 64 demo cards at the
same time. The simulated memory as well as the simulated software
options can be defined when adding a demo card to the system.

Please keep in mind that these demo cards are only meant to test
software and to show certain abilities of the software. They do not
simulate the complete behavior of a card, especially not any timing
concerning trigger, recording length or FIFO mode notification. The
demo card will calculate data every time directly after been called
and give it to the user application without any more delay. As the
calculation routine isn’t speed optimized, generating demo data
may take more time than acquiring real data and transferring them
to the host PC.

Installed demo cards are listed together with the real hardware in
the main information tree as described above. Existing demo cards
can be deleted by clicking the related button. The demo card de-
tails can be edited by using the edit button. It is for example possi-
ble to virtually install additional feature to one card or to change
the type to test with a different number of channels.
34 generatorNETBOX DN2.60x Manual

Software Card Control Center
For installing demo cards on a system without real hardware simply run the Control Center installer. If the
installer is not detecting the necessary driver files normally residing on a system with real hardware, it will
simply install the Spcm_driver.

Feature upgrade
All optional features of the M2i/M3i/M4i/M4x/M2p cards that do not require
any hardware modifications can be installed on fielded cards. After Spectrum has
received the order, the customer will get a personalized upgrade code. Just start
the card control center, click on „install feature“ and enter that given code. After a
short moment the feature will be installed and ready to use. No restart of the host
system is required.

For details on the available options and prices please contact your local Spectrum
distributor.

Software License upgrade
The software license for SBench 6 Professional is installed on the hardware. If order-
ing a software license for a card that has already been delivered you will get an up-
grade code to install that software license. The upgrade code will only match for that
particular card with the serial number given in the license. To install the software li-
cense please click the „Install SW License“ button and type in the code exactly as
given in the license.

Performing card calibration
The card control center also provides an easy way to access the
automatic card calibration routines of the Spectrum A/D convert-
er cards. Depending on the used card family this can affect offset
calibration only or also might include gain calibration. Please re-
fer to the dedicated chapter in your hardware manual for details.

Performing memory test
The complete on-board memory of the Spectrum M2i/M3i/M4i/M4x/M2p
cards can be tested by the memory test included with the card control center.

When starting the test, randomized data is generated and written to the on-
board memory. After a complete write cycle all the data is read back and com-
pared with the generated pattern.

Depending on the amount of installed on-board memory, and your computer’s
performance this operation might take a while.

Transfer speed test
The control center allows to measure the bus transfer
speed of an installed Spectrum card. Therefore different
setup is run multiple times and the overall bus transfer
speed is measured. To get reliable results it is necessary
that you disable debug logging as shown below. It is also
highly recommended that no other software or time-con-
suming background threads are running on that system.
The speed test program runs the following two tests:

• Repetitive Memory Transfers: single DMA data trans-
fers are repeated and measured. This test simulates
the measuring of pulse repetition frequency when
doing multiple single-shots. The test is done using dif-
ferent block sizes. One can estimate the transfer in
relation to the transferred data size on multiple single-shots.

• FIFO mode streaming: this test measures the streaming speed in FIFO mode. The test can only use the same direction of transfer the card
has been designed for (card to PC=read for all DAQ cards, PC to card=write for all generator cards and both directions for I/O cards).
The streaming speed is tested without using the front-end to measure the maximum bus speed that can be reached.
The Speed in FIFO mode depends on the selected notify size which is explained later in this manual in greater detail.
(c) Spectrum GmbH 35

Card Control Center Software
The results are given in MB/s meaning MByte per second. To estimate whether a desired acquisition speed is possible to reach one has to
calculate the transfer speed in bytes. There are a few things that have to be put into the calculation:

• 12, 14 and 16 bit analog cards need two bytes for each sample.
• 16 channel digital cards need 2 bytes per sample while 32 channel digital cards need 4 bytes and 64 channel digital cards need 8

bytes.
• The sum of analog channels must be used to calculate the total transfer rate.
• The figures in the Speed Test Utility are given as MBytes, meaning 1024 * 1024 Bytes, 1 MByte = 1048576 Bytes

As an example running a card with 2 14 bit analog channels with 28 MHz produces a transfer rate of [2 channels * 2 Bytes/Sample *
28000000] = 112000000 Bytes/second. Taking the above figures measured on a standard 33 MHz PCI slot the system is just capable of
reaching this transfer speed: 108.0 MB/s = 108 * 1024 * 1024 = 113246208 Bytes/second.

Unfortunately it is not possible to measure transfer speed on a system without having a Spectrum card installed.

Debug logging for support cases
For answering your support questions as fast as possible, the
setup of the card, driver and firmware version and other in-
formation is very helpful.

Therefore the card control center provides an easy way to
gather all that information automatically.

Different debug log levels are available through the graphi-
cal interface. By default the log level is set to „no logging“ for
maximum performance.

The customer can select different log levels and the path of
the generated ASCII text file. One can also decide to delete the previous log file first before creating a new one automatically or to append
different logs to one single log file.

For maximum performance of your hardware, please make sure that the debug logging is set to „no log-
ging“ for normal operation. Please keep in mind that a detailed logging in append mode can quickly gener-
ate huge log files.

Device mapping
Within the „Device mapping“ tab of the Spectrum Control Center, one can en-
able the re-mapping of Spectrum devices, be it either local cards, remote instru-
ments such as a digitizerNETBOX or generatorNETBOX or even cards in a
remote PC and accessed via the Spectrum remote server option.

In the left column the re-mapped device name is visible that is given to the device
in the right column with its original un-mapped device string.

In this example the two local cards „spcm0“ and „spcm1“ are re-mapped to
„spcm1“ and „spcm0“ respectively, so that their names are simply swapped.

The remote digitizerNETBOX device is mapped to spcm2.

The application software can then use the re-mapped name for simplicity instead
of the quite long VISA string.

Changing the order of devices within one group (either local cards or remote
devices) can simply be accomplished by draging&dropping the cards to their
desired position in the same table.

36 generatorNETBOX DN2.60x Manual

Software Accessing the hardware with SBench 6
Accessing the hardware with SBench 6
After the installation of the cards and the drivers it can be useful to first test the
card function with a ready to run software before starting with programming. If
accessing a digitizerNETBOX/generatorNETBOX a full SBench 6 Professional
license is installed on the system and can be used without any limitations. For
plug-in card level products a base version of SBench 6 is delivered with the card
on USB-Stick also including a 30 starts Professional demo version for plain card
products. If you already have bought a card prior to the first SBench 6 release
please contact your local dealer to get a SBench 6 Professional demo version.
All digitizerNETBOX/generatorNETBOX products come with a pre-installed full
SBench 6 Professional.

SBench 6 supports all current acquisition and generation cards and
digitizerNETBOX/generatorNETBOX products from Spectrum. Depending on
the used product and the software setup, one can use SBench as a digital stor-
age oscilloscope, a spectrum analyzer, a signal generator, a pattern generator,
a logic analyzer or simply as a data recording front end. Different export and
import formats allow the use of SBench 6 together with a variety of other pro-
grams.

On the USB-Stick you’ll find an install version of SBench 6 in the directory „/Install/SBench6“.

The current version of SBench 6 is available free of charge directly from the Spectrum website: www.spectrum-instrumentation.com. Please
go to the download section and get the latest version there.

SBench 6 has been designed to run under Windows 7, Windows 8 and Windows 10 as well as Linux using KDE, Gnome or Unity Desktop.

C/C++ Driver Interface
C/C++ is the main programming language for which the drivers have been designed for. Therefore the interface to C/C++ is the best match.
All the small examples of the manual showing different parts of the hardware programming are done with C. As the libraries offer a standard
interface it is easy to access the libraries also with other programming languages like Delphi, Basic, Python or Java . Please read the following
chapters for additional information on this.

Header files
The basic task before using the driver is to include the header files that are delivered on USB-Stick together with the board. The header files
are found in the directory /Driver/c_header. Please don’t change them in any way because they are updated with each new driver version
to include the new registers and new functionality.

Example for including the header files:

Please always keep the order of including the four Spectrum header files. Otherwise some or all of the func-
tions do not work properly or compiling your program will be impossible!

dlltyp.h Includes the platform specific definitions for data types and function declarations. All data types are based on these definitions. The use of this type definition
file allows the use of examples and programs on different platforms without changes to the program source. The header file supports Microsoft Visual C++, Bor-
land C++ Builder and GNU C/C++ directly. When using other compilers it might be necessary to make a copy of this file and change the data types accord-
ing to this compiler.

regs.h Defines all registers and commands which are used in the Spectrum driver for the different boards. The registers a board uses are described in the board spe-
cific part of the documentation. This header file is common for all cards. Therefore this file also contains a huge number of registers used on other card types
than the one described in this manual. Please stick to the manual to see which registers are valid for your type of card.

spcm_drv.h Defines the functions of the used SpcM driver. All definitions are taken from the file dlltyp.h. The functions themselves are described below.
spcerr.h Contains all error codes used with the Spectrum driver. All error codes that can be given back by any of the driver functions are also described here briefly. The

error codes and their meaning are described in detail in the appendix of this manual.

// ----- driver includes -----
#include "dlltyp.h" // 1st include
#include "regs.h" // 2nd include
#include "spcerr.h" // 3rd include
#include "spcm_drv.h" // 4th include
(c) Spectrum GmbH 37

C/C++ Driver Interface Software
General Information on Windows 64 bit drivers
After installation of the Spectrum 64 bit driver there are two general ways to access the hardware and to de-
velop applications. If you’re going to develop a real 64 bit application it is necessary to access the 64 bit
driver dll (spcm_win64.dll) as only this driver dll is supporting the full 64 bit address range.

But it is still possible to run 32 bit applications or to develop 32 bit applications even under Windows 64 bit.
Therefore the 32 bit driver dll (spcm_win32.dll) is also installed in the system. The Spectrum SBench5 software
is for example running under Windows 64 bit using this driver. The 32 bit dll of course only offers the 32 bit
address range and is therefore limited to access only 4 GByte of memory. Beneath both drivers the 64 bit ker-
nel driver is running.

Mixing of 64 bit application with 32 bit dll or vice versa is not possible.

Microsoft Visual C++ 6.0, 2005 and newer 32 Bit

Include Driver
The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win32_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. Please include the library file in your
Visual C++ project as shown in the examples. All functions described below are now available in your program.

Examples
Examples can be found on USB-Stick in the path /examples/c_cpp. This directory includes a number of different examples that can be used
with any card of the same type (e.g. A/D acquisition cards, D/A acquisition cards). You may use these examples as a base for own pro-
gramming and modify them as you like. The example directories contain a running workspace file for Microsoft Visual C++ 6.0 (*.dsw) as
well as project files for Microsoft Visual Studio 2005 and newer (*.vcproj) that can be directly loaded or imported and compiled.
There are also some more board type independent examples in separate subdirectory. These examples show different aspects of the cards
like programming options or synchronization and can be combined with one of the board type specific examples.

As the examples are build for a card class there are some checking routines and differentiation between cards families. Differentiation aspects
can be number of channels, data width, maximum speed or other details. It is recommended to change the examples matching your card
type to obtain maximum performance. Please be informed that the examples are made for easy understanding and simple showing of one
aspect of programming. Most of the examples are not optimized for maximum throughput or repetition rates.

Microsoft Visual C++ 2005 and newer 64 Bit
Depending on your version of the Visual Studio suite it may be necessary to install some additional 64 bit components (SDK) on your system.
Please follow the instructions found on the MSDN for further information.

Include Driver
The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win64_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. All functions described below are
now available in your program.

C++ Builder 32 Bit

Include Driver
The driver files can be easily included in C++ Builder by simply using the library file spcm_win32_bcppb.lib that is delivered together with
the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. Please include the library file in your C++
Builder project as shown in the examples. All functions described below are now available in your program.

Examples
The C++ Builder examples share the sources with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. In each example directory are project files for Visual C++ as well as C++ Builder.
38 generatorNETBOX DN2.60x Manual

Software Driver functions
Linux Gnu C/C++ 32/64 Bit

Include Driver
The interface of the linux drivers does not differ from the windows interface. Please include the spcm_linux.lib library in your makefile to have
access to all driver functions. A makefile may look like this:

Examples
The Gnu C/C++ examples share the source with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. Each example directory contains a makefile for the Gnu C/C++ examples.

C++ for .NET
Please see the next chapter for more details on the .NET inclusion.

Other Windows C/C++ compilers 32 Bit

Include Driver
To access the driver, the driver functions must be loaded from the 32 bit driver DLL. Most compilers offer special tools to generate a matching
library (e.g. Borland offers the implib tool that generates a matching library out of the windows driver DLL). If such a tool is available it is
recommended to use it. Otherwise the driver functions need to be loaded from the dll using standard Windows functions. There is one exam-
ple in the example directory /examples/c_cpp/dll_loading that shows the process.

Example of function loading:

Other Windows C/C++ compilers 64 Bit

Include Driver
To access the driver, the driver functions must be loaded from the 64 bit the driver DLL. Most compilers offer special tools to generate a match-
ing library (e.g. Borland offers the implib tool that generates a matching library out of the windows driver DLL). If such a tool is available it
is recommended to use it. Otherwise the driver functions need to be loaded from the dll using standard Windows functions. There is one
example in the example directory /examples/c_cpp/dll_loading that shows the process for 32 bit environments. The only line that needs to
be modified is the one loading the DLL:

Example of function loading:

Driver functions
The driver contains seven main functions to access the hardware.

Own types used by our drivers
To simplify the use of the header files and our examples with different platforms and compilers and to avoid any implicit type conversions we
decided to use our own type declarations. This allows us to use platform independent and universal examples and driver interfaces. If you
do not stick to these declarations please be sure to use the same data type width. However it is strongly recommended that you use our defined

COMPILER = gcc
EXECUTABLE = test_prg
LIBS = -lspcm_linux

OBJECTS = test.o\
 test2.o

all: $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
 $(COMPILER) $(CFLAGS) -o $(EXECUTABLE) $(LIBS) $(OBJECTS)

%.o: %.cpp
 $(COMPILER) $(CFLAGS) -o $*.o -c $*.cpp

hDLL = LoadLibrary ("spcm_win32.dll"); // Load the 32 bit version of the Spcm driver
pfn_spcm_hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, "_spcm_hOpen@4");
pfn_spcm_vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "_spcm_vClose@4");

hDLL = LoadLibrary ("spcm_win64.dll"); // Modified: Load the 64 bit version of the Spcm driver here
pfn_spcm_hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, "spcm_hOpen");
pfn_spcm_vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "spcm_vClose");
(c) Spectrum GmbH 39

Driver functions Software
type declarations to avoid any hard to find errors in your programs. If you’re using the driver in an environment that is not natively supported
by our examples and drivers please be sure to use a type declaration that represents a similar data width

Notation of variables and functions
In our header files and examples we use a common and reliable form of notation for variables and functions. Each name also contains the
type as a prefix. This notation form makes it easy to see implicit type conversions and minimizes programming errors that result from using
incorrect types. Feel free to use this notation form for your programs also-

Function spcm_hOpen
This function initializes and opens an installed card supporting the new SpcM driver interface, which at the time of printing, are all cards of
the M2i/M3i/M4i/M4x/M2p series and the related digitizerNETBOX/generatorNETBOX devices. The function returns a handle that has to
be used for driver access. If the card can’t be found or the loading of the driver generated an error the function returns a NULL. When calling
this function all card specific installation parameters are read out from the hardware and stored within the driver. It is only possible to open
one device by one software as concurrent hardware access may be very critical to system stability. As a result when trying to open the same
device twice an error will be raised and the function returns NULL.

Function spcm_hOpen (const char* szDeviceName):

Under Linux the device name in the function call needs to be a valid device name. Please change the string according to the location of the
device if you don’t use the standard Linux device names. The driver is installed as default under /dev/spcm0, /dev/spcm1 and so on. The
kernel driver numbers the devices starting with 0.

Under Windows the only part of the device name that is used is the tailing number. The rest of the device name is ignored. Therefore to keep
the examples simple we use the Linux notation in all our examples. The tailing number gives the index of the device to open. The Windows
kernel driver numbers all devices that it finds on boot time starting with 0.

Example for local installed cards

Example for digitizerNETBOX/generatorNETBOX and remote installed cards

If the function returns a NULL it is possible to read out the error description of the failed open function by simply passing this NULL to the error
function. The error function is described in one of the next topics.

Function spcm_vClose
This function closes the driver and releases all allocated resources. After closing the driver handle it is not possible to access this driver any
more. Be sure to close the driver if you don’t need it any more to allow other programs to get access to this device.

Function spcm_vClose:

Declaration Type Declaration Type
int8 8 bit signed integer (range from -128 to +127) uint8 8 bit unsigned integer (range from 0 to 255)
int16 16 bit signed integer (range from -32768 to 32767) uint16 16 bit unsigned integer (range from 0 to 65535)
int32 32 bit signed integer (range from -2147483648 to 2147483647) uint32 32 bit unsigned integer (range from 0 to 4294967295)
int64 64 bit signed integer (full range) uint64 64 bit unsigned integer (full range)
drv_handle handle to driver, implementation depends on operating system platform

Declaration Notation Declaration Notation
int8 byName (byte) uint8 cName (character)
int16 nName uint16 wName (word)
int32 lName (long) uint32 dwName (double word)
int64 llName (long long) uint64 qwName (quad word)
int32* plName (pointer to long) char szName (string with zero termination)

drv_handle _stdcall spcm_hOpen (// tries to open the device and returns handle or error code
 const char* szDeviceName); // name of the device to be opened

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("/dev/spcm0"); // string to the driver to open
if (!hDrv)
 printf (“open of driver failed\n”);

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST0::INSTR");
if (!hDrv)
 printf (“open of driver failed\n”);

void _stdcall spcm_vClose (// closes the device
 drv_handle hDevice); // handle to an already opened device
40 generatorNETBOX DN2.60x Manual

Software Driver functions
Example:

Function spcm_dwSetParam
All hardware settings are based on software registers that can be set by one of the functions spcm_dwSetParam. These functions set a register
to a defined value or execute a command. The board must first be initialized by the spcm_hOpen function. The parameter lRegister must have
a valid software register constant as defined in regs.h. The available software registers for the driver are listed in the board specific part of
the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what is
zero.

Function spcm_dwSetParam

Example:

This example sets the memory size to 16 kSamples (16384). If an error occurred the example will show a short error message

Function spcm_dwGetParam
All hardware settings are based on software registers that can be read by one of the functions spcm_dwGetParam. These functions read an
internal register or status information. The board must first be initialized by the spcm_hOpen function. The parameter lRegister must have a
valid software register constant as defined in the regs.h file. The available software registers for the driver are listed in the board specific part
of the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what
is zero.

Function spcm_dwGetParam

Example:

The example reads out the serial number of the installed card and prints it. As the serial number is available under all circumstances there is
no error checking when calling this function.

Different call types of spcm_dwSetParam and spcm_dwGetParam: _i32, _i64, _i64m
The three functions only differ in the type of the parameters that are used to call them. As some of the registers can exceed the 32 bit integer
range (like memory size or post trigger) it is recommended to use the _i64 function to access these registers. However as there are some

spcm_vClose (hDrv);

uint32 _stdcall spcm_dwSetParam_i32 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be modified
 int32 lValue); // the value to be set

uint32 _stdcall spcm_dwSetParam_i64m (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be modified
 int32 lValueHigh, // upper 32 bit of the value. Containing the sign bit !
 uint32 dwValueLow); // lower 32 bit of the value.

uint32 _stdcall spcm_dwSetParam_i64 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be modified
 int64 llValue); // the value to be set

if (spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 16384) != ERR_OK)
 printf (“Error when setting memory size\n”);

uint32 _stdcall spcm_dwGetParam_i32 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be read out
 int32* plValue); // pointer for the return value

uint32 _stdcall spcm_dwGetParam_i64m (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be read out
 int32* plValueHigh, // pointer for the upper part of the return value
 uint32* pdwValueLow); // pointer for the lower part of the return value

uint32 _stdcall spcm_dwGetParam_i64 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be read out
 int64* pllValue); // pointer for the return value

int32 lSerialNumber;
spcm_dwGetParam_i32 (hDrv, SPC_PCISERIALNO, &lSerialNumber);
printf (“Your card has serial number: %05d\n”, lSerialNumber);
(c) Spectrum GmbH 41

Driver functions Software
programs or compilers that don’t support 64 bit integer variables there are two functions that are limited to 32 bit integer variables. In case
that you do not access registers that exceed 32 bit integer please use the _i32 function. In case that you access a register which exceeds 64
bit value please use the _i64m calling convention. Inhere the 64 bit value is split into a low double word part and a high double word part.
Please be sure to fill both parts with valid information.

If accessing 64 bit registers with 32 bit functions the behavior differs depending on the real value that is currently located in the register.
Please have a look at this table to see the different reactions depending on the size of the register:

Function spcm_dwGetContBuf
This function reads out the internal continuous memory buffer in bytes, in case one has been allocated. If no buffer has been allocated the
function returns a size of zero and a NULL pointer. You may use this buffer for data transfers. As the buffer is continuously allocated in memory
the data transfer will speed up by up to 15% - 25%, depending on your specific kind of card. Please see further details in the appendix of
this manual.

These functions have been added in driver version 1.36. The functions are not available in older driver ver-
sions.

These functions also only have effect on locally installed cards and are neither useful nor usable with any
digitizerNETBOX or generatorNETBOX products, because no local kernel driver is involved in such a setup.
For remote devices these functions will return a NULL pointer for the buffer and 0 Bytes in length.

Function spcm_dwDefTransfer
The spcm_dwDefTransfer function defines a buffer for a following data transfer. This function only defines the buffer, there is no data transfer
performed when calling this function. Instead the data transfer is started with separate register commands that are documented in a later
chapter. At this position there is also a detailed description of the function parameters.
Please make sure that all parameters of this function match. It is especially necessary that the buffer address is a valid address pointing to
memory buffer that has at least the size that is defined in the function call. Please be informed that calling this function with non valid param-
eters may crash your system as these values are base for following DMA transfers.

The use of this function is described in greater detail in a later chapter.

Internal register read/write Function type Behavior
32 bit register read spcm_dwGetParam_i32 value is returned as 32 bit integer in plValue
32 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer in pllValue
32 bit register read spcm_dwGetParam_i64m value is returned as 64 bit integer, the lower part in plValueLow, the upper part in plValueHigh. The upper part can

be ignored as it’s only a sign extension
32 bit register write spcm_dwSetParam_i32 32 bit value can be directly written
32 bit register write spcm_dwSetParam_i64 64 bit value can be directly written, please be sure not to exceed the valid register value range
32 bit register write spcm_dwSetParam_i64m 32 bit value is written as llValueLow, the value llValueHigh needs to contain the sign extension of this value. In case

of llValueLow being a value >= 0 llValueHigh can be 0, in case of llValueLow being a value < 0, llValueHigh has to
be -1.

64 bit register read spcm_dwGetParam_i32 If the internal register has a value that is inside the 32 bit integer range (-2G up to (2G - 1)) the value is returned
normally. If the internal register exceeds this size an error code ERR_EXCEEDSINT32 is returned. As an example:
reading back the installed memory will work as long as this memory is < 2 GByte. If the installed memory is >= 2
GByte the function will return an error.

64 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer value in pllValue independent of the value of the internal register.
64 bit register read spcm_dwGetParam_i64m the internal value is split into a low and a high part. As long as the internal value is within the 32 bit range, the low

part plValueLow contains the 32 bit value and the upper part plValueHigh can be ignored. If the internal value
exceeds the 32 bit range it is absolutely necessary to take both value parts into account.

64 bit register write spcm_dwSetParam_i32 the value to be written is limited to 32 bit range. If a value higher than the 32 bit range should be written, one of
the other function types need to used.

64 bit register write spcm_dwSetParam_i64 the value has to be split into two parts. Be sure to fill the upper part lValueHigh with the correct sign extension even
if you only write a 32 bit value as the driver every time interprets both parts of the function call.

64 bit register write spcm_dwSetParam_i64m the value can be written directly independent of the size.

uint32 _stdcall spcm_dwGetContBuf_i64 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_XXXX
 void** ppvDataBuffer, // address of available data buffer
 uint64* pqwContBufLen); // length of available continuous buffer

uint32 _stdcall spcm_dwGetContBuf_i64m (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_XXXX
 void** ppvDataBuffer, // address of available data buffer
 uint32* pdwContBufLenH, // high part of length of available continuous buffer
 uint32* pdwContBufLenL); // low part of length of available continuous buffer
42 generatorNETBOX DN2.60x Manual

Software Driver functions
Function spcm_dwDefTransfer

This function is available in two different formats as the spcm_dwGetParam and spcm_dwSetParam functions are. The background is the
same. As long as you’re using a compiler that supports 64 bit integer values please use the _i64 function. Any other platform needs to use
the _i64m function and split offset and length in two 32 bit words.

Example:

The example defines a data buffer of 8 kSamples of 16 bit integer values = 16 kByte (16384 byte) for a transfer from card to PC memory.
As notify size is set to 0 we only want to get an event when the transfer has finished.

Function spcm_dwInvalidateBuf
The invalidate buffer function is used to tell the driver that the buffer that has been set with spcm_dwDefTransfer call is no longer valid. It is
necessary to use the same buffer type as the driver handles different buffers at the same time. Call this function if you want to delete the buffer
memory after calling the spcm_dwDefTransfer function. If the buffer already has been transferred after calling spcm_dwDefTransfer it is not
necessary to call this function. When calling spcm_dwDefTransfer any further defined buffer is automatically invalidated.

Function spcm_dwInvalidateBuf

Function spcm_dwGetErrorInfo
The function returns complete error information on the last error that has occurred. The error handling itself is explained in a later chapter in
greater detail. When calling this function please be sure to have a text buffer allocated that has at least ERRORTEXTLEN length. The error text
function returns a complete description of the error including the register/value combination that has raised the error and a short description
of the error details. In addition it is possible to get back the error generating register/value for own error handling. If not needed the buffers
for register/value can be left to NULL.

Note that the timeout event (ERR_TIMEOUT) is not counted as an error internally as it is not locking the driver
but as a valid event. Therefore the GetErrorInfo function won’t return the timeout event even if it had occurred
in between. You can only recognize the ERR_TIMEOUT as a direct return value of the wait function that was
called.

Function spcm_dwGetErrorInfo

uint32 _stdcall spcm_dwDefTransfer_i64m(// Defines the transfer buffer by 2 x 32 bit unsigned integer
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to define as listed above under SPCM_BUF_XXXX
 uint32 dwDirection, // the transfer direction as defined above
 uint32 dwNotifySize, // no. of bytes after which an event is sent (0=end of transfer)
 void* pvDataBuffer, // pointer to the data buffer
 uint32 dwBrdOffsH, // high part of offset in board memory
 uint32 dwBrdOffsL, // low part of offset in board memory
 uint32 dwTransferLenH, // high part of transfer buffer length
 uint32 dwTransferLenL); // low part of transfer buffer length

uint32 _stdcall spcm_dwDefTransfer_i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to define as listed above under SPCM_BUF_XXXX
 uint32 dwDirection, // the transfer direction as defined above
 uint32 dwNotifySize, // no. of bytes after which an event is sent (0=end of transfer)
 void* pvDataBuffer, // pointer to the data buffer
 uint64 qwBrdOffs, // offset for transfer in board memory
 uint64 qwTransferLen); // buffer length

int16* pnBuffer = (int16*) pvAllocMemPageAligned (16384);
if (spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC, 0, (void*) pnBuffer, 0, 16384) != ERR_OK)
 printf (“DefTransfer failed\n”);

uint32 _stdcall spcm_dwInvalidateBuf (// invalidate the transfer buffer
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType); // type of the buffer to invalidate as
 // listed above under SPCM_BUF_XXXX

uint32 _stdcall spcm_dwGetErrorInfo_i32 (
 drv_handle hDevice, // handle to an already opened device
 uint32* pdwErrorReg, // address of the error register (can be zero if not of interest)
 int32* plErrorValue, // address of the error value (can be zero if not of interest)
 char pszErrorTextBuffer[ERRORTEXTLEN]); // text buffer for text error
(c) Spectrum GmbH 43

Driver functions Software
Example:

char szErrorBuf[ERRORTEXTLEN];
if (spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -1))
 {
 spcm_dwGetErrorInfo_i32 (hDrv, NULL, NULL, szErrorBuf);
 printf (“Set of memsize failed with error message: %s\n”, szErrorBuf);
 }
44 generatorNETBOX DN2.60x Manual

Software Delphi (Pascal) Programming Interface
Delphi (Pascal) Programming Interface

Driver interface
The driver interface is located in the sub-directory d_header and contains the following files. The files need to be included in the delphi project
and have to be put into the „uses“ section of the source files that will access the driver. Please do not edit any of these files as they’re regularly
updated if new functions or registers have been included.

file spcm_win32.pas
The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library
are similar to the above explained standard driver functions:

The file also defines types used inside the driver and the examples. The types have similar names as used under C/C++ to keep the examples
more simple to understand and allow a better comparison.

file SpcRegs.pas
The SpcRegs.pas file defines all constants that are used for the driver. The constant names are the same names as used under the C/C++
examples. All constants names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better visibility of the programs:

file SpcErr.pas
The SpeErr.pas file contains all error codes that may be returned by the driver.

Including the driver files
To use the driver function and all the defined constants it is necessary to include the files into the project as
shown in the picture on the right. The project overview is taken from one of the examples delivered on USB-
Stick. Besides including the driver files in the project it is also necessary to include them in the uses section
of the source files where functions or constants should be used:

// ----- device handling functions -----
function spcm_hOpen (strName: pchar): int32; stdcall; external 'spcm_win32.dll' name '_spcm_hOpen@4';
procedure spcm_vClose (hDevice: int32); stdcall; external 'spcm_win32.dll' name '_spcm_vClose@4';

function spcm_dwGetErrorInfo_i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_i32@16'

// ----- register access functions -----
function spcm_dwSetParam_i32 (hDevice, lRegister, lValue: int32): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i32@12';

function spcm_dwSetParam_i64 (hDevice, lRegister: int32; llValue: int64): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i64@16';

function spcm_dwGetParam_i32 (hDevice, lRegister: int32; var plValue: int32): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i32@12';

function spcm_dwGetParam_i64 (hDevice, lRegister: int32; var pllValue: int64): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i64@12';

// ----- data handling -----
function spcm_dwDefTransfer_i64 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer;
llBrdOffs, llTransferLen: int64): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwDefTransfer_i64@36';

function spcm_dwInvalidateBuf (hDevice, lBuffer: int32): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwInvalidateBuf@8';

const SPC_M2CMD = 100; { write a command }
const M2CMD_CARD_RESET = $00000001; { hardware reset }
const M2CMD_CARD_WRITESETUP = $00000002; { write setup only }
const M2CMD_CARD_START = $00000004; { start of card (including writesetup) }
const M2CMD_CARD_ENABLETRIGGER = $00000008; { enable trigger engine }
...

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ExtCtrls,

 SpcRegs, SpcErr, spcm_win32;
(c) Spectrum GmbH 45

Delphi (Pascal) Programming Interface Software
Examples
Examples for Delphi can be found on USB-Stick in the directory /examples/delphi. The directory contains the above mentioned delphi header
files and a couple of universal examples, each of them working with a certain type of card. Please feel free to use these examples as a base
for your programs and to modify them in any kind.

spcm_scope
The example implements a very simple scope program that makes single acquisitions on button pressing. A fixed setup is done inside the
example. The spcm_scope example can be used with any analog data acquisition card from Spectrum. It covers cards with 1 byte per sample
(8 bit resolution) as well as cards with 2 bytes per sample (12, 14 and 16 bit resolution)

The program shows the following steps:

• Initialization of a card and reading of card information like type, function and serial number
• Doing a simple card setup
• Performing the acquisition and waiting for the end interrupt
• Reading of data, re-scaling it and displaying waveform on screen

46 generatorNETBOX DN2.60x Manual

Software .NET programming languages
.NET programming languages

Library
For using the driver with a .NET based language Spectrum delivers a special library that encapsulates the driver in a .NET object. By adding
this object to the project it is possible to access all driver functions and constants from within your .NET environment.

There is one small console based example for each supported .NET language that shows how to include the driver and how to access the
cards. Please combine this example with the different standard examples to get the different card functionality.

Declaration
The driver access methods and also all the type, register and error declarations are combined in the object Spcm and are located in one of
the two DLLs either SpcmDrv32.NET.dll or SpcmDrv64.NET.dll delivered with the .NET examples.

For simplicity, either file is simply called „SpcmDrv.NET.dll“ in the following passages and the actual file
name must be replaced with either the 32bit or 64bit version according to your application.

Spectrum also delivers the source code of the DLLs as a C# project. These sources are located in the directory SpcmDrv.NET.

Using C#
The SpcmDrv.NET.dll needs to be included within the Solution Explorer in the References section. Please use right mouse and select
„AddReference“. After this all functions and constants of the driver object are available.

Please see the example in the directory CSharp as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

namespace Spcm
 {
 public class Drv
 {
 [DllImport("spcm_win32.dll")]public static extern IntPtr spcm_hOpen (string szDeviceName);
 [DllImport("spcm_win32.dll")]public static extern void spcm_vClose (IntPtr hDevice);
...
 public class CardType
 {
 public const int TYP_M2I2020 = unchecked ((int)0x00032020);
 public const int TYP_M2I2021 = unchecked ((int)0x00032021);
 public const int TYP_M2I2025 = unchecked ((int)0x00032025);
...
 public class Regs
 {
 public const int SPC_M2CMD = unchecked ((int)100);
 public const int M2CMD_CARD_RESET = unchecked ((int)0x00000001);
 public const int M2CMD_CARD_WRITESETUP = unchecked ((int)0x00000002);
...

// ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0");
if ((int)hDevice == 0)
 {
 Console.WriteLine("Error: Could not open card\n");
 return 1;
 }

// ----- get card type -----
dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, out lCardType);
dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, out lSerialNumber);

// ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR");
(c) Spectrum GmbH 47

.NET programming languages Software

Using Managed C++/CLI
The SpcmDrv.NET.dll needs to be included within the project options. Please select „Project“ - „Properties“ - „References“ and finally
„Add new Reference“. After this all functions and constants of the driver object are available.

Please see the example in the directory CppCLR as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

Using VB.NET
The SpcmDrv.NET.dll needs to be included within the project options. Please select „Project“ - „Properties“ - „References“ and finally
„Add new Reference“. After this all functions and constants of the driver object are available.

Please see the example in the directory VB.NET as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

Using J#
The SpcmDrv.NET.dll needs to be included within the Solution Explorer in the References section. Please use right mouse and select „AddRef-
erence“. After this all functions and constants of the driver object are available.

Please see the example in the directory JSharp as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

// ----- open card -----
hDevice = Drv::spcm_hOpen("/dev/spcm0");
if ((int)hDevice == 0)
 {
 Console::WriteLine("Error: Could not open card\n");
 return 1;
 }

// ----- get card type -----
dwErrorCode = Drv::spcm_dwGetParam_i32(hDevice, Regs::SPC_PCITYP, lCardType);
dwErrorCode = Drv::spcm_dwGetParam_i32(hDevice, Regs::SPC_PCISERIALNR, lSerialNumber);

// ----- open remote card -----
hDevice = Drv::spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR");

' ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0")

If (hDevice = 0) Then
 Console.WriteLine("Error: Could not open card\n")
Else

 ' ----- get card type -----
 dwError = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, lCardType)
 dwError = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, lSerialNumber)

' ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR")

// ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0");

if (hDevice.ToInt32() == 0)
 System.out.println("Error: Could not open card\n");
else
 {
 // ----- get card type -----
 dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, lCardType);
 dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, lSerialNumber);

' ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR")
48 generatorNETBOX DN2.60x Manual

Software Python Programming Interface and Examples
Python Programming Interface and Examples

Driver interface
The driver interface contains the following files. The files need to be included in the python project. Please do not edit any of these files as
they are regularily updated if new functions or registers have been included. To use pyspcm you need either python 2 (2.4, 2.6 or 2.7) or
python 3 (3.x) and ctype, which is included in python 2.6 and newer and needs to be installed separately for Python 2.4.

file pyspcm.py
The file contains the interface to the driver library and defines some needed constants. All functions of the python library are similar to the
above explained standard driver functions and use ctypes as input and return parameters:

----- Windows -----
spcmDll = windll.LoadLibrary ("c:\\windows\\system32\\spcm_win32.dll")

load spcm_hOpen
spcm_hOpen = getattr (spcmDll, "_spcm_hOpen@4")
spcm_hOpen.argtype = [c_char_p]
spcm_hOpen.restype = drv_handle

load spcm_vClose
spcm_vClose = getattr (spcmDll, "_spcm_vClose@4")
spcm_vClose.argtype = [drv_handle]
spcm_vClose.restype = None

load spcm_dwGetErrorInfo
spcm_dwGetErrorInfo_i32 = getattr (spcmDll, "_spcm_dwGetErrorInfo_i32@16")
spcm_dwGetErrorInfo_i32.argtype = [drv_handle, ptr32, ptr32, c_char_p]
spcm_dwGetErrorInfo_i32.restype = uint32

load spcm_dwGetParam_i32
spcm_dwGetParam_i32 = getattr (spcmDll, "_spcm_dwGetParam_i32@12")
spcm_dwGetParam_i32.argtype = [drv_handle, int32, ptr32]
spcm_dwGetParam_i32.restype = uint32

load spcm_dwGetParam_i64
spcm_dwGetParam_i64 = getattr (spcmDll, "_spcm_dwGetParam_i64@12")
spcm_dwGetParam_i64.argtype = [drv_handle, int32, ptr64]
spcm_dwGetParam_i64.restype = uint32

load spcm_dwSetParam_i32
spcm_dwSetParam_i32 = getattr (spcmDll, "_spcm_dwSetParam_i32@12")
spcm_dwSetParam_i32.argtype = [drv_handle, int32, int32]
spcm_dwSetParam_i32.restype = uint32

load spcm_dwSetParam_i64
spcm_dwSetParam_i64 = getattr (spcmDll, "_spcm_dwSetParam_i64@16")
spcm_dwSetParam_i64.argtype = [drv_handle, int32, int64]
spcm_dwSetParam_i64.restype = uint32

load spcm_dwSetParam_i64m
spcm_dwSetParam_i64m = getattr (spcmDll, "_spcm_dwSetParam_i64m@16")
spcm_dwSetParam_i64m.argtype = [drv_handle, int32, int32, int32]
spcm_dwSetParam_i64m.restype = uint32

load spcm_dwDefTransfer_i64
spcm_dwDefTransfer_i64 = getattr (spcmDll, "_spcm_dwDefTransfer_i64@36")
spcm_dwDefTransfer_i64.argtype = [drv_handle, uint32, uint32, uint32, c_void_p, uint64, uint64]
spcm_dwDefTransfer_i64.restype = uint32

spcm_dwInvalidateBuf = getattr (spcmDll, "_spcm_dwInvalidateBuf@8")
spcm_dwInvalidateBuf.argtype = [drv_handle, uint32]
spcm_dwInvalidateBuf.restype = uint32

----- Linux -----
use cdll because all driver access functions use cdecl calling convention under linux
spcmDll = cdll.LoadLibrary ("libspcm_linux.so")

the loading of the driver access functions is similar to windows:

load spcm_hOpen
spcm_hOpen = getattr (spcmDll, "spcm_hOpen")
spcm_hOpen.argtype = [c_char_p]
spcm_hOpen.restype = drv_handle

...
(c) Spectrum GmbH 49

Python Programming Interface and Examples Software
file regs.py
The regs.py file defines all constants that are used for the driver. The constant names are the same names compared to the C/C++ examples.
All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is recommended
to only use these constant names for better readability of the programs:

file spcerr.py
The spcerr.py file contains all error codes that may be returned by the driver.

Examples
Examples for Python can be found on USB-Stick in the directory /examples/python. The directory contains the above mentioned header files
and some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs
and to modify them in any kind.

When allocating the buffer for DMA transfers, use the following function to get a mutable character buffer:
ctypes.create_string_buffer(init_or_size[, size])

SPC_M2CMD = 100l # write a command
M2CMD_CARD_RESET = 0x00000001l # hardware reset
M2CMD_CARD_WRITESETUP = 0x00000002l # write setup only
M2CMD_CARD_START = 0x00000004l # start of card (including writesetup)
M2CMD_CARD_ENABLETRIGGER = 0x00000008l # enable trigger engine
...
50 generatorNETBOX DN2.60x Manual

Software Java Programming Interface and Examples
Java Programming Interface and Examples

Driver interface
The driver interface contains the following Java files (classes). The files need to be included in your Java project. Please do not edit any of
these files as they are regularily updated if new functions or registers have been included. The driver interface uses the Java Native Access
(JNA) library.

This library is licensed under the LGPL (https://www.gnu.org/licenses/lgpl-3.0.en.html) and has also to be included to your Java project.

To download the latest jna.jar package and to get more information about the JNA project please check the projects GitHub page under:
https://github.com/java-native-access/jna

The following files can be found in the „SpcmDrv“ folder of your Java examples install path.

SpcmDrv32.java / SpcmDrv64.java
The files contain the interface to the driver library and defines some needed constants. All functions of the driver interface are similar to the
above explained standard driver functions. Use the SpcmDrv32.java for 32 bit and the SpcmDrv64.java for 64 bit projects:

SpcmRegs.java
The SpcmRegs class defines all constants that are used for the driver. The constants names are the same names compared to the C/C++
examples. All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better readability of the programs:

SpcmErrors.java
The SpcmErrors class contains all error codes that may be returned by the driver.

Examples
Examples for Java can be found on USB-Stick in the directory /examples/java. The directory contains the above mentioned header files and
some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs and
to modify them in any kind.

...

public interface SpcmWin64 extends StdCallLibrary {

 SpcmWin64 INSTANCE = (SpcmWin64)Native.loadLibrary (("spcm_win64"), SpcmWin64.class);

 int spcm_hOpen (String sDeviceName);
 void spcm_vClose (int hDevice);
 int spcm_dwSetParam_i64 (int hDevice, int lRegister, long llValue);
 int spcm_dwGetParam_i64 (int hDevice, int lRegister, LongByReference pllValue);
 int spcm_dwDefTransfer_i64 (int hDevice, int lBufType, int lDirection, int lNotifySize,
 Pointer pDataBuffer, long llBrdOffs, long llTransferLen);
 int spcm_dwInvalidateBuf (int hDevice, int lBufType);
 int spcm_dwGetErrorInfo_i32 (int hDevice, IntByReference plErrorReg,
 IntByReference plErrorValue, Pointer sErrorTextBuffer);
 }

...

...

public static final int SPC_M2CMD = 100;
public static final int M2CMD_CARD_RESET = 0x00000001;
public static final int M2CMD_CARD_WRITESETUP = 0x00000002;
public static final int M2CMD_CARD_START = 0x00000004;
public static final int M2CMD_CARD_ENABLETRIGGER = 0x00000008;
...
(c) Spectrum GmbH 51

LabVIEW driver and examples Software
LabVIEW driver and examples
A full set of drivers and examples is available for LabVIEW for Windows. Lab-
VIEW for Linux is currently not supported. The LabVIEW drivers have their own
manual. The LabVIEW drivers, examples and the manual are found on the USB-
Stick that has been included in the delivery. The latest version is also available
on our webpage www.spectrum-instrumentation.com

Please follow the description in the LabVIEW manual for installation and useage
of the LabVIEW drivers for this card.

MATLAB driver and examples
A full set of drivers and examples is available for Mathworks MATLAB for Windows (32 bit
and 64 bit versions) and also for MATLAB for Linux (64 bit version). There is no additional
toolbox needed to run the MATLAB examples and drivers.

The MATLAB drivers have their own manual. The MATLAB drivers, examples and the manual
are found on the USB-Stick that has been included in the delivery. The latest version is also
available on our webpage www.spectrum-instrumentation.com

Please follow the description in the MATLAB manual for installation and useage of the
MATLAB drivers for this card.

52 generatorNETBOX DN2.60x Manual

Integrated Webserver
Integrated Webserver
The digitizerNETBOX/generatorNETBOX has an integrated webserver following the LXI standards. The web pages give informtion about the
device, allows to set up ethernet details or make firmware updates.

The webserver can be reached in three different ways:

• Directly by typing the IP address into the URL field of a Web Browser.
• By selecting it from the Spectrum Control Center via the context menu on the remote device node (as shown on

the screen shot on the right).
• On Windows machines (starting with Windows 7) on the device properties page, as described in the section

„Finding the digitizerNETBOX in the network“ earlier in this manual.

Home Screen
The home screen gives an overview about the instrument
showing all main information:

LAN Configuration
The LAN configuration page allows to change the LAN con-
figuration of the device. This page is password protected if a
password is given in the security page.

As default DHCP (IPv4) will be used and an IP address will be automatically set. In case no DHCP server is found, an IP will be obtained
using the AutoIP feature. This will lead to an IPv4 address of 169.254.x.y (with x and y being assigned to a free IP in the network) using a
subnet mask of 255.255.0.0.

The default IP setup can also be restored, by using the „LAN Reset“ button on the device.

If a fixed IP address should be used instead, the parameters need to be set according to the current LAN requirements.

Name Description
Instrument Model The specific model code of your digitizerNETBOX or

generatorNETBOX
Manufacturer Manufacturer of the device - Spectrum GmbH
Serial Number The unique serial number of the product. The serial

number is also found on the type plate on the back of the
chassis of the digitizerNETBOX/generatorNETBOX.

Description A free definable description of the specific device that you
can edit by yourself in the LAN configuration page. It is
recommended to include the location of the device and
any other infoamtion that helps your network administra-
tor.

LXI Features Listing the supported LXI features
LXI Version Listing the used LXI specification for designing this device
Host Name The host name given by the DNS server. If the DNS server

does not generate a host name, the IP address is shown
mDNS Host Name The internal mDNS host name which allows to find the

device in the network environment. The mDNS host name
can also be changed in the LAN configuration page

MAC Address The unique MAC address of the device which can also be
found on the type plate on the back of the device

TCP/IP Address The current TCP/IP address as given by the DNS
Firmware revision The revision of the installed firmware files for the digitizerNETBOX/generatorNETBOX itself. The integrated digitizer modules have their own firmware versioning

and can be read out by the Spectrum control center
Software Revision The software revision of the integrated remote server software
Instrument Address
String (VISA)

The instrument address string following the VISA notification. Using this address string one can access the digitizerNETBOX/generatorNETBOX from the software.
The integrated digitizer modules are numbered starting with INST0 (example: TCPIP::192.168.169.14::INST0::INSTR)

LAN ID Indicator Pressing this button starts flashing the LAN LED light on the front plate of the device. This helps to find the device inside a 19“ rack where the back of the device
with the type plate is not easily accessible.

Name Description
Host Name The offical host name as given by the DNS
mDNS Host Name The local host name which can be changed here
Domain The domain in which the digitizerNETBOX is placed if the

DNS server has filled this information correctly
Description The device description which can be changed here
DHCP DHCP (Dynamic Host Configuration Protocol) setting
IP Address The current IP address as given by the DHCP server (DHCP enable) or entered manually
Subnet Mask The current subnet mask as given by the DHCP server (DHCP enable) or entered manually
Default Gateway The current default gateway address as given by the DHCP server (DHCP enable) or entered manually
DNS Server(s) The current DNS server address as given by the DHCP server (DHCP enable) or entered manually
(c) Spectrum GmbH 53

Integrated Webserver
Pressing the „edit configuration“ button will issue a new edit
page. If a password is given in the security pages the pass-
word must be entered before the edit screen is available

Status
Shows the internal device status. For each internal
digitizer/generator module the status whether the module is
available or locked by a user is shown. A digitizer/generator
module is locked as soon as it is opened from any software
on any PC.

In case the instrument is locked, the IP address of the current
control PC can be obtained here.

Also the current temperature will be displayed here.
DN6.xxxx models of either the digitizerNETBOX or
generatorNETBOX will also display the case fan speed here
as well (not shown on screen shot).

Security
Allows to set a password to protect the device from changes.
The password secures access to LAN configuration, power set-
tings like reboot or power down and firmware updates of the
instrument. As default no password is set for the configuration.

To change the password the old password has to be entered
once and the new password twice to avoid typing errors.

In case of a lost password the LAN reset button on the front
plate of the digitizerNETBOX/generatorNETBOX will delete
the password and set the complete device to the default stage
again.

Documentation
All related documents for the device that may be needed to
operate the digitizerNETBOX/generatorNETBOX or to pro-
gram it are available by download as pdf documents from
here.

Name Description
Host Name Enter a new host name for the mDNS host name. Please

note that host names can only contain letters, numbers,
minus and underscore, no dots or blanks are allowed

Domain The domain in which the
digitizerNETBOX/generatorNETBOX is placed

Submit Button After review this button submits the changes and changes
host name and description permanently

Reset Button Discards the changes and returns host name and descrip-
tion to the previous values.

TCP/IP Mode Select between DHCP + AutoIP to have all configuration
done automatically or Manual to enter all IP related set-
tings manual.

IP Address Only available if manual TCP/IP mode is selected
Subnet Mask Only available if manual TCP/IP mode is selected
Default Gateway Only available if manual TCP/IP mode is selected
DNS Server(s) Only available if manual TCP/IP mode is selected
Submit Button Submits the changes. If you set the IP details manually please be sure that your device is adressable within your network. In case of a failure the LAN reset button

on the front page of the device will set back the LAN configuration to DHCP
Reset Button Discards the changes and returns IP settings to the previous values
54 generatorNETBOX DN2.60x Manual

Integrated Webserver
Firmware Update
The complete firmware of the device can be updated with a
single firmware update file which is available for download
directly here by clicking the „check online“ button or on the
Spectrum webpage www.spectrum-instrumentation.com. The
firmware file contains update files for the following parts:

• firmware files of the integrated digitizer/generator
modules

• drivers for the digitizer/generator modules
• software and setup of the underlying operating system
• webserver and integrated web pages and manuals
• remote server software
• initialization scripts and tools

Power
From here the digitizerNETBOX/generatorNETBOX can be
remotely shut down or remotely rebooted. Please make sure
that no software is currently accessing the digitizerNETBOX
or generatorNETBOX before using any of these power options.

Downloads
The websever gives access to all necessary software compo-
nents for download. All these software installers are also
available on the USB-Stick that is delivered with the
digitizerNETBOX/generatorNETBOX and on the internet.

Logging
This is a debug setting only. You shouldn’t change any of these
settings unless our support team requested you to do so. Oper-
ating the digitizerNETBOX/generatorNETBOX with log-level
„Log all“ will slow down the operation as each single call is
logged as a text entry in the internal log file.

These debug log settings are similar to the ones described in the
chapter about the Spectrum control center. Using this logging
the internal communication between the remote server and the
locally installed Spectrum driver is logged.

Please note that some digitizerNETBOX/generatorNETBOX
products (having only one internal digitizer/generator in-
stalled) show an error message
„KernelOpen /dev/spcm1 failed“. This error message is not an
error but simply the remote server trying to open the second in-
ternal digitizer that isn’t installed.
(c) Spectrum GmbH 55

Integrated Webserver
Access
In here it is possible to restrict the access to the
digitizerNETBOX/generatorNETBOX to certain IP addresses.
As long as the access list is clear, everybody who has a TCP/IP
connection to the digitizerNETBOX/generatorNETBOX can get
control of it and use it with any software like SBench 6.

Use the add IP to list field with the submit button to add an IP
address to the list. As a default your current IP address is shown
in the entry field.

After having setup an access list everybody else who is not on
the access restricted IP list can still see the digitizerNETBOX or
generatorNETBOX in the network and use the discovery function but access to the internal digitizers/generators is restricted and no longer
possible.

Use this option together with the password option to completely secure the digitizerNETBOX/generatorNETBOX from unwanted access.

Embedded Server
The embedded server is an option and is only available if or-
dered with and installed on your particular digitizerNET-
BOX/generatorNETBOX. Please see the dedicated Embedded
Server Option chapter for more information on this feature.

Using the „Reset password“ button the password for the user
„embedded“ is reset to the default password which is also „em-
bedded“

The autostart feature allows the user to automatically start
scripts, programs or services on the device during boot pro-
cess. If something fails with the start, the autostart feature can
be disabled using the „Autostart [Disable]“ button. After fixing the automatically starting programs one can enable the autostart feature again.

Login/Logout
As soon as a password has been entered in the security set-
tings a login/logout command is available from the webpage
menu.

After entering the password once the login stays valid until a
logout or until closing the web browser.
56 generatorNETBOX DN2.60x Manual

IVI Driver About IVI
IVI Driver
The IVI Foundation is an open consortium founded in 1998 to promote standards for programming test instruments. Composed primarily of
instrument manufacturers, end-users, software vendors, and system integrators, the Foundation strives to create specifications that govern the
development of instrument drivers.

-> http://IVIfoundation.org

About IVI
The IVI standards define an open driver architecture, a set of instrument classes, and shared software components. Together these provide
critical elements needed for instrument interchangeability.

Benefits
IVI offers several benefits to measurement system designers:

• IVI's defined Application Programming Interfaces (APIs) standardize common measurement functions reducing the time needed to learn a
new IVI instrument.

• Instrument simulation allows developers to run code without an instrument. This feature reduces the need for sometimes scarce measure-
ment hardware resources and it can simplify testing of measurement applications.

• IVI drivers feature enhanced ease of use in popular Application Development Environments. IVI's standard APIs, combined with IVI driver
wrappers where appropriate, provide fast, intuitive access to driver functions.

• IVI drivers provide for interchangeability. Interchangeability reduces the time and effort needed to integrate measurement devices into
new or existing systems

Interchangeability
Systems designed with IVI drivers enjoy the benefits of standardized code that can be interchanged into other systems. This code also supports
interchange of measurement devices -- helping to prevent hardware obsolescence. Interchangeability is supported on three levels: The IVI
architecture specifications allow architectural interchangeability -- that is a standard driver architecture that can be reused. The class specifi-
cations provide syntactic interchangeability which supports instrument exchange with minimal code changes. The highest level of interchange-
ability is achieved by using the IVI signal specifications.

General Concept of the Spectrum IVI driver
The Spectrum IVI driver is based on the standard Spectrum API and can be used with any Spectrum products specified below in the supported
hardware chapter. The Spectrum products to be accessed with the IVI driver can be locally installed data acquisition cards, remotely installed
data acquisition cards or remote LXI instruments like a digitizerNETBOX or generatorNETBOX.
(c) Spectrum GmbH 57

Supported Spectrum Hardware IVI Driver

Supported Spectrum Hardware
All Spectrum analog data acquisition hardware based on the SPCM driver structure is supported by the IVI driver. There is only one IVI driver
for all hardware.

Supported data acquisition card families:
• M2i.20xx and M2i.20xx-exp family
• M3i.21xx and M3i.21xx-exp family
• M4i.22xx-x8 and M4x.22xx-x4 family
• M2i.30xx and M2i.30xx-exp family
• M2i.31xx and M2i.31xx-exp family
• M3i.32xx and M3i.32xx-exp family
• M2i.40xx and M2i.40xx-exp family
• M3i.41xx and M3i.41xx-exp family
• M4i.44xx-x8 and M4x.44xx-x4 family
• M2i.46xx and M2i.46xx-exp family
• M2i.47xx and M2i.47xx-exp family
• M3i.48xx and M3i.48xx-exp family
• M2i.49xx and M2i.49xx-exp family
• M2p.59xx-x4 family
• M2p.65xx-x4 family
• M2i.60xx and M2i.60xx-exp family
• M4i.66xx-x8 and M4x.66xx-x4 family

Supported digitizerNETBOX families
• DN2.20x-xx family
• DN2.22x-xx and DN6.22x-xx family
• DN2.44x-xx and DN6.44x-xx family
• DN2.46x-xx and DN6.46x-xx family
• DN2.49x-xx and DN6.49x-xx family
• DN2.59x-xx and DN6.59x-xx family

Supported generatorNETBOX families
• DN2.60x-xx family
• DN2.65x-xx and DN6.65x-xx family
• DN2.66x-xx and DN6.66x-xx family

IVI Compliance
General information on the Spectrum IVI driver:

The following IVI classes are supported by different instrument types:

Supported Operating Systems

IVI class specification version Version 3.3
IVI-C interface supported
IVI-COM interface supported
IVI.NET interface not supported

IVI Class Supported by Spectrum hardware IVI specific driver function prefix
IVIScope Supported by all digitizerNETBOX devices and analog data

acquisition cards listed above
SpecScope_

IVIDigitizer Supported by all digitizerNETBOX devices and analog data
acquisition cards listed above

SpecDigitizer_

IVIFgen Supported by all generatorNETBOX devices and analog data
generator cards listed above

SpecFGen_

32 bit operating systems 64 bit operating systems
Winodws 7 Windows 7
Windows 8 Windows 8
Windows 10 Windows 10
58 generatorNETBOX DN2.60x Manual

IVI Driver IVI Compliance
Supported Standard Driver Features

IVIScope Supported Class Capabilities

IVIDigitizer Supported Class Capabilities

Feature Supported Description of the Feature
State caching yes

standard feature of the API
which is permanently active

To minimize the number of I/O calls needed to configure an instrument to a new state, IVI specific drivers
may implement state caching. IVI specific drivers can choose to implement state caching for all, some, or
none of the instrument settings. If the user enables state caching and the IVI specific driver implements
caching for hardware configuration attributes, driver functions perform instrument I/O when the current state
of the instrument settings is different from what the user requests.

Range checking yes
standard feature of the API
which is permanently active

If range checking is enabled, an IVI specific driver checks that input parameters are within the valid range for
the instrument.

Instrument Status Checking yes
standard feature of the API
which is permanently active

If instrument status checking is enabled, an IVI specific driver automatically checks the status of the
instrument after most operations. If the instrument indicates that it has an error, the driver returns a special
error code. The user then calls the Error Query function to retrieve the instrument specific error code from the
instrument.

Multithread Safety yes IVI drivers are multithread safe. Multithread safety means that multiple threads in the same process can use
the same IVI driver session and that different sessions of the same IVI driver can run simultaneously on
different threads.

Simulation yes If simulation is enabled, an IVI specific driver does not perform instrument I/O, and the driver creates
simulated data for output parameters. This allows the user to execute instrument driver calls in the application
program even though the instrument is not available.

Feature Supported Description of Feature
IVIScopeBase yes Base Capabilities of the IVIScope specification. This group includes the capability to acquire waveforms using edge triggering.
IVIScopeInterpolation no Extension: IVIScope with the ability to configure the oscilloscope to interpolate missing points in a waveform.
IVIScopeTVTrigger no Extension: IVIScope with the ability to trigger on standard television signals.
IVIScopeRuntTrigger no Extension: IVIScope with the ability to trigger on runts.
IVIScopeGlitchTrigger no Extension: IVIScope with the ability to trigger on glitches.
IVIScopeWidthTrigger no Extension: IVIScope with the ability to trigger on a variety of conditions regarding pulse widths.
IVIScopeAcLineTrigger no Extension: IVIScope with the ability to trigger on zero crossings of a network supply voltage.
IVIScopeWaveformMeas no Extension: IVIScope with the ability to calculate waveform measurements, such as rise time or frequency.
IVIScopeMinMaxWaveform no Extension: IVIScope with the ability to acquire a minimum and maximum waveforms that correspond to the same time range.
IVIScopeProbeAutoSense no Extension: IVIScope with the ability to automatically sense the probe attenuation of an attached probe.
IVIScopeContinuous Acquisition no Extension: IVIScope with the ability to continuously acquire data from the input and display it on the screen.
IVIScopeAverage Acquisition no Extension: IVIScope with the ability to create a waveform that is the average of multiple waveform acquisitions.
IVIScopeSampleMode no Extension: IVIScope with the ability to return the actual sample mode.
IVIScopeTrigger Modifier no Extension: IVIScope with the ability to modify the behavior of the triggering subsystem in the absence of a expected trigger.
IVIScopeAutoSetup no Extension: IVIScope with the automatic configuration ability.

Feature Supported Description of Feature
IVIDigitizerBase yes Base Capabilities of the IVIDigitizer specification. This group includes the capability to acquire waveforms using edge triggering.
IVIDigitizerMultiRecordAcquisition yes Extension: IVIDigitizer with the ability to do multi-record acquisitions.
IVIDigitizerBoardTemperature no Extension: IVIDigitizer with the ability to report the temperature of the digitizer.
IVIDigitizerChannelFilter no Extension: IVIDigitizer with the ability to control the channel input filter frequency.
IVIDigitizerChannelTemperature no Extension: IVIDigitizer with the ability to report the temperature of indIVIdual digitizer channels.
IVIDigitizerTimeInterleavedChannels no Extension: IVIDigitizer with the ability to combine two or more input channels to achieve higher acquisitions rates and/or record

lengths.
IVIDigitizerDataInterleavedChan-
nels

no Extension: IVIDigitizer with the ability to interleave the data from two or more input channels, usually to create complex (I/Q)
data.

IVIDigitizerReferenceOscillator no Extension: IVIDigitizer with the ability to use an external reference oscillator.
IVIDigitizerSampleClock yes Extension: IviDigitizer with the ability to use an external sample clock.
IVIDigitizerSampleMode no Extension: IVIDigitizer with the ability to control whether the digitizer is using real-time or equivalent-time sampling.
IVIDigitizerSelfCalibration yes Extension: IVIDigitizer with the ability to perform self calibration.
IVIDigitizerDownconversion no Extension: IVIDigitizer with the ability to do frequency translation or downconversion in hardware.
IVIDigitizerArm no Extension: IVIDigitizer with the ability to arm on positive or negative edges.
IVIDigitizerMultiArm no Extension: IVIDigitizer with the ability to arm on one or more sources.
IVIDigitizerGlitchArm no Extension: IVIDigitizer with the ability to arm on glitches.
IVIDigitizerRuntArm no Extension: IVIDigitizer with the ability to arm on runts.
IVIDigitizerSoftwareArm no Extension: IVIDigitizer with the ability to arm acquisitions.
IVIDigitizerTVArm no Extension: IVIDigitizer with the ability to arm on standard TV signals.
IVIDigitizerWidthArm no Extension: IVIDigitizer with the ability to arm on a variety of conditions regarding pulse widths.
IVIDigitizerWindowArm no Extension: IVIDigitizer with the ability to arm on signals entering or leaving a defined voltage range.
IVIDigitizerTriggerModifier no Extension: IVIDigitizer with the ability to perform an alternative triggering function in the event that the specified trigger event

doesn’t occur.
IVIDigitizerMultiTrigger yes Extension: IVIDigitizer with the ability to trigger on one or more sources.
IVIDigitizerPretriggerSamples yes Extension: IVIDigitizer with the ability to specify a number of samples to fill up the data buffer with pre-trigger data.
IVIDigitizerTriggerHoldoff no Extension: IVIDigitizer with the ability to specify a length of time after the digitizer detects a trigger during which the digitizer

ignores additional triggers.
IVIDigitizerGlitchTrigger no Extension: IVIDigitizer with the ability to trigger on glitches.
IVIDigitizerRuntTrigger no Extension: IVIDigitizer with the ability to trigger on runts.
IVIDigitizerSoftwareTrigger no Extension: IVIDigitizer with the ability to trigger acquisitions.
IVIDigitizerTVTrigger no Extension: IVIDigitizer with the ability to trigger on standard television signals.
IVIDigitizerWidthTrigger no Extension: IVIDigitizer with the ability to trigger on a variety of conditions regarding pulse widths.
IVIDigitizerWindowTrigger yes Extension: IVIDigitizer with the ability to trigger on signals entering or leaving a defined voltage range.
(c) Spectrum GmbH 59

Find more Information on IVI IVI Driver
IVIFGen Supported Class Capabilities

Find more Information on IVI
The official IVI foundation webpage offers a lot of additional information on setup and programming of the IVI drivers using different envi-
ronments.

General Information on IVI
->http://ivifoundation.org

The website of the IVI foundation offers several documents and detailed explanations for the useage of IVI drivers and the benefits.

IVI Getting Started Guides and Videos
-> http://ivifoundation.org/resources/default.aspx

In here you find getting started guides and videos for different environments:

• Using IVI with Visual C++
• Using IVI Visual C# and Visual Basic .NET
• Using IVI with LabVIEW
• Using IVI with LabWindows/CVI
• Using IVI with MATLAB
• Using IVI with Measure Foundry
• Using IVI with Visual Basic 6.0
• Using IVI with Keysight VEE Pro

Installation

Installer
The Spectrum IVI Driver Installer is shipped as an executable containing all IVI related software parts. There is only one installer for both 32 bit
and 64 bit environments. The insaller automatically detects the components that are necessary to install.

Please be sure to have the latest drivers available. You find the current driver archieves on the Spectrum
webpage www.spectrum-instrumentation.com available for download.

Shared Components
To improve users' experience when they combine drivers and other software from various vendors, it is important to have some key software
components common to all implementations. In order to accomplish this, the IVI Foundation provides a standard set of shared components
that must be used by all compliant drivers and ancillary software. These components provide services to drivers and driver clients that need
to be common to all drivers, for instance, the administration of system-wide configuration.

The IVI shared components are available directly at the IVI Foundation homepage www.ivifoundation.org. Please download the lates version
of the IVI shared components there.

The IVI Shared Component installer creates a directory structure to house the IVI Shared Components as well as IVI drivers themselves. The
root of this directory structure is referred to as the IVI install directory [IVIInstallDir] and is typically located under [program files]\IVI Founda-
tion\IVI.

Installation Procedure
Please stick to this installation order to avoid any problems with the drivers:

Feature Supported Description of Feature
IviFgenBase yes Base Capabilities.
IviFgenArbFrequency no Extension: IVIFgen with the ability to generate arbitrary waveforms with user-defined sample rate.
IviFgenArbWfm yes Extension: IVIFgen with the ability to generate user-defined arbitrary waveforms.
IviFgenArbSeq no Extension: IVIFgen with the ability to generate of arbitrary sequences
IviFgenBurst no Extension: IVIFgen with the ability to generate discrete numbers of waveform cycles.
IviFgenInternalTrigger no Extension: IVIFgen with the ability to use internally generated triggers
IviFgenModulateAM no Extension: IVIFgen with the ability to apply amplitude modulation to an output signal
IviFgenModulateFM no Extension: IVIFgen with the ability to apply frequency modulation to an output signal
IviFgenSoftwareTrigger no Extension: IVIFgen with the ability to generate signals based on software triggers
IviFgenStdFunc yes Extension: IVIFgen with the ability to generate standard waveforms
IviFgenTrigger no Extension: IVIFgen with the ability to use user-definable trigger sources
60 generatorNETBOX DN2.60x Manual

IVI Driver Installation
Spectrum Card locally installed
• Install card into the system as described in the hardware manual
• Start the system and let Windows install the hardware driver from USB-Stick or from your download folder
• Install the Spectrum Control Center
• Install the IVI shared components from www.ivifoundation.org
• Install the IVI driver package

Spectrum Card remotely installed
• Install card into the remote system as described in the hardware manual
• Start the remote system and let Windows install the hardware driver from USB-Stick or from your download folder
• Install the Spectrum Remote Package onto the remote PC as described in the manual
• Install the Spectrum Control Center on the host system
• Setup the remote connection inside the Control Center as described in the hardware manual
• Install the IVI shared components from www.ivifoundation.org
• Install the IVI driver package on the host system

Spectrum digitizerNETBOX/generatorNETBOX remotely controlled
• Connect the digitizerNETBOX/generatorNETBOX to your LAN or directly to your host PC
• Install the Spectrum Control Center on the host system
• Setup the remote connection inside the Control Center as described in the hardware manual
• Install the IVI shared components from www.ivifoundation.org
• Install the IVI driver package on the host system

No Spectrum hardware available, only simulated cards
• Install the Spectrum Control Center on the system
• Setup one or more demo cards inside the Spectrum Control Center
• Install the IVI shared components from www.ivifoundation.org
• Install the IVI driver package on the host system

Installation of the IVI driver package
Please start the installation by doubleclicking the install file

There is one installer for the IVI scope class driver and one installer
for the IVI digitizer class driver. You may install one of them or
both.

Select the setup type for the installation:

• Typical setup will install the most common program features
• Custom setup allows user to choose which program features

will be installed.
• Complete setup will install all prgra, features.

Typical and Complete setup runs without any further user interac-
tion and install the needed components of the driver.
(c) Spectrum GmbH 61

Configuration Store IVI Driver
The custom setup allows users to deselect certain parts of the driv-
er package

Configuration Store

General Information
The IVI Configuration Server is the run-time module that is responsible for providing system database services to IVI based measurement system
applications. Specifically, it provides system initialization and configuration information. The IVI Configuration Server is used by several of
the IVI compliant modules. For instance, the Configuration Server indicates which physical instrument and IVI driver will be used by a partic-
ular application to provide a particular measurement capability.

Since a typical system intermixes instruments and drivers from multiple vendors this system configuration service needs to be accessed in a
vendor independent fashion. Therefore, the IVI Configuration Server is an IVI shared component (that is, the code is owned by the IVI Foun-
dation). The IVI Configuration Server is provided by the IVI Foundation because the architecture requires a single Configuration Server be
installed on any system, therefore having a single shared implementation eliminates potential conflicts from divergent implementations.

The IVI Configuration Server is a single executable and one or more XML configuration stores (databases) made up of the following basic
components:

• The physical database (known as the configuration store). A physical configuration store is a single XML file. APIs are available to read
and write the data to arbitrary files, thus providing complex applications with the ability to directly manage system configurations.

• The API (and its implementation) used to read information from the configuration store(s). The IVI modules typically use this API when they
are instantiated and configured.

• The API (and its implementation) to write information to the configuration store(s). This API is typically used by GUI or other applications
that set up the initial configuration.

• The API (and its implementation) used to bind an instance of the Configuration Server code to a particular copy of the configuration infor-
mation stored on a system. This includes appropriate algorithms for gaining access to the master configuration store.

Repeated Capabilities
In many instruments there are capabilities that are duplicated either identically or very similarly across the instrument. Such capabilities are
called repeated capabilities. The IVI class-compliant APIs represent repeated capabilities by a parameter that indicates which instance of the
duplicate capability this function is intended to access. The IVI C APIs include this parameter as an additional parameter to function calls.

The IVI Configuration Server provides a way for software modules to publish the functionality that is duplicated and the strings that the soft-
ware module recognizes to access the repeated capabilities. The IVI Configuration Server also provides a way for the client to supply aliases
for the physical identifiers recognized by the drivers.

The Spectrum IVI driver for example uses the channel index as repeated capability allowing to give channel names as an identifier.
62 generatorNETBOX DN2.60x Manual

Programming the Board Overview
Programming the Board

Overview
The following chapters show you in detail how to program the different aspects of the board. For every topic there’s a small example. For
the examples we focused on Visual C++. However as shown in the last chapter the differences in programming the board under different
programming languages are marginal. This manual describes the programming of the whole hardware family. Some of the topics are similar
for all board versions. But some differ a little bit from type to type. Please check the given tables for these topics and examine carefully which
settings are valid for your special kind of board.

Register tables
The programming of the boards is totally software register based. All software registers are described in the following form:

If no constants are given below the register table, the dedicated register is used as a switch. All such registers
are activated if written with a “1“ and deactivated if written with a “0“.

Programming examples
In this manual a lot of programming examples are used to give you an impression on how the actual mentioned registers can be set within
your own program. All of the examples are located in a separated colored box to indicate the example and to make it easier to differ it from
the describing text.

All of the examples mentioned throughout the manual are written in C/C++ and can be used with any C/C++ compiler for Windows or Linux.

Complete C/C++ Example

Register Value Direction Description

SPC_M2CMD 100 w Command register of the board.

M2CMD_CARD_START 4h Starts the board with the current register settings.

M2CMD_CARD_STOP 40h Stops the board manually.

#include “../c_header/dlltyp.h”
#include “../c_header/regs.h”
#include “../c_header/spcm_drv.h”

#include <stdio.h>

int main()
 {
 drv_handle hDrv; // the handle of the device
 int32 lCardType; // a place to store card information

 hDrv = spcm_hOpen ("/dev/spcm0"); // Opens the board and gets a handle
 if (!hDrv) // check whether we can access the card
 return -1;

 spcm_dwGetParam_i32 (hDrv, SPC_PCITYP, &lCardType); // simple command, read out of card type
 printf (“Found card M2i/M3i/M4i/M4x/M2p.%04x in the system\n”, lCardType & TYP_VERSIONMASK);
 spcm_vClose (hDrv);

 return 0;
 }

The name of the software regis-
ter as found in the regs.h file.
Could directly be used by
C/C++, Delphi and Basic com-

The decimal value of the software register.
Also found in the regs.h file. This value must
be used with all programs or compilers that
cannot use the header file directly.

Describes whether
the register can be
read (r) and/or writ-
ten (w).

Short description of the function-
ality of the register. A more de-
tailed description is found
above or below the register ta-
bles.

Any constants that can be used to
program the register directly are
shown inserted beneath the register
table.

The decimal or hexadecimal value of the
constant, also found in the regs.h file. Hexa-
decimal values are indicated with an „h“ at
the end. This value must be used with all
programs or compilers that cannot use the
header file directly.

Short description of
the use of this con-
stant.
(c) Spectrum GmbH 63

Initialization Programming the Board
Initialization
Before using the card it is necessary to open the kernel device to access the hardware. It is only possible to use every device exclusively using
the handle that is obtained when opening the device. Opening the same device twice will only generate an error code. After ending the
driver use the device has to be closed again to allow later re-opening. Open and close of driver is done using the spcm_hOpen and
spcm_vClose function as described in the “Driver Functions” chapter before.

Open/Close Example

Initialization of Remote Products
The only step that is different when accessing remotely controlled cards or digitizerNETBOXes is the initialization of the driver. Instead of the
local handle one has to open the VISA string that is returned by the discovery function. Alternatively it is also possible to access the card
directly without discovery function if the IP address of the device is known.

Multiple cards are opened by indexing the remote card number:

Error handling
If one action caused an error in the driver this error and the register and value where it occurs will be saved.

The driver is then locked until the error is read out using the error function spcm_dwGetErrorInfo_i32. Any
calls to other functions will just return the error code ERR_LASTERR showing that there is an error to be read
out.

This error locking functionality will prevent the generation of unseen false commands and settings that may lead to totally unexpected behav-
ior. For sure there are only errors locked that result on false commands or settings. Any error code that is generated to report a condition to
the user won’t lock the driver. As example the error code ERR_TIMEOUT showing that the a timeout in a wait function has occurred won’t
lock the driver and the user can simply react to this error code without reading the complete error function.

As a benefit from this error locking it is not necessary to check the error return of each function call but just checking the error function once
at the end of all calls to see where an error occurred. The enhanced error function returns a complete error description that will lead to the
call that produces the error.

drv_handle hDrv; // the handle of the device

hDrv = spcm_hOpen ("/dev/spcm0"); // Opens the board and gets a handle
if (!hDrv) // check whether we can access the card
 {
 printf “Open failed\n”);
 return -1;
 }

... do any work with the driver

spcm_vClose (hDrv);
return 0;

drv_handle hDrv; // the handle of the device

hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTR"); // Opens the remote board and gets a handle
if (!hDrv) // check whether we can access the card
 {
 printf “Open of remote card failed\n”);
 return -1;
 }

...

hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTR"); // Opens the remote board #0
 // or alternatively
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST0::INSTR"); // Opens the remote board #0
 // all other boards require an index:
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST1::INSTR"); // Opens the remote board #1
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST2::INSTR"); // Opens the remote board #2
64 generatorNETBOX DN2.60x Manual

Programming the Board Gathering information from the card
Example for error checking at end using the error text from the driver:

This short program then would generate a printout as:

All error codes are described in detail in the appendix. Please refer to this error description and the descrip-
tion of the software register to examine the cause for the error message.

Any of the parameters of the spcm_dwGetErrorInfo_i32 function can be used to obtain detailed information on the error. If one is not interested
in parts of this information it is possible to just pass a NULL (zero) to this variable like shown in the example. If one is not interested in the
error text but wants to install its own error handler it may be interesting to just read out the error generating register and value.

Example for error checking with own (simple) error handler:

Gathering information from the card
When opening the card the driver library internally reads out a lot of information from the on-board eeprom. The driver also offers additional
information on hardware details. All of this information can be read out and used for programming and documentation. This chapter will
show all general information that is offered by the driver. There is also some more information on certain parts of the card, like clock machine
or trigger machine, that is described in detail in the documentation of that part of the card.

All information can be read out using one of the spcm_dwGetParam functions. Please stick to the “Driver Functions” chapter for more details
on this function.

Card type
The card type information returns the specific card type that is found under this device. When using multiple cards in one system it is highly
recommended to read out this register first to examine the ordering of cards. Please don’t rely on the card ordering as this is based on the
BIOS, the bus connections and the operating system.

One of the following values is returned, when reading this register. Each card has its own card type constant defined in regs.h. Please note
that when reading the card information as a hex value, the lower word shows the digits of the card name while the upper word is a indication
for the used bus type.

char szErrorText[ERRORTEXTLEN];

spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1024); // correct command
if (spcm_dwGetErrorInfo_i32 (hDrv, NULL, NULL, szErrorText) != ERR_OK) // check for an error
 {
 printf (szErrorText); // print the error text
 spcm_vClose (hDrv); // close the driver
 exit (0); // and leave the program
 }

Error ocurred at register SPC_MEMSIZE with value -345: value not allowed

uint32 dwErrorReg;
int32 lErrorValue;
uint32 dwErrorCode;

spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1024); // correct command
dwErrorCode = spcm_dwGetErrorInfo_i32 (hDrv, &dwErrorReg, &lErrorValue, NULL);
if (dwErrorCode) // check for an error
 {
 printf (“Errorcode: %d in register %d at value %d\n”, lErrorCode, dwErrorReg, lErrorValue);
 spcm_vClose (hDrv); // close the driver
 exit (0); // and leave the program
 }

Register Value Direction Description

SPC_PCITYP 2000 read Type of board as listed in the table below.
(c) Spectrum GmbH 65

Gathering information from the card Programming the Board
.

Hardware version
Since all of the boards from Spectrum are modular boards, they consist of one base board and one or two piggy-back front-end modules and
eventually of an extension module like the star-hub. Each of these three kinds of hardware has its own version register. Normally you do not
need this information but if you have a support question, please provide the revision together with it.

If your board has a additional piggy-back extension module mounted you can get the hardware version with the following register.

Firmware versions
All the cards from Spectrum typically contain multiple programmable devices such as FPGAs, CPLDs and the like. Each of these have their
own dedicated firmware version. This version information is readable for each device through the various version registers. Normally you do
not need this information but if you have a support question, please provide us with this information. Please note that number of devices and
hence the readable firmware information is card series dependent:

Card type Card type as
defined in
regs.h

Value hexadec-
imal

Value decimal Card type as
defined in
regs.h

Value hexadec-
imal

Value decimal

M2i.6011 TYP_M2I6011 36011h 221201 M2i.6030 TYP_M2I6030 36030h 221232

M2i.6012 TYP_M2I6012 36012h 221202 M2i.6031 TYP_M2I6031 36031h 221233

M2i.6021 TYP_M2I6021 36021h 221217 M2i.6033 TYP_M2I6033 36033h 221235

M2i.6022 TYP_M2I6022 36022h 221218 M2i.6034 TYP_M2I6034 36034h 221236

M2i.6011-exp TYP_M2I6011EXP 46011h 286737 M2i.6030-exp TYP_M2I6030EXP 46030h 286768

M2i.6012-exp TYP_M2I6012EXP 46012h 286738 M2i.6031-exp TYP_M2I6031EXP 46031h 286769

M2i.6021-exp TYP_M2I6021EXP 46021h 286753 M2i.6033-exp TYP_M2I6033EXP 46033h 286771

M2i.6022-exp TYP_M2I6022EXP 46022h 286754 M2i.6034-exp TYP_M2I6034EXP 46034h 286772

Register Value Direction Description

SPC_PCIVERSION 2010 read Base card version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

SPC_PCIMODULEVERSION 2012 read Module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

Register Value Direction Description

SPC_PCIEXTVERSION 2011 read Extension module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show
the firmware version.

Register Value Direction Description Available for

M2i M3i M4i M4x M2p

SPCM_FW_CTRL 210000 read Main control FPGA version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X X X X X

SPCM_FW_CTRL_GOLDEN 210001 read Main control FPGA golden version: the upper 16 bit show the firmware
type, the lower 16 bit show the firmware version. For the golden (recov-
ery) firmware, the type has always a value of 2.

— — X X X

SPCM_FW_CLOCK 210010 read Clock distribution version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X — — — —

SPCM_FW_CONFIG 210020 read Configuration controller version: the upper 16 bit show the firmware type,
the lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X X — — —

SPCM_FW_MODULEA 210030 read Front-end module A version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X X X X X

SPCM_FW_MODULEB 210031 read Front-end module B version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.
The version is zero if no second front-end module is installed on the card.

X — — — X

SPCM_FW_MODEXTRA 210050 read Extension module (Star-Hub) version: the upper 16 bit show the firmware
type, the lower 16 bit show the firmware version. For the standard
release firmware, the type has always a value of 1.
The version is zero if no sextension module is installed on the card.

X X X — X

SPCM_FW_POWER 210060 read Power controller version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

— — X X X
66 generatorNETBOX DN2.60x Manual

Programming the Board Gathering information from the card
Cards that do provide a golden recovery image for the main control FPGA, the currently booted firmware can additionally read out:

Production date
This register informs you about the production date, which is returned as one 32 bit long word. The lower word is holding the information
about the year, while the upper word informs about the week of the year.

The following example shows how to read out a date and how to interpret the value:

Last calibration date (analog cards only)
This register informs you about the date of the last factory calibration. When receiving a new card this date is similar to the delivery date
when the production calibration is done. When returning the card to calibration this information is updated. This date is not updated when
just doing an on-board calibration by the user. The date is returned as one 32 bit long word. The lower word is holding the information about
the year, while the upper word informs about the week of the year.

Serial number
This register holds the information about the serial number of the board. This number is unique and should always be sent together with a
support question. Normally you use this information together with the register SPC_PCITYP to verify that multiple measurements are done with
the exact same board.

Maximum possible sampling rate
This register gives you the maximum possible sampling rate the board can run. The information provided here does not consider any restric-
tions in the maximum speed caused by special channel settings. For detailed information about the correlation between the maximum sam-
pling rate and the number of activated channels please refer to the according chapter.

Installed memory
This register returns the size of the installed on-board memory in bytes as a 64 bit integer value. If you want to know the amount of samples
you can store, you must regard the size of one sample of your card. All 8 bit A/D and D/A cards use only one byte per sample, while all
other A/D and D/A cards with 12, 14 and 16 bit resolution use two bytes to store one sample. All digital cards need one byte to store 8
data bits.

Register Value Direction Description

M2i M3i M4i M4x M2p

SPCM_FW_CTRL_ACTIVE 210002 read Cards that do provide a golden (recovery) fiwmware additionally have a
register to read out the version information of the currently loaded firm-
ware version string, do determine if it is standard or golden.

The hexadecimal 32bit format is: TVVVUUUUh

T: the currently booted type (1: standard, 2: golden)
V: the version
U: unused, in production versions always zero

— — X X X

Register Value Direction Description

SPC_PCIDATE 2020 read Production date: week in bits 31 to 16, year in bits 15 to 0

spcm_dwGetParam_i32 (hDrv, SPC_PCIDATE, &lProdDate);
printf ("Production: week &d of year &d\n“, (lProdDate >> 16) & 0xffff, lProdDate & 0xffff);

Register Value Direction Description

SPC_CALIBDATE 2025 read Last calibration date: week in bit 31 to 16, year in bit 15 to 0

Register Value Direction Description

SPC_PCISERIALNO 2030 read Serial number of the board

Register Value Direction Description

SPC_PCISAMPLERATE 2100 read Maximum sampling rate in Hz as a 64 bit integer value

Register Value Direction Description

SPC_PCIMEMSIZE 2110 read _i32 Installed memory in bytes as a 32 bit integer value. Maximum return value will 1 GByte. If more mem-
ory is installed this function will return the error code ERR_EXCEEDINT32.

SPC_PCIMEMSIZE 2110 read _i64 Installed memory in bytes as a 64 bit integer value
(c) Spectrum GmbH 67

Gathering information from the card Programming the Board
The following example is written for a „two bytes“ per sample card (12, 14 or 16 bit board), on any 8 bit card memory in MSamples is
similar to memory in MBytes.

Installed features and options
The SPC_PCIFEATURES register informs you about the features, that are installed on the board. If you want to know about one option being
installed or not, you need to read out the 32 bit value and mask the interesting bit. In the table below you will find every feature that may be
installed on a M2i/M3i/M4i/M4x/M2p card. Please refer to the ordering information to see which of these features are available for your
card series.

The following example demonstrates how to read out the information about one feature.

The following example demonstrates how to read out the custom modification code.

Installed extended Options and Features
Some cards (such as M4i/M4x/M2p cards) can have advanced features and options installed. This can be read out with with the following
register:

spcm_dwGetParam_i64 (hDrv, SPC_PCIMEMSIZE, &llInstMemsize);
printf ("Memory on card: %d MBytes\n", (int32) (llInstMemsize /1024/1024));
printf (" : %d MSamples\n", (int32) (llInstMemsize /1024/1024/2));

Register Value Direction Description

SPC_PCIFEATURES 2120 read PCI feature register. Holds the installed features and options as a bitfield. The read value must be
masked out with one of the masks below to get information about one certain feature.

SPCM_FEAT_MULTI 1h Is set if the feature Multiple Recording / Multiple Replay is available.

SPCM_FEAT_GATE 2h Is set if the feature Gated Sampling / Gated Replay is available.

SPCM_FEAT_DIGITAL 4h Is set if the feature Digital Inputs / Digital Outputs is available.

SPCM_FEAT_TIMESTAMP 8h Is set if the feature Timestamp is available.

SPCM_FEAT_STARHUB6_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 6 cards (M2p).

SPCM_FEAT_STARHUB8_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 8 cards (M4i).

SPCM_FEAT_STARHUB4 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 4 cards (M3i).

SPCM_FEAT_STARHUB5 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 5 cards (M2i).

SPCM_FEAT_STARHUB16_EXTM 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2p).

SPCM_FEAT_STARHUB8 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 8 cards (M3i).

SPCM_FEAT_STARHUB16 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2i).

SPCM_FEAT_ABA 80h Is set if the feature ABA mode is available.

SPCM_FEAT_BASEXIO 100h Is set if the extra BaseXIO option is installed. The lines can be used for asynchronous digital I/O, extra trigger or
timestamp reference signal input.

SPCM_FEAT_AMPLIFIER_10V 200h Arbitrary Waveform Generators only: card has additional set of calibration values for amplifier card.

SPCM_FEAT_STARHUBSYSMASTER 400h Is set in the card that carries a System Star-Hub Master card to connect multiple systems (M2i).

SPCM_FEAT_DIFFMODE 800h M2i.30xx series only: card has option -diff installed for combining two SE channels to one differential channel.

SPCM_FEAT_SEQUENCE 1000h Only available for output cards or I/O cards: Replay sequence mode available.

SPCM_FEAT_AMPMODULE_10V 2000h Is set on the card that has a special amplifier module for mounted (M2i.60xx/61xx only).

SPCM_FEAT_STARHUBSYSSLAVE 4000h Is set in the card that carries a System Star-Hub Slave module to connect with System Star-Hub master systems (M2i).

SPCM_FEAT_NETBOX 8000h The card is physically mounted within a digitizerNETBOX or generatorNETBOX.

SPCM_FEAT_REMOTESERVER 10000h Support for the Spectrum Remote Server option is installed on this card.

SPCM_FEAT_SCAPP 20000h Support for the SCAPP option allowing CUDA RDMA access to supported graphics cards for GPU calculations
(M4i and M2p)

SPCM_FEAT_DIG16_SMB 40000h M2p: Set if option M2p.xxxx-DigSMB is installed, adding16 additional digital I/Os via SMB connectors.

SPCM_FEAT_DIG16_FX2 80000h M2p: Set if option M2p.xxxx-DigFX2 is installed, adding16 additional digital I/Os via FX2 multipin connectors.

SPCM_FEAT_DIGITALBWFILTER 100000h A digital (boxcar) bandwidth filter is available that can be globally enabled/disabled for all channels.

SPCM_FEAT_CUSTOMMOD_MASK F0000000h The upper 4 bit of the feature register is used to mark special custom modifications. This is only used if the card has
been specially customized. Please refer to the extra documentation for the meaning of the custom modifications.
(M2i/M3i). For M4i, M4x and M2p cards see „Custom modifications“ chapter instead.

spcm_dwGetParam_i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
if (lFeatures & SPCM_FEAT_DIGITAL)
 printf("Option digital inputs/outputs is installed on your card");

spcm_dwGetParam_i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
lCustomMod = (lFeatures >> 28) & 0xF;
if (lCustomMod != 0)
 printf("Custom modification no. %d is installed.", lCustomMod);

Register Value Direction Description

SPC_PCIEXTFEATURES 2121 read PCI extended feature register. Holds the installed extended features and options as a bitfield. The
read value must be masked out with one of the masks below to get information about one certain fea-
ture.
68 generatorNETBOX DN2.60x Manual

Programming the Board Gathering information from the card
Miscellaneous Card Information
Some more detailed card information, that might be useful for the application to know, can be read out with the following registers:

Function type of the card
This register register returns the basic type of the card:

Used type of driver
This register holds the information about the driver that is actually used to access the board. Although the driver interface doesn’t differ be-
tween Windows and Linux systems it may be of interest for a universal program to know on which platform it is working.

Driver version
This register holds information about the currently installed driver library. As the drivers are permanently improved and maintained and new
features are added user programs that rely on a new feature are requested to check the driver version whether this feature is installed.

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Kernel Driver version
This register informs about the actually used kernel driver. Windows users can also get this information from the device manager. Please refer
to the „Driver Installation“ chapter. On Linux systems this information is also shown in the kernel message log at driver start time.

SPCM_FEAT_EXTFW_SEGSTAT 1h Is set if the firmware option „Block Statistics“ is installed on the board, which allows certain statistics to be on-board
calculated for data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_SEGAVERAGE 2h Is set if the firmware option „Block Average“ is installed on the board, which allows on-board hardware averaging of
data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_BOXCAR 4h Is set if the firmware mode „Boxcar Average“ is supported in the installed firmware version.

Register Value Direction Description

SPC_MIINST_MODULES 1100 read Number of the installed front-end modules on the card.

SPC_MIINST_CHPERMODULE 1110 read Number of channels installed on one front-end module.

SPC_MIINST_BYTESPERSAMPLE 1120 read Number of bytes used in memory by one sample.

SPC_MIINST_BITSPERSAMPLE 1125 read Resolution of the samples in bits.

SPC_MIINST_MAXADCVALUE 1126 read Decimal code of the full scale value.

SPC_MIINST_MINEXTCLOCK 1145 read Minimum external clock that can be fed in for direct external clock (if available for card model).

SPC_MIINST_MAXEXTCLOCK 1146 read Maximum external clock that can be fed in for direct external clock (if available for card model).

SPC_MIINST_MINEXTREFCLOCK 1148 read Minimum external clock that can be fed in as a reference clock.

SPC_MIINST_MAXEXTREFCLOCK 1149 read Maximum external clock that can be fed in as a reference clock.

SPC_MIINST_ISDEMOCARD 1175 read Returns a value other than zero, if the card is a demo card.

Register Value Direction Description

SPC_FNCTYPE 2001 read Gives information about what type of card it is.

SPCM_TYPE_AI 1h Analog input card (analog acquisition; the M2i.4028 and M2i.4038 also return this value)

SPCM_TYPE_AO 2h Analog output card (arbitrary waveform generators)

SPCM_TYPE_DI 4h Digital input card (logic analyzer card)

SPCM_TYPE_DO 8h Digital output card (pattern generators)

SPCM_TYPE_DIO 10h Digital I/O (input/output) card, where the direction is software selectable.

Register Value Direction Description

SPC_GETDRVTYPE 1220 read Gives information about what type of driver is actually used

DRVTYP_LINUX32 1 Linux 32bit driver is used

DRVTYP_WDM32 4 Windows WDM 32bit driver is used (XP/Vista/Windows 7/Windows 8/Windows 10).

DRVTYP_WDM64 5 Windows WDM 64bit driver is used by 64bit application (XP64/Vista/Windows 7/Windows 8/Windows 10).

DRVTYP_WOW64 6 Windows WDM 64bit driver is used by 32bit application (XP64/Vista/Windows 7/Windows 8/ Windows 10).

DRVTYP_LINUX64 7 Linux 64bit driver is used

Register Value Direction Description

SPC_GETDRVVERSION 1200 read Gives information about the driver library version

Driver Major Version Driver Minor Version Driver Build

8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit 0 to bit 15

Register Value Direction Description

SPC_GETKERNELVERSION 1210 read Gives information about the kernel driver version.
(c) Spectrum GmbH 69

Reset Programming the Board
The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

The following example demonstrates how to read out the kernel and library version and how to print them.

This small program will generate an output like this:

Reset
Every Spectrum card can be reset by software. Concerning the hardware, this reset is the same as the power-on reset when starting the host
computer. In addition to the power-on reset, the reset command also brings all internal driver settings to a defined default state. A software
reset is automatically performed, when the driver is first loaded after starting the host system.

It is recommended, that every custom written program performs a software reset first, to be sure that the
driver is in a defined state independent from possible previous setting.

Performing a board reset can be easily done by the related board command mentioned in the following table.

Driver Major Version Driver Minor Version Driver Build

8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit 0 to bit 15

spcm_dwGetParam_i32 (hDrv, SPC_GETDRVVERSION, &lLibVersion);
spcm_dwGetParam_i32 (hDrv, SPC_GETKERNELVERSION, &lKernelVersion);
printf("Kernel V %d.%d build %d\n”,lKernelVersion >> 24, (lKernelVersion >> 16) & 0xff, lKernelVersion & 0xffff);
printf("Library V %d.%d build %d\n”,lLibVersion >> 24, (lLibVersion >> 16) & 0xff, lLibVersion & 0xffff);

Kernel V 1.11 build 817
Library V 1.1 build 854

Register Value Direction Description

SPC_M2CMD 100 w Command register of the board.

M2CMD_CARD_RESET 1h A software and hardware reset is done for the board. All settings are set to the default values. The data in the board’s
on-board memory will be no longer valid. Any output signals like trigger or clock output will be disabled.
70 generatorNETBOX DN2.60x Manual

digitizerNETBOX/generatorNETBOX specific registers

(c) Spectrum GmbH 71

digitizerNETBOX/generatorNETBOX specific registers
Information about the digitizerNETBOX/generatorNETBOX, in which the card is installed, can be read out via the card handle.

The following digitizerNETBOX/generatorNETBOX specific information registers can be used:

Register Value Direction Description

SPC_NETBOX_TYPE 400000 read Hex coded version of the digitizerNETBOX/generatorNETBOX, example 02490110h:
bit 24 to 31: Series: example 02h = DN2
bit 16 to 23: Family: example 49h = 49
bit 8 to 15: Speed grade: example 01h = 1
bit 0 to 7: Channels: example 10h = 16
Decoded example: DN2.491-16

SPC_NETBOX_SERIALNO 400001 read Serial number of the digitizerNETBOX/generatorNETBOX itself. In most cases the serial numbers of
the digitizerNETBOX/generatorNETBOX and the embedded cards are consecutive but there is no
guarantee for this.

SPC_NETBOX_PRODUCTIONDATE 400002 read Production date: week in bit 31 to 16, year in bit 15 to 0

SPC_NETBOX_HWVERSION 400003 read The hardware version of the digitizerNETBOX/generatorNETBOX products

SPC_NETBOX_SWVERSION 400004 read The software version of the installed remote server

SPC_NETBOX_FEATURES 400005 read Features of the digitizerNETBOX/generatorNETBOX. Holds the installed features and options as a
bitfield. The read value must be masked out with one of the masks below to get information about
one certain feature.

NETBOX_FEAT_DCPOWER 1h Is set if one of the DC power options are installed in the system.

NETBOX_FEAT_BOOTATPOWERON 2h Is set if the special feature automatic boot on power on is installed. This would allow remote devices to automatically
reboot after a failure of the power supply.

NETBOX_FEAT_EMBEDDEDSERVER 4h Is set if the option Embedded Server is installed.

Register Value Direction Description

SPC_NETBOX_CUSTOM 400006 read Custom code for custom modifications of the digitizerNETBOX/generatorNETBOX.

SPC_NETBOX_WAKEONLAN 400007 write This command is issed to wake a digitizerNETBOX/generatorNETBOX that is currently in standby-
mode with a special wake-on-lan message. Please note that the card handle is NULL in this case as
there is no opened card here. The argument is the MAC address of that device

SPC_NETBOX_MACADDRESS 400008 read Reads out the MAC address of the digitizerNETBOX/generatorNETBOX.

SPC_NETBOX_LANIDFLASH 400009 write By writing 1 to this register, one can start the autoamtic flashing of the LAN Id to detect a particulat
digitizerNETBOX/generatorNETBOX that is installed in a Rack of multiple digitizerNETBOX or
generatorNETBOX devices. Writing a 0 to this register will stop the flashing again.

SPC_NETBOX_TEMPERATURE 400010 read Read out the temperature inside the digitizerNETBOX/generatorNETBOX (same as displayed in the
webinterface status information) in Kelvin.

SPC_NETBOX_SHUTDOWN 400011 write Remotely shut down the digitizerNETBOX/generatorNETBOX. Value must be set to 0.

SPC_NETBOX_RESTART 400012 write Remotely restart the digitizerNETBOX/generatorNETBOX. Value must be set to 0.

Channel Selection Analog Outputs
Analog Outputs

Channel Selection
One key setting that influences all other possible settings is the channel enable register. A unique feature of the Spectrum cards is the possibility
to program the number of channels you want to use. All on-board memory can then be used by these activated channels.

This description shows you the channel enable register for the complete card family. However, your specific board may have less channels
depending on the card type that you have purchased and therefore does not allow you to set the maximum number of channels shown here.

The channel enable register is set as a bitmap. That means that one bit of the value corresponds to one channel to be activated. To activate
more than one channel the values have to be combined by a bitwise OR.

Example showing how to activate 4 channels:

The following table shows all allowed settings for the channel enable register when your card has a maximum of 1 channel.

The following table shows all allowed settings for the channel enable register when your card has a maximum of 2 channels.

The following table shows all allowed settings for the channel enable register in case that you have a four channel card.

Any channel activation mask that is not shown here is not valid. If programming an other channel activation,
the driver will return with an error code ERR_VALUE.

To help user programs it is also possible to read out the number of activated channels that correspond to the currently programmed bitmap.

Reading out the channel enable information can be done directly after setting it or later like this:

Register Value Direction Description

SPC_CHENABLE 11000 read/write Sets the channel enable information for the next card run.

CHANNEL0 1 Activates channel 0

CHANNEL1 2 Activates channel 1

CHANNEL2 4 Activates channel 2

CHANNEL3 8 Activates channel 3

spcm_dwSetParam_i64 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1 | CHANNEL2 | CHANNEL3);

Channels to activate
Ch0 Values to program Value as hex Value as decimal
X CHANNEL0 1h 1

Channels to activate
Ch0 Ch1 Values to program Value as hex Value as decimal
X CHANNEL0 1h 1

X CHANNEL1 2h 2
X X CHANNEL0 | CHANNEL1 3h 3

Channels to activate
Ch0 Ch1 Ch2 Ch3 Values to program Value as hex Value as decimal
X CHANNEL0 1h 1

X CHANNEL1 2h 2
X CHANNEL2 4h 4

X CHANNEL3 8h 8
X X CHANNEL0 | CHANNEL1 3h 3
X X CHANNEL0 | CHANNEL2 5h 5
X X CHANNEL0 | CHANNEL3 9h 9

X X CHANNEL1 | CHANNEL2 6h 6
X X CHANNEL1 | CHANNEL3 Ah 10

X X CHANNEL2 | CHANNEL3 Ch 12
X X X X CHANNEL0 | CHANNEL1 | CHANNEL2 | CHANNEL3 Fh 15

Register Value Direction Description

SPC_CHCOUNT 11001 read Reads back the number of currently activated channels.

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1);
spcm_dwGetParam_i32 (hDrv, SPC_CHENABLE, &lActivatedChannels);
spcm_dwGetParam_i32 (hDrv, SPC_CHCOUNT, &lChCount);

printf ("Activated channels bitmask is: 0x%08x\n", lActivatedChannels);
printf ("Number of activated channels with this bitmask: %d\n", lChCount);
72 generatorNETBOX DN2.60x Manual

Analog Outputs Setting up the outputs
Assuming that the two channels are available on your card the program will have the following output:

Important note on channel selection

As some of the manuals passages are used in more than one hardware manual most of the registers and
channel settings throughout this handbook are described for the maximum number of possible channels that
are available on one card of the current series. There can be less channels on your actual type of board or
bus-system. Please refer to the technical data section to get the actual number of available channels.

Setting up the outputs

Output Amplifiers
This arbitrary waveform generator board uses separate output am-
plifiers for each channel. This gives you the possibility to separate-
ly set up the channel outputs to best suit your application.

The output amplifiers can easily be set by the corresponding am-
plitude registers.

The table below shows the available registers to set up the output
amplitude for your type of board.

The amplitude can be changed at any time even if the board is running and outputting a signal to the con-
nectors. The board will not be stopped when changing these settings.

Output offset
In many applications an output of symmetrical sig-
nals is required. But in some cases, depending on
your application, it can be necessary to generate
signals that are not symmetrical.

For such cases you can adjust the offset of the out-
puts for each channel seperately.

The figure at the right shows some examples, how
to set up the offset in combination with different am-
plitudes.

Activated channels bitmask is: 0x00000003
Number of activated channels with this bitmask: 2

Register Value Direction Description Amplitude range

SPC_AMP0 30010 read/write Defines the amplitude of channel0 in mV. 100 up to 3000 (in mV)

SPC_AMP1 30110 read/write Defines the amplitude of channel1 in mV. 100 up to 3000 (in mV)

SPC_AMP2 30210 read/write Defines the amplitude of channel2 in mV. 100 up to 3000 (in mV)

SPC_AMP3 30310 read/write Defines the amplitude of channel3 in mV. 100 up to 3000 (in mV)
(c) Spectrum GmbH 73

Setting up the outputs Analog Outputs

The offset settings can be changed at any time even if the board is running and outputting a signal to the
connectors. The board will not be stopped when changing these settings.

Maximum Output Range
In order not to generate distorted signals it is nec-
essary to keep the total output range as a combina-
tion of the set amplitude and offset within a range
of ±3000 mV.

If this limit is exceeded a heavy distorted signal will
be seen and the signals waveform will be cut off at
the maximum range of +3000 mV or at the mini-
mum range of -3000 mV.

To avoid heavily distorted output signals please make sure to keep the signals in a range of ±3000 mV.

 To give you an example how the registers of the amplitude and the offset are to be used, the following example shows a setup to match all
of the three signals shown in the offset figure.

Output Filters
Every output of your Spectrum D/A board is equipped with a bypass
path and three fixed filters that can be used for signal smoothing.
The filters are located in the signal chain between the output amplifi-
cation section and the DAC, as shown in the right figure. Depending
on your type of board these filters are of differerent filter types and
have different cut off frequencies, as shown below. As well as the set-
ting for amplitude and offset, the settings for the filters can be changed
at any time. The board will not be stopped for changing the different
filters. You can choose between the different filters easily by setting the
dedicated filter registers. The registers and the possible values are shown in the table below.

Register Value Direction Description Offset range

SPC_OFFS0 30000 read/write Defines output offset and therefore shifts the output of channel0. ± 3000 mV in steps of 1 mV

SPC_OFFS1 30100 read/write Defines output offset and therefore shifts the output of channel1. ± 3000 mV in steps of 1 mV

SPC_OFFS2 30200 read/write Defines output offset and therefore shifts the output of channel2. ± 3000 mV in steps of 1 mV

SPC_OFFS3 30300 read/write Defines output offset and therefore shifts the output of channel3. ± 3000 mV in steps of 1 mV

SpcSetParam (hDrv, SPC_AMP0 , 1000); // Set up amplitude of channel0 to ± 1.0 V
SpcSetParam (hDrv, SPC_AMP1 , 1000); // Set up amplitude of channel1 to ± 1.0 V
SpcSetParam (hDrv, SPC_AMP2 , 1500); // Set up amplitude of channel2 to ± 1.5 V
SpcSetParam (hDrv, SPC_OFFS0, 0); // Set the output offsets
SpcSetParam (hDrv, SPC_OFFS1, 500);
SpcSetParam (hDrv, SPC_OFFS2, -500);

Register Value Direction Description

SPC_FILTER0 30080 read/write Sets the signal filter of channel0.

SPC_FILTER1 30180 read/write Sets the signal filter of channel1.

SPC_FILTER2 30280 read/write Sets the signal filter of channel2.

SPC_FILTER3 30380 read/write Sets the signal filter of channel3.

0 No filter is used on the corresponding channel.

1 Filter 1 is used on the corresponding channel. The type of filter depends on the type of board and is shown below.
74 generatorNETBOX DN2.60x Manual

Analog Outputs Setting up the outputs

Differential Output
The differential mode outputs the data on the even
channels and the inverted data on the odd channels
of one module, as the figure on the right is showing.

As a result you have differential signals, which are
more resistant against noise when being transmit-
ted via long cables. Because of the hardware gen-
eration, only one data sample in memory is needed
for one pair of differential outputs.

The dedicated registers to set up the differential
mode are shown below.

If your board has four installed channels you can
generate two pairs of differential signals, otherwise
one pair is possible.

Differential outputs are not available for all types of
boards. Please refer to the table below, which men-
tions the boards this mode is available on.

Double Out Mode
The double out mode outputs the data on the even
channels and the same data on the odd channels
of one module, as the figure on the right is showing.
The dedicated registers to set up the differential
mode are shown below.

If your board has four installed channels you can
generate two pairs of identical signals, otherwise
only one pair is possible.

The double out mode is not available for all types
of boards. Please refer to the table below, which
mentions the boards this mode is available on.

2 Filter 2 is used on the corresponding channel. The type of filter depends on the type of board and is shown below.

3 Filter 3 is used on the corresponding channel. The type of filter depends on the type of board and is shown below.

Filter Specifications MI.6011
M2i.6011

MI.6012
M2i.6012

MI.6021
M2i.6021

MI.6022
M2i.6022

MI.6030
M2i.6030

MI.6031
M2i.6031

MI.6033
M2i.6033

MI.6034
M2i.6034

filter 0 No filter will be used.

filter 1 -3 dB bandwidth 100 kHz 200 kHz 500 kHz

filter 2 -3 dB bandwidth 1 MHz 2 MHz 5 MHz

filter 3 -3 dB bandwidth 5 MHz 10 MHz 25 MHz

Register Value Direction Description

SPC_DIFF0 30040 read/write Sets channel 0/1 to differential mode.

SPC_DIFF2 30240 read/write Sets channel 2/3 to differential mode.

Mode MI.6011
M2i.6011

MI.6012
M2i.6012

MI.6021
M2i.6021

MI.6022
M2i.6022

MI.6030
M2i.6030

MI.6031
M2i.6031

MI.6033
M2i.6033

MI.6034
M2i.6034

Differential Output installed installed installed installed not available not available installed installed
(c) Spectrum GmbH 75

Setting up the outputs Analog Outputs

Programming the behaviour in pauses and after replay
Usually the used outputs of the analog generation boards are set to zero level after replay. This is in most cases adequate. In some cases it
can be necessary to hold the last sample, to output the maximum positive level or maximum negative level after replay. The stoplevel will
stay on the defined level until the next output has been made. With the following registers you can define the behaviour after replay:

All outputs that are not activated for replay, will keep the programmed stoplevel also while the replay is in progress.

Because the STOPLEVEL registers impact the digital samples fed to the D/A converter, the output is still shifted by the programmed
output offset, as described before.

Read out of output features
The analog outputs of the different cards do have different features implemented, that can be read out to make the software more general. If
you only operate one single card type in your software it is not necessary to read out these features.

Please note that the following table shows all output feature settings that are available throughout all Spectrum generator cards. Some of these
features are not installed on your specific hardware.

Register Value Direction Description

SPC_DOUBLEOUT0 30041 read/write Sets channel 0/1 to double out mode.

SPC_DOUBLEOUT2 30241 read/write Sets channel 2/3 to double out mode.

Mode MI.6011
M2i.6011

MI.6012
M2i.6012

MI.6021
M2i.6021

MI.6022
M2i.6022

MI.6030
M2i.6030

MI.6031
M2i.6031

MI.6033
M2i.6033

MI.6034
M2i.6034

Double out mode installed installed installed installed not available not available installed installed

Register Value Direction Description

SPC_CH0_STOPLEVEL 206020 read/write Defines the behavior after replay for channel 0

SPC_CH1_STOPLEVEL 206021 read/write Defines the behavior after replay for channel 1

SPC_CH2_STOPLEVEL 206022 read/write Defines the behavior after replay for channel 2

SPC_CH3_STOPLEVEL 206023 read/write Defines the behavior after replay for channel 3

SPCM_STOPLVL_ZERO 16 Defines the analog output to enter zero level (D/A converter is fed with digital zero value)

SPCM_STOPLVL_LOW 2 Defines the analog output to enter maximum negative level (D/A converter is fed with most negative level)

SPCM_STOPLVL_HIGH 4 Defines the analog output to enter maximum positive level (D/A converter is fed with most positive level)

SPCM_STOPLVL_HOLDLAST 8 Holds the last replayed sample on the analog output

Register Value Direction Description

SPC_READAOFEATURES 3102 read Returns a bit map with the available features of the analog output path. The possible return values are
listed below.

SPCM_AO_SE 00000002h Output is single-ended. If available together with SPC_AO_DIFF: output type is software selectable

SPCM_AO_DIFF 00000004h Output is differential. If available together with SPC_AO_SE: output type is software selectable

SPCM_AO_PROGFILTER 00000008h Software selectable output filters are available.

SPCM_AO_PROGOFFSET 00000010h Output offset is software programmable.

SPCM_AO_PROGGAIN 00000020h Output gain is software programmable.

SPCM_AO_PROGSTOPLEVEL 00000040h The output level between segments and after replay of generated data is programmable.

SPCM_AO_DOUBLEOUT 00000080h Double out mode is available allowing to generate cheap copies of even channel data on odd channels outputs for
driving multiple loads.

SPCM_AO_ENABLEOUT 00000100h The output of each channel can be completely disabled by software command at any time.
76 generatorNETBOX DN2.60x Manual

Generation modes Overview
Generation modes
Your card is able to run in different modes. Depending on the selected mode there are different registers that each define an aspect of this
mode. The single modes are explained in this chapter. Any further modes that are only available if an option is installed on the card is doc-
umented in a later chapter.

Overview
This chapter gives you a general overview on the related registers for the different modes. The use of these registers throughout the different
modes is described in the following chapters.

Setup of the mode
The mode register is organized as a bitmap. Each mode corresponds to one bit of this bitmap. When defining the mode to use, please be
sure just to set one of the bits. All other settings will return an error code.

The main difference between all standard and all FIFO modes is that the standard modes are limited to on-board memory and therefore can
run with full sampling rate. The FIFO modes are designed to transfer data continuously over the bus to PC memory or to hard disk and can
therefore run much longer. The FIFO modes are limited by the maximum bus transfer speed the PC can use. The FIFO mode uses the complete
installed on-board memory as a FIFO buffer.

However as you’ll see throughout the detailed documentation of the modes the standard and the FIFO mode are similar in programming and
behavior and there are only a very few differences between them.

Replay modes

Commands
The data acquisition/data replay is controlled by the command register. The command register controls the state of the card in general and
also the state of the different data transfers. Data transfers are explained in an extra chapter later on.

The commands are split up into two types of commands: execution commands that fulfill a job and wait commands that will wait for the
occurrence of an interrupt. Again the commands register is organized as a bitmap allowing you to set several commands together with one
call. As not all of the command combinations make sense (like the combination of reset and start at the same time) the driver will check the
given command and return an error code ERR_SEQUENCE if one of the given commands is not allowed in the current state.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_AVAILCARDMODES 9501 read Returns a bitmap with all available modes on your card. The modes are listed below.

Mode Value Description

SPC_REP_STD_SINGLE 100h Data generation from on-board memory repeating the complete programmed memory either once, infinite or for a
defined number of times after one single trigger event.

SPC_REP_STD_MULTI 200h Data generation from on-board memory for multiple trigger events. Each generated segment has the same size. This
mode is described in greater detail in a special chapter about the Multiple Replay mode.

SPC_REP_STD_GATE 400h Data generation from on-board memory using an external gate signal. Data is only generated as long as the gate sig-
nal has a programmed level. The mode is described in greater detail in a special chapter about the Gated Replay
mode.

SPC_REP_STD_SINGLERESTART 8000h Data generation from on-board memory. The programmed memory is repeated once after each single trigger event.

SPC_REP_STD_SEQUENCE 40000h Data generation from on-board memory splitting the memory into several segments and replaying the data using a
special sequence memory. The mode is described in greater detail in a special chapter about the Sequence mode.

SPC_REP_FIFO_SINGLE 800h Continuous data generation after one single trigger event. The on-board memory is used completely as FIFO buffer.

SPC_REP_FIFO_MULTI 1000h Continuous data generation after multiple trigger events. The on-board memory is used completely as FIFO buffer.

SPC_REP_FIFO_GATE 2000h Continuous data generation using an external gate signal. The on-board memory is used completely as FIFO buffer.

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer.
(c) Spectrum GmbH 77

Commands Generation modes
Card execution commands

Card wait commands
These commands do not return until either the defined state has been reached which is signaled by an interrupt from the card or the timeout
counter has expired. If the state has been reached the command returns with an ERR_OK. If a timeout occurs the command returns with
ERR_TIMEOUT. If the card has been stopped from a second thread with a stop or reset command, the wait function returns with ERR_ABORT.

Wait command timeout
If the state for which one of the wait commands is waiting isn’t reached any of the wait commands will either wait forever if no timeout is
defined or it will return automatically with an ERR_TIMEOUT if the specified timeout has expired.

As a default the timeout is disabled. After defining a timeout this is valid for all following wait commands until the timeout is disabled again
by writing a zero to this register.

A timeout occurring should not be considered as an error. It did not change anything on the board status. The board is still running and will
complete normally. You may use the timeout to abort the run after a certain time if no trigger has occurred. In that case a stop command is
necessary after receiving the timeout. It is also possible to use the timeout to update the user interface frequently and simply call the wait
function afterwards again.

Example for card control:

Card Status
In addition to the wait for an interrupt mechanism or completely instead of it one may also read out the current card status by reading the
SPC_M2STATUS register. The status register is organized as a bitmap, so that multiple bits can be set, showing the status of the card and
also of the different data transfers.

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above.

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started, only some of the settings might
be changed while the card is running, such as e.g. output level and offset for D/A replay cards.

M2CMD_CARD_ENABLETRIGGER 8h The trigger detection is enabled. This command can be either sent together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

M2CMD_CARD_WAITPREFULL 1000h Acquisition modes only: the command waits until the pretrigger area has once been filled with data. After pretrigger
area has been filled the internal trigger engine starts to look for trigger events if the trigger detection has been
enabled.

M2CMD_CARD_WAITTRIGGER 2000h Waits until the first trigger event has been detected by the card. If using a mode with multiple trigger events like Multi-
ple Recording or Gated Sampling there only the first trigger detection will generate an interrupt for this wait com-
mand.

M2CMD_CARD_WAITREADY 4000h Waits until the card has completed the current run. In an acquisition mode receiving this command means that all data
has been acquired. In a generation mode receiving this command means that the output has stopped.

Register Value Direction Description

SPC_TIMEOUT 295130 read/write Defines the timeout for any following wait command in a millisecond resolution. Writing a zero to this
register disables the timeout.

// card is started and trigger detection is enabled immediately
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);

// we wait a maximum of 1 second for a trigger detection. In case of timeout we force the trigger
spcm_dwSetParam_i32 (hDrv, SPC_TIMEOUT, 1000);
if (spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WAITTRIGGER) == ERR_TIMEOUT)
 {
 printf (“No trigger detected so far, we force a trigger now!\n”);
 spcm_dwSetParam (hdrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER);
 }

// we disable the timeout and wait for the end of the run
spcm_dwSetParam_i32 (hDrv, SPC_TIMEOUT, 0);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WAITREADY);
printf (“Card has stopped now!\n”);

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_CARD_PRETRIGGER 1h Acquisition modes only: the pretrigger area has been filled.

M2STAT_CARD_TRIGGER 2h The first trigger has been detected.

M2STAT_CARD_READY 4h The card has finished its run and is ready.

M2STAT_CARD_SEGMENT_PRETRG 8h Multi/ABA/Gated acquisition of M4i/M4x/M2p only: the pretrigger area of one segment has been filled.
78 generatorNETBOX DN2.60x Manual

Generation modes Commands
Acquisition cards status overview
The following drawing gives you an overview of the card commands and card status information. After start of card with
M2CMD_CARD_START the card is acquiring pretrigger data until one time complete pretrigger data has been acquired. Then the status bit
M2STAT_CARD_PRETRIGGER is set. Either the trigger has been enabled together with the start command or the card now waits for trigger
enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card checks for a trig-
ger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card acquires the programmed
posttrigger data. After all post trigger data has been acquired the status bit M2STAT_CARD_READY is set and data can be read out:

Generation card status overview
This drawing gives an overview of the card commands and status information for a simple generation mode. After start of card with the
M2CMD_CARD_START the card is armed and waiting. Either the trigger has been enabled together with the start command or the card now
waits for trigger enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card
checks for a trigger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card starts with the
data replay. After replay has been finished - depending on the programmed mode - the status bit M2STAT_CARD_READY is set and the card
stops.

Data Transfer
Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Data transfer
shares the command and status register with the card control commands and status information. In general the following details on the data
transfer are valid for any data transfer in any direction:

• The memory size register (SPC_MEMSIZE) must be programmed before starting the data transfer.
• When the hardware buffer is adjusted from its default (see „Output latency“ section later in this manual), this must be done before defin-

ing the transfer buffers in the next step via the spcm_dwDefTransfer function.
• Before starting a data transfer the buffer must be defined using the spcm_dwDefTransfer function.
• Each defined buffer is only used once. After transfer has ended the buffer is automatically invalidated.
• If a buffer has to be deleted although the data transfer is in progress or the buffer has at least been defined it is necessary to call the

spcm_dwInvalidateBuf function.

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter.

uint32 _stdcall spcm_dwDefTransfer_i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to define as listed below under SPCM_BUF_XXXX
 uint32 dwDirection, // the transfer direction as defined below
 uint32 dwNotifySize, // number of bytes after which an event is sent (0=end of transfer)
 void* pvDataBuffer, // pointer to the data buffer
 uint64 qwBrdOffs, // offset for transfer in board memory
 uint64 qwTransferLen); // buffer length
(c) Spectrum GmbH 79

Commands Generation modes
This function is used to define buffers for standard sample data transfer as well as for extra data transfer for additional ABA or timestamp
information. Therefore the dwBufType parameter can be one of the following:

The dwDirection parameter defines the direction of the following data transfer:

The direction information used here must match the currently used mode. While an acquisition mode is used
there’s no transfer from PC to card allowed and vice versa. It is possible to use a special memory test mode
to come beyond this limit. Set the SPC_MEMTEST register as defined further below.

The dwNotifySize parameter defines the amount of bytes after which an interrupt should be generated. If leaving this parameter zero, the
transfer will run until all data is transferred and then generate an interrupt. Filling in notify size > zero will allow you to use the amount of
data that has been transferred so far. The notify size is used on FIFO mode to implement a buffer handshake with the driver or when trans-
ferring large amount of data where it may be of interest to start data processing while data transfer is still running. Please see the chapter on
handling positions further below for details.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the
range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify

size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the
polling mode as described later.

The pvDataBuffer must point to an allocated data buffer for the transfer. Please be sure to have at least the amount of memory allocated that
you program to be transferred. If the transfer is going from card to PC this data is overwritten with the current content of the card on-board
memory.

The pvDataBuffer needs to be aligned to a page size (4096 bytes). Please use appropriate software com-
mands when allocating the data buffer. Using a non-aligned buffer may result in data corruption.

When not doing FIFO mode one can also use the qwBrdOffs parameter. This parameter defines the starting position for the data transfer as
byte value in relation to the beginning of the card memory. Using this parameter allows it to split up data transfer in smaller chunks if one
has acquired a very large on-board memory.

The qwTransferLen parameter defines the number of bytes that has to be transferred with this buffer. Please be sure that the allocated memory
has at least the size that is defined in this parameter. In standard mode this parameter cannot be larger than the amount of data defined with
memory size.

Memory test mode
In some cases it might be of interest to transfer data in the opposite direction. Therefore a special memory test mode is available which allows
random read and write access of the complete on-board memory. While memory test mode is activated no normal card commands are pro-
cessed:

Invalidation of the transfer buffer
The command can be used to invalidate an already defined buffer if the buffer is about to be deleted by user. This function is automatically
called if a new buffer is defined or if the transfer of a buffer has completed

The dwBufType parameter need to be the same parameter for which the buffer has been defined:

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the
timestamp option.

SPCM_DIR_PCTOCARD 0 Transfer is done from PC memory to on-board memory of card

SPCM_DIR_CARDTOPC 1 Transfer is done from card on-board memory to PC memory.

SPCM_DIR_CARDTOGPU 2 RDMA transfer from card memory to GPU memory, SCAPP option needed, Linux only

SPCM_DIR_GPUTOCARD 3 RDMA transfer from GPU memory to card memory, SCAPP option needed, Linux only

Register Value Direction Description

SPC_MEMTEST 200700 read/write Writing a 1 activates the memory test mode, no commands are then processed.
Writing a 0 deactivates the memory test mode again.

uint32 _stdcall spcm_dwInvalidateBuf (// invalidate the transfer buffer
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType); // type of the buffer to invalidate as listed above under SPCM_BUF_XXXX

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option. The ABA mode is only available on analog acquisition cards.

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the times-
tamp option. The timestamp mode is only available on analog or digital acquisition cards.
80 generatorNETBOX DN2.60x Manual

Generation modes Standard Single Replay modes
Commands and Status information for data transfer buffers.
As explained above the data transfer is performed with the same command and status registers like the card control. It is possible to send
commands for card control and data transfer at the same time as shown in the examples further below.

The data transfer can generate one of the following status information:

Example of data transfer

To keep the example simple it does no error checking. Please be sure to check for errors if using these command in real world programs!

Users should take care to explicitly send the M2CMD_DATA_STOPDMA command prior to invalidating the
buffer, to avoid crashes due to race conditions when using higher-latency data transportation layers, such
as to remote Ethernet devices.

Standard Single Replay modes
The standard single modes are the easiest and mostly used modes to generate analog or digital data with a Spectrum arbitrary waveform
generation or digital output card. In standard single replay mode the card is working totally independent from the PC, after the card setup is
done and the data has been transferred into the on-board memory. The advantage of the Spectrum boards is that regardless to the system
usage the card will refresh the outputs with equidistant time intervals.
The data for replay is stored in the on-board memory and is held there for being replayed after the trigger event. This mode allows sample
generation at very high refresh rates without the need to transfer the data from the memory of the host system to the card at high speed.

Card mode
The card mode has to be set to the correct mode SPC_REP_STD_SINGLE.

Memory setup
You have to define, how many samples are to be replayed from the on-board memory and how many times the complete memory should be
replayed after the trigger event.

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_DATA_STARTDMA 10000h Starts the DMA transfer for an already defined buffer. In acquisition mode it may be that the card hasn’t received a
trigger yet, in that case the transfer start is delayed until the card receives the trigger event

M2CMD_DATA_WAITDMA 20000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter described above into account.

M2CMD_DATA_STOPDMA 40000h Stops a running DMA transfer. Data is invalid afterwards.

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_DATA_BLOCKREADY 100h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.

M2STAT_DATA_END 200h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_DATA_OVERRUN 400h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_DATA_ERROR 800h An internal error occurred while doing data transfer.

void* pvData = pvAllocMemPageAligned (1024);

// transfer data from PC memory to card memory (on replay cards) ...
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD , 0, pvData, 0, 1024);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// ... or transfer data from card memory to PC memory (acquisition cards)
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 0, pvData, 0, 1024);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// explicitely stop DMA tranfer prior to invalidating buffer
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STOPDMA);
spcm_dwInvalidateBuf (hDrv, SPCM_BUF_DATA);
vFreeMemPageAligned (pvData, 1024);

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_REP_STD_SINGLE 100h Data generation from on-board memory repeating the complete programmed memory either once, infinite or for a
defined number of times after one single trigger event.

SPC_REP_STD_SINGLERESTART 8000h Data generation from on-board memory replaying the complete programmed memory on every detected trigger
event. The number of replays can be programmed by loops.
(c) Spectrum GmbH 81

Standard Single Replay modes Generation modes
Please note that the memory size must be programmed to the correct value PRIOR to making any data trans-
fer to the card memory. An incorrect memory size value at the time the data transfer is initiated will result in
corrupted data and a wrong output.

The maximum memsize that can be use for generating data is of course limited by the installed amount of memory and by the number of
channels to be replayed. Please have a look at the topic "Limits of pre, post memsize, loops" later in this chapter.

SPC_REP_STD_SINGLE
This mode waits for one trigger events and after this it starts to replay the programmed memory either once, a pre-defined number of times
on infinitely until explicitly stopped by the user. The SPC_LOOPS register is used to define the number of possible repetitions. Setting this
register to 0 the generation will continue until explicitly stopped by the user. Any other value than 0 for SPC_LOOPS will result in the signal
being replayed SPC_LOOPS times until the card stopps automatically. For replaying the memory content only once after a trigger the
SPC_LOOPS values hence must be set to a value of 1.

Replay of a data pattern just once

Replay for a defined number of times (2 in the example shown)

Replay continuously until the replay is stopped by the user

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Sets the memory size in samples per channel. The memory size setting must be set before transferring
data to the card.

SPC_LOOPS 10020 read/write Number of times the memory is replayed. If set to zero the generation will run continuously until it is
stopped by the user.
82 generatorNETBOX DN2.60x Manual

Generation modes Standard Single Replay modes
SPC_REP_STD_SINGLERESTART
This mode behaves like multiple shots of SPC_REP_STD_SINGLE but with a very small re-arming time in between. When using this mode the
memory content is replayed on every detected trigger event. The SPC_LOOPS parameter defines how long this replay should continue. A
value of zero defines the mode to run continuously until stopped by the user.

Between the different replayed pieces the output will go to the programmed stoplevel.

Overview of settings and resulting modes
This table gives a brief overview on the setup of loops and the resulting behavior of the output

Continuous marker output
If using the continuous output with internal trigger one can activate a marker output on the trigger I/O connector marking the beginning of
each loop.

The marker output will generate a TTL pulse on the trigger output connector. The pulse length is of ½ of programmed memory up to a maximum
trigger pulse width of 256 samples. If memory is larger than 512 samples the trigger pulse width will still be 256 samples. Please be sure to
have the trigger output enabled for this function. This function requires driver version ≥ build 1604 and firmware version ≥11.

Example
The following example shows a simple standard single mode data generation setup with the transfer of data before the card is started. To
keep this example simple there is no error checking implemented.

SPC_LOOPS = 0 SPC_LOOPS = 1 SPC_LOOPS = N
SPC_REP_STD_SINGLE Replay starts with the first trigger event and

then the programmed data is replayed in a
continuous loop until stopped by the user.

The programmed memory content is replayed
once after detection of the trigger event.

Replay starts with the first trigger event and
then the programmed data is replayed in a
continuous loop until the programmed number
N of loops has been replayed. Afterward the
card stops.

SPC_REP_STD_SINGLERESTART The programmed memory is replayed once on
every trigger event. This continues until
stopped by the user.

n.a. (similar to SPC_REP_STD_SINGLE) The programmed memory is replayed once on
every trigger event. This continues until the
memory is N-times replayed. Afterwards the
card stops.

Register Value Direction Description

SPC_CONTOUTMARK 200450 read/write Writing a 1 enables the marker output on every loop (M2i.60xx/M2i.61xx only)

int32 lMemsize = 16384; // replay length is set to 16 kSamples

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0); // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_STD_SINGLE); // set the standard single replay mode
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, lMemsize); // replay length
spcm_dwSetParam_i64 (hDrv, SPC_LOOPS, 1); // replay memsize once

void* pvData = pvAllocMemPageAligned (2 * lMemsize); // create a data buffer, 2 bytes per sample
vCalculate_or_Load_Data (pvData); // pvData must now be filled with data

// transfer the data to the on-board memory
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD , 0, pvData, 0, 2 * lMemsize);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// now we start the generation and wait for the interrupt that signalizes the end
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);
(c) Spectrum GmbH 83

FIFO Single replay mode Generation modes
FIFO Single replay mode
The FIFO single mode does a continuous data replay using the on-board memory as a FIFO buffer and transferring data continuously from
PC memory. One can generate the data on-line or load data continuously from disk.

Card mode
The card mode has to be set to the correct mode SPC_REP_FIFO_SINGLE.

Length of FIFO mode
In general FIFO mode can run forever until it is stopped by an explicit user command or one can program the total length of the transfer by
two counters Loop and Segment size

The total amount of samples per channel that is replayed can be calculated by [SPC_LOOPS * SPC_SEGMENTSIZE]. Please stick to the below
mentioned limitations of these registers.

Difference to standard single mode
The standard modes and the FIFO modes do not differ very much from the programming point of view. In fact one can even use the FIFO
mode to get the same behavior as the standard mode. The buffer handling that is shown in the next chapter is the same for both modes.

Length of replay.
In standard mode the replay (memory size) length is defined before the start and is limited to the installed on-board memory whilst in FIFO
mode the replay length can either be defined or it can run continuously until user stops it.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_REP_FIFO_SINGLE 800h Continuous data replay from PC memory. Complete on-board memory is used as FIFO buffer.

Register Value Direction Description

SPC_SEGMENTSIZE 10010 read/write Length of segments to replay.

SPC_LOOPS 10020 read/write Number of segments to replay in total. If set to zero the FIFO mode will run continuously until it is
stopped by the user.
84 generatorNETBOX DN2.60x Manual

Generation modes FIFO Single replay mode
Example (FIFO replay)
The following example shows a simple FIFO single mode data replay setup with the data calculation placed somewhere else. To keep this
example simple there is no error checking implemented. Please see in this example that data has to be calculated and transferred prior to
the start of the output. The card start and the DMA transfer start cannot be done simultaneously.

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0); // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_FIFO_SINGLE); // set the FIFO single replay mode

// starting with firmware version V9 we can program the hardware buffer size to reduce the latency
spcm_dwGetParam_i32 (hDrv, SPC_PCIVERSION, &lVersion);
if ((lVersion & 0xffff) >= 9)
 {
 spcm_dwSetParam_i64 (stCard.hDrv, SPC_DATA_OUTBUFSIZE, 65536);
 spcm_dwSetParam_i32 (stCard.hDrv, SPC_M2CMD, M2CMD_CARD_WRITESETUP);
 }

// in FIFO mode we need to define the buffer before starting the transfer
int16* pnData = (int16*) pvAllocMemPageAligned (llBufsizeInSamples * 2); // assuming 2 byte per sample
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD, 4096,
 (void*) pnData, 0, 2 * llBufsizeInSamples);

// before start we once have to fill some data in for the start of the output
vCalcOrLoadData (&pnData[0], 2 * llBufsizeInSamples);
spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, 2 * llBufsizeInSamples);
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// now the first <notifysize> bytes have been transferred to card and we start the output
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);

// we replay data in a loop. As we defined a notify size of 4k we’ll get the data in >=4k chuncks
llTotalBytes = 2 * llBufsizeInSamples;
while (!dwError)
 {
 // read out the available bytes that are free again
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_POS, &llUserPosInBytes);

 // be sure not to make a rollover and limit the data to be processed
 if ((llUserPosInBytes + llAvailBytes) > (2 * llBufsizeInSamples))
 llAvailBytes = (2 * llBufsizeInSamples) - llUserPosInBytes;
 llotalBytes += llAvailBytes;

 // generate some new data
 vCalcOrLoadData (&pnData[llUserPosInBytes / 2], llAvailBytes);
 printf ("Currently Available: %lld, total: %lld\n", llAvailBytes, llTotalBytes);

 // now we mark the number of bytes that we just generated for replay and wait for the next free buffer
 spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);
 }
(c) Spectrum GmbH 85

Limits of segment size, memory size Generation modes
Limits of segment size, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 2 bytes of memory to be stored.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning memory size, segment size and loops. The table shows all values in relation
to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase according to the complete
installed memory:

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Activated Used Memory size Segment size Loops
Channels Mode SPC_MEMSIZE SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step
1 channel Standard Single 8 Mem 8 not used 0 (∞) 4G - 1 1

Single Restart 8 Mem 8 not used 0 (∞) 4G - 1 1
Standard Multi 8 Mem 8 8 Mem/2 8 not used
Standard Gate 8 Mem 8 not used not used
FIFO Single not used 8 8G - 8 8 0 (∞) 4G - 1 1
FIFO Multi not used 8 Mem/2 8 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

2 channels Standard Single 4 Mem/2 4 not used 0 (∞) 4G - 1 1
Single Restart 4 Mem/2 4 not used 0 (∞) 4G - 1 1
Standard Multi 4 Mem/2 4 4 Mem/4 4 not used
Standard Gate 4 Mem/2 4 not used not used
FIFO Single not used 4 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi not used 4 Mem/4 4 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

4 channels Standard Single 4 Mem/4 4 not used 0 (∞) 4G - 1 1
Single Restart 4 Mem/4 4 not used 0 (∞) 4G - 1 1
Standard Multi 4 Mem/4 4 4 Mem/8 4 not used
Standard Gate 4 Mem/4 4 not used not used
FIFO Single not used 4 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi not used 4 Mem/8 4 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

Installed Memory
32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample

Mem 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 2 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 4 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample
Mem / 8 4 MSample 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample
86 generatorNETBOX DN2.60x Manual

Generation modes Buffer handling
Buffer handling
To handle the huge amount of data that can possibly be acquired with the M2i/M3i series cards, there is a very reliable two step buffer
strategy set up. The on-board memory of the card can be completely used as a real FIFO buffer. In addition a part of the PC memory can be
used as an additional software buffer. Transfer between hardware FIFO and software buffer is performed interrupt driven and automatically
by the driver to get best performance. The following drawing will give you an overview of the structure of the data transfer handling:

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer which is on the one side controlled by the driver and filled automatically by busmaster DMA from/to
the hardware FIFO buffer and on the other hand it is handled by the user who set’s parts of this software buffer available for the driver for
further transfer. The handshake is fulfilled with the following 3 software registers:

Internally the card handles two counters, a user counter and a card counter. Depending on the transfer direction the software registers have
slightly different meanings:

Directly after start of transfer the SPC_DATA_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_DATA_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for
transfer.

The counter that is holding the user buffer available bytes (SPC_DATA_AVAIL_USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get
notice of it if the notify size is programmed to a higher value.

Remarks
• The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller

located on the card. Even if the PC is busy with other jobs data is still transferred until the application data buffer is completely used.
• Even if application data buffer is completely used there’s still the hardware FIFO buffer that can hold data until the complete on-board

memory is used. Therefore a larger on-board memory will make the transfer more reliable against any PC dead times.
• As you see in the above picture data is directly transferred between application data buffer and on-board memory. Therefore it is abso-

lutely critical to delete the application data buffer without stopping any DMA transfers that are running actually. It is also absolutely criti-
cal to define the application data buffer with an unmatching length as DMA can than try to access memory outside the application data

Register Value Direction Description

SPC_DATA_AVAIL_USER_LEN 200 read Returns the number of currently to the user available bytes inside a sample data transfer.

SPC_DATA_AVAIL_USER_POS 201 read Returns the position as byte index where the currently available data samples start.

SPC_DATA_AVAIL_CARD_LEN 202 write Writes the number of bytes that the card can now use for sample data transfer again

Transfer direction Register Direction Description

Write to card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are free to write new data to the
card. The user can now fill this amount of bytes with new data to be transferred.

SPC_DATA_AVAIL_CARD_LEN write After filling an amount of the buffer with new data to transfer to card, the user tells the driver with this
register that the amount of data is now ready to transfer.

Read from card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are filled with newly transferred
data. The user can now use this data for own purposes, copy it, write it to disk or start calculations
with this data.

SPC_DATA_AVAIL_CARD_LEN write After finishing the job with the new available data the user needs to tell the driver that this amount of
bytes is again free for new data to be transferred.

Any direction SPC_DATA_AVAIL_USER_POS read The register holds the current byte index position where the available bytes start. The register is just
intended to help you and to avoid own position calculation

Any direction SPC_FILLSIZEPROMILLE read The register holds the current fill size of the on-board memory (FIFO buffer) in promille (1/1000) of
the full on-board memory. Please note that the hardware reports the fill size only in 1/16 parts of the
full memory. The reported fill size is therefore only shown in 1000/16 = 63 promille steps.
(c) Spectrum GmbH 87

Buffer handling Generation modes
area.
• As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is

done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly desirable if other threads do a lot of calculation work. However it is not necessary to use the wait functions and
one can simply request the current status whenever the program has time to do so. When using this polling mode the announced avail-
able bytes still stick to the defined notify size!

• If the on-board FIFO buffer has an overrun (card to PC) or an underrun (PC to card) data transfer is stopped. However in case of transfer
from card to PC there is still a lot of data in the on-board memory. Therefore the data transfer will continue until all data has been trans-
ferred although the status information already shows an overrun.

• Getting best bus transfer performance is done using a „continuous buffer“. This mode is explained in the appendix in greater detail.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the
range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify

size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the
polling mode as described later.

 The following graphs will show the current buffer positions in different states of the transfer. The drawings have been made for the transfer
from card to PC. However all the block handling is similar for the opposite direction, just the empty and the filled parts of the buffer are
inverted.

Step 1: Buffer definition
Directly after buffer definition the complete buffer is empty (card to PC) or
completely filled (PC to card). In our example we have a notify size which
is 1/4 of complete buffer memory to keep the example simple. In real
world use it is recommended to set the notify size to a smaller stepsize.

Step 2: Start and first data available
In between we have started the transfer and have waited for the first data
to be available for the user. When there is at least one block of notify size
in the memory we get an interrupt and can proceed with the data. Any
data that already was transferred is announced. The USER_POS is still
zero as we are right at the beginning of the complete transfer.

Step 3: set the first data available for card
Now the data can be processed. If transfer is going from card to PC that
may be storing to hard disk or calculation of any figures. If transfer is go-
ing from PC to card that means we have to fill the available buffer again
with data. After the amount of data that has been processed by the user
application we set it available for the card and for the next step.

Step 4: next data available
After reaching the next border of the notify size we get the next part of the
data buffer to be available. In our example at the time when reading the
USER_LEN even some more data is already available. The user position
will now be at the position of the previous set CARD_LEN.

Step 5: set data available again
Again after processing the data we set it free for the card use.
In our example we now make something else and don’t react to the inter-
rupt for a longer time. In the background the buffer is filled with more da-
ta.

Step 6: roll over the end of buffer
Now nearly the complete buffer is filled. Please keep in mind that our cur-
rent user position is still at the end of the data part that we processed and
marked in step 4 and step 5. Therefore the data to process now is split in
two parts. Part 1 is at the end of the buffer while part 2 is starting with
address 0.

Step 7: set the rest of the buffer available
Feel free to process the complete data or just the part 1 until the end of
the buffer as we do in this example. If you decide to process complete
buffer please keep in mind the roll over at the end of the buffer.

This buffer handling can now continue endless as long as we manage to
set the data available for the card fast enough. The USER_POS and USER_LEN for step 8 would now look exactly as the buffer shown in step 2.
88 generatorNETBOX DN2.60x Manual

Generation modes Buffer handling
Buffer handling example for transfer from card to PC (Data acquisition)

Buffer handling example for transfer from PC to card (Data generation)

Please keep in mind that you are using a continuous buffer writing/reading that will start again at the zero
position if the buffer length is reached. However the DATA_AVAIL_USER_LEN register will give you the com-
plete amount of available bytes even if one part of the free area is at the end of the buffer and the second
half at the beginning of the buffer.

int8* pcData = (int8*) pvAllocMemPageAligned (llBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 4096, (void*) pcData, 0, llBufferSizeInBytes);

// we start the DMA transfer
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA);

do
 {
 if (!dwError)
 {
 // we wait for the next data to be available. Afte this call we get at least 4k of data to proceed
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);

 // if there was no error we can proceed and read out the available bytes that are free again
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_POS, &llBytePos);

 printf (“We now have %lld new bytes available\n”, llAvailBytes);
 printf (“The available data starts at position %lld\n”, llBytesPos);

 // we take care not to go across the end of the buffer, handling the wrap-around
 if ((llBytePos + llAvailBytes) >= llBufferSizeInBytes)
 llAvailBytes = llBufferSizeInBytes - llBytePos;

 // our do function gets a pointer to the start of the available data section and the length
 vDoSomething (&pcData[llBytesPos], llAvailBytes);

 // the buffer section is now immediately set available for the card
 spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
 }
 }
while (!dwError); // we loop forever if no error occurs

int8* pcData = (int8*) pvAllocMemPageAligned (llBufferSizeInBytes);

// before starting transfer we first need to fill complete buffer memory with meaningful data
vDoGenerateData (&pcData[0], llBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD , 4096, (void*) pcData, 0, llBufferSizeInBytes);

// and transfer some data to the hardware buffer before the start of the card
spcm_dwSetParam_i32 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llBufferSizeInBytes);
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

do
 {
 if (!dwError)
 {
 // if there was no error we can proceed and read out the current amount of available data
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_POS, &llBytePos);

 printf (“We now have %lld free bytes available\n”, llAvailBytes);
 printf (“The available data starts at position %lld\n”, llBytesPos);

 // we take care not to go across the end of the buffer, handling the wrap-around
 if ((llBytePos + llAvailBytes) >= llBufferSizeInBytes)
 llAvailBytes = llBufferSizeInBytes - llBytePos;

 // our do function gets a pointer to the start of the available data section and the length
 vDoGenerateData (&pcData[llBytesPos], llAvailBytes);

 // now we mark the number of bytes that we just generated for replay
 // and wait for the next free buffer
 spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);
 }
 }
while (!dwError); // we loop forever if no error occurs
(c) Spectrum GmbH 89

Output latency Generation modes
Output latency
The card is designed to have a most stable and reliable continuous
output in FIFO mode. Therefore as default the complete on-board
memory is used for buffering data. This however means that you have
quite a large latency when changing output data dynamically in reac-
tion of - for example - some external events.

To have a smaller output latency when using dynamically changing data it is recommended that you use smaller buffers. The size of the
software buffer is programmed as described above. The size of the hardware buffer can be programmed using a special register:

This progammable functionality is available starting with firmware version V9.

When the hardware buffer is adjusted, this must be followed by a M2CMD_CARD_WRITESETUP command and done
after defining the card mode but before defining the transfer buffers via the spcm_dwDefTransfer function and , as
shown in the example below.

The size of the output FIFO is fixed to 16 kByte (Latency 3) and cannot be changed. If using a hardware buffer of 4 kByte (Latency 2) and
a software buffer of 4 kByte (Latency 1) the total size of buffered data is hence 24 kByte. Please see the following table for some example
output latency calculations, taking buffers and the clock rate into account:

Please keep in mind that lowering the output buffer size also means that the risk of a buffer underrun gets
higher as less data is buffered on the hardware side. Therefore please be careful with selecting the correct
hardware buffer size and do not make it smaller than absolutely necessary.

The above mentioned latency calculations are only an example on how to calculate the time. They’re not tested in
real life to run continuously with that sampling speed.

Register Value Direction Description

SPC_DATA_OUTBUFSIZE 209 read/write Programms the used hardware buffer size for output direction. The default value is the complete stan-
dard on-board memory.
The output buffer size can be programmed in steps of factor two of the minimum size of 1k. Resulting
in allowed settings of 1k, 2k, 4k, 8k, 16k, ... up to the installed on-board memory size

Configuration Sampling rate Software Buffer Hardware Buffer Output FIFO Overall
Size Latency Size Latency Size Latency Latency

1 x 16 Bit Channel 1 MS/s 8 MByte 4194.30 ms 64 MByte 33554.43 ms 16 kByte 8.19 ms 37.8 s
... ... 1 MByte 524.29 ms 1 MByte 524.29 ms 16 kByte 8.19 ms 1.1 s
... ... 4 kByte 2.05 ms 4 kByte 2.05 ms 16 kByte 8.19 ms 12.3 ms
1 x 16 Bit Channel 50 MS/s 8 MByte 83.89 ms 64 MByte 671.09 ms 16 kByte 0.16 ms 755.1 ms
... ... 1 MByte 10.48 ms 1 MByte 10.48 ms 16 kByte 0.16 ms 21.1 ms
... ... 4 kByte 0.04 ms 4 kByte 0.04 ms 16 kByte 0.16 ms 240.0 us
4 x 16 Bit Channel 1 MS/s 8 MByte 1048.58 ms 64 MByte 8388.61 ms 16 kByte 2.05 ms 9.4 s
... ... 1 MByte 131.07 ms 1 MByte 131.07 ms 16 kByte 2.05 ms 264.2 ms
... ... 4 kByte 0.53 ms 4 kByte 0.53 ms 16 kByte 2.05 ms 3.1 ms

void* pvBuffer = NULL;
int64 llHWBufSize = KILO_B(64);
int64 llSWBufSize = KILO_B(128); // must be an integer multiple of llNotifysize
uint32 dwNotifySize = KILO_B(8);
uint32 dwErr;

// define card mode first
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_STD_SINGLE);

// secondly define the hardware buffer and write it to the hardware
spcm_dwSetParam_i64 (hDrv, SPC_DATA_OUTBUFSIZE, llHWBufSize);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WRITESETUP);

// and then allocate and setup the software fifo buffer
pvBuffer = pvAllocMemPageAligned ((uint32) llSWBufSize);
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD, dwNotifySize, pvBuffer, 0, llSWBufSize);

// --> now fill the buffer with initial data (not shown here)

spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llSWBufSize);

// now that SW-buffer is filled, we start the data transfer (replay itself is not started yet)
// and wait for the data to be transferred.
spcm_dwSetParam_i32 (stCard.hDrv, SPC_TIMEOUT, 1000);
dwErr = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

if (!dwErr)
 {
 // please see FIFO replay examples for further details regarding the complete data transfer ...
 }
90 generatorNETBOX DN2.60x Manual

Generation modes Data organisation
Data organisation
Data is organized in a multiplexed way in the transfer buffer. If using 4 channels, data of the first activated channel of first module comes
first, then data of first activated channel of second module, then second activated channel of first module and so on.

The samples are re-named for better readability. A0 is sample 0 of channel 0, C4 is sample 4 of channel 2, and so on.

Sample format
The 14 bit D/A samples are stored in two’s complement in the lower 14 bit of the 16 bit data word. 14 bit resolution means that data is
ranging from -8192…to…+8191. In standard mode the upper two bits contain the sign extension allowing to directly use 16 bit integer
values for the write data directly. If digital outputs are activated these outputs are stored in the two upper bits.

Hardware data conversion
The data conversion modes allow the conversion of input data in hardware. This is especially usefull when replaying previously recorded
data of acquisition cards with either a higher 16bit or lower 12bit resolution. The conversion takes place in hardware and therefore avoids
a possible time consuming shift in the user application software.

The data conversion modes require driver version V2.11 (or newer) and firmware version V18 (or newer).
Please update your system to the newest versions to use this mode.

Activated Channels Ch0 Ch1 Ch2 Ch3 Samples ordering in buffer memory starting with data offset zero
1 channel X A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
1 channel X B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16
1 channel X C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
1 channel X D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
2 channels X X A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8
2 channels X X A0 C0 A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 A7 C7 A8
2 channels X X A0 D0 A1 D1 A2 D2 A3 D3 A4 D4 A5 D5 A6 D6 A7 D7 A8
2 channels X X B0 C0 B1 C1 B2 C2 B3 C3 B4 C4 B5 C5 B6 C6 B7 C7 B8
2 channels X X B0 D0 B1 D1 B2 D2 B3 D3 B4 D4 B5 D5 B6 D6 B7 D7 B8
2 channels X X C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 D7 C8
4 channels X X X X A0 C0 B0 D0 A1 C1 B1 D1 A2 C2 B2 D2 A3 C3 B3 D3 A4

Bit Standard Mode Digital outputs (option)
enabled

D15 DAx Bit 13 Digital bit 1 of channel x

D14 DAx Bit 13 Digital bit 0 of channel x

D13 DAx Bit 13 (MSB) DAx Bit 13 (MSB)

D12 DAx Bit 12 DAx Bit 12

D11 DAx Bit 11 DAx Bit 11

D10 DAx Bit 10 DAx Bit 10

D9 DAx Bit 9 DAx Bit 9

D8 DAx Bit 8 DAx Bit 8

D7 DAx Bit 7 DAx Bit 7

D6 DAx Bit 6 DAx Bit 6

D5 DAx Bit 5 DAx Bit 5

D4 DAx Bit 4 DAx Bit 4

D3 DAx Bit 3 DAx Bit 3

D2 DAx Bit 2 DAx Bit 2

D1 DAx Bit 1 DAx Bit 1

D0 DAx Bit 0 (LSB) DAx Bit 0 (LSB)

Register Value Direction Description

SPC_AVAILDATACONVERSION 201401 read Bitmask, in which all bits of the below mentioned data conversion modes are set, if available.

SPC_DATACONVERSION 201400 read/write Defines the used hardware data conversion mode or reads out the actual selected one.

SPCM_DC_NONE 0h No hardware data conversion will be done.

SPCM_DC_12BIT_TO_14BIT 1h 12bit input data is assumed and samples will be logically shifted upwards to use available 14bit resolution.

SPCM_DC_16BIT_TO_14BIT 2h 16bit input data is assumed and samples will be arithmetically shifted downwards to use available 14bit resolution.
(c) Spectrum GmbH 91

Overview Clock generation
Clock generation

Overview

The different clock modes
The Spectrum M2i cards offer a wide variety of different
clock modes to match all the customers needs. All of the
clock modes are described in detail with programming ex-
amples in this chapter.

The figure is showing an overview of the complete engine
used on all M2i cards for clock generation.

The purpose of this chapter is to give you a guide to the
best matching clock settings for your specific application
and needs.

Standard internal sample rate (PLL)
PLL with internal 10 MHz reference. This is the easiest and most common way to generate a sample rate with no need for additional external
clock signals. The sample rate has a fine resolution. You can find details on the granularity of the clock in PLL mode in the technical data
section of this manual.

Quartz1 with or without divider
This mode provides an internal sampling quartz clock with a dedicated divider. It’s best suited for applications that need an even lower clock
jitter than the PLL produces. The possible sample rates are restricted to the values of the divider. For details on the available divider values
please see the according section in this chapter or take a look at the technical data section of this manual.

Quartz2 with or without PLL and/or with or without divider (optional)
This optional second Quartz2 is for special customer needs, either for a special direct sampling clock or as a very precise reference for the
PLL. Please feel free to contact Spectrum for your special needs.

External reference clock
PLL with external 1 MHz to 125 MHz reference clock. This provides a very good clock accuracy if a stable external reference clock is used.
It also allows the easy synchronization with an external source.

Direct external clock
Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a
system clock or to feed in an exact matching sample rate.

Direct external clock is not available for M2i.49xx cards. Please use external reference clock mode instead.

External clock with divider
In addition to the direct external clocking it is also possible to use the externally fed in clock and divide it for generating a low-jitter sample
rate of a slower speed than the external clock available.

Direct external clock with divider is not available for M2i.49xx cards. Please use external reference clock
mode instead.

Synchronization clock (optional)
The star-hub option allows the synchronization of up to 16 cards of the M2i series from Spectrum with a minimal phase delay between the
different cards. As this clock is also available at the dividers input, cards of the same or slower sampling speeds can be synchronized. For
details on the synchronization option please take a look at the dedicated chapter in this manual.
92 generatorNETBOX DN2.60x Manual

Clock generation Internally generated sample rate
Clock Mode Register
The selection of the different clock modes has to be done by the SPC_CLOCKMODE register. All available modes, can be read out by the
help of the SPC_AVAILCLOCKMODES register.

The different clock modes and all other related or required register settings are described on the following pages.

Internally generated sample rate

Standard internal sampling clock (PLL)
The internal sampling clock is generated in default mode by a PLL and dividers out of an internal precise 10 MHz frequency reference. You
can select the clock mode by the dedicated register shown in the table below:

 In most cases the user does not have to care about how the desired sampling rate is generated by multiplying and dividing internally. You
simply write the desired sample rate to the according register shown in the table below and the driver makes all the necessary calculations.
If you want to make sure the sample rate has been set correctly you can also read out the register and the driver will give you back the
sampling rate that is matching your desired one best.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

Example on writing and reading internal sampling rate

Minimum internal sample rate
The minimum internal sample rate on all M2i cards is limited to 1 kHz and the maximum sample rate depends on the specific type of board.
The maximum sample rates for your type of card are shown in the tables below.

Register Value Direction Description

SPC_AVAILCLOCKMODES 20201 read Bitmask, in which all bits of the below mentioned clock modes are set, if available.

SPC_CLOCKMODE 20200 read/write Defines the used clock mode or reads out the actual selected one.

SPC_CM_INTPLL 1 Enables internal PLL with 10 MHz internal reference for sample clock generation

SPC_CM_QUARTZ1 2 Enables Quartz1 for sample clock generation

SPC_CM_QUARTZ2 4 Enables optional Quartz2 for sample clock generation

SPC_CM_EXTERNAL 8 Enables external clock input for direct sample clock generation

SPC_CM_EXTDIVIDER 16 Enables external clock input for divided sample clock generation

SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_INTPLL 1 Enables internal PLL with 10 MHz internal reference for sample clock generation

Register Value Direction Description

SPC_SAMPLERATE 20000 write Defines the sample rate in Hz for internal sample rate generation.

read Read out the internal sample rate that is nearest matching to the desired one.

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector.On A/D and D/A cards only possible with internal
clocking.

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_INTPLL); // Enables internal PLL mode
spcm_dwSetParam_i32 (hDrv, SPC_SAMPLERATE, 1000000); // Set internal sampling rate to 1 MHz
spcm_dwSetParam_i32 (hDrv, SPC_CLOCKOUT, 1); // enable the clock output of that 1 MHz clock
spcm_dwGetParam_i32 (hDrv, SPC_SAMPLERATE, &lSamplerate); // Read back the programmed sample rate and
printf („Sample rate = %d\n“, lSamplerate); // print it. Output should be „Sample rate = 1000000“
(c) Spectrum GmbH 93

External reference clock Clock generation
Maximum internal sampling rate in MS/s

Using plain Quartz1 without PLL
In some cases it is useful for the application not to have the on-board PLL activated. Although the PLL used on the Spectrum boards is a low-
jitter version it still produces more clock jitter than a plain quartz oscillator. For these cases the Spectrum boards have the opportunity to switch
off the PLL by software and use a simple clock divider.

The Quartz1 used on the board is similar to the maximum sampling rate the board can achieve. As with internal PLL mode it’s also possible
to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to read it back. The driver will internally
set the divider and find the closest matching sampling rate. The result will then again be the best matching sampling rate.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

Using plain Quartz2 without PLL (optional)
In some cases it is necessary to use a special frequency for sampling rate generation. For these applications all cards of the M2i series can
be equipped with a special customer quartz. Please contact Spectrum for details on available oscillators. If your card is equipped with a
second oscillator you can enable it for sampling rate generation with the following register:

In addition to the direct usage of the second clock oscillator one can program the internal clock divider to use slower sampling rates. As with
internal PLL mode it’s also possible to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to
read it back. The result will then again be the best matching sampling rate.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

External reference clock
If you have an external clock generator with a extremely stable frequency, you can use it as a reference clock. You can connect it to the
external clock connector and the PLL will be fed with this clock instead of the internal reference. The following table shows how to enable the
reference clock mode:

activated Channels

M
2i

.6
01

1

M
2i

.6
01

2

M
2i

.6
02

1

M
2i

.6
02

2

M
2i

.6
03

0

M
2i

.6
03

1

M
2i

.6
03

3

M
2i

.6
03

4

Ch0 Ch1 Ch2 Ch3

X 20 MS/s 20 MS/s 60 MS/s 60 MS/s 125 MS/s 125 MS/s 125 MS/s 125 MS/s
X 20 MS/s 20 MS/s 60 MS/s 60 MS/s n.a. 125 MS/s 125 MS/s 125 MS/s

X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s
X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s

X X 20 MS/s 20 MS/s 60 MS/s 60 MS/s n.a. 125 MS/s 62.5 MS/s 62.5 MS/s
X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s
X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s

X X n.a. 20 MS/s. n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s
X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s

X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 62.5 MS/s
X X X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 62.5 MS/s

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_QUARTZ1 2 Enables Quartz1 for sample clock generation

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector.On A/D and D/A cards only possible with internal
clocking.

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_QUARTZ2 4 Enables optional quartz2 for sample clock generation

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector.On A/D and D/A cards only possible with internal
clocking.

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.
94 generatorNETBOX DN2.60x Manual

Clock generation External clocking
Due to the fact that the driver needs to know the external fed in frequency for an exact calculation of the sampling rate you must set the
SPC_REFERENCECLOCK register accordingly as shown in the table below. The driver automatically then sets the PLL to achieve the desired
sampling rate. Please be aware that the PLL has some internal limits and not all desired sampling rates may be reached with every reference
clock.

Example of reference clock:

The reference clock must be defined via the SPC_REFERENCECLOCK register prior to defining the sample rate
via the SPC_SAMPLERATE register to allow the driver to calculate the proper clock settings correctly.

Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

External clocking

Direct external clock
An external clock can be fed in on the external clock connector of the board. This can be any clock, that matches the specification of the
card. The external clock signal can be used to synchronize the card on a system clock or to feed in an exact matching sampling rate.

The maximum values for the external clock is board dependant and shown in the table below.

Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

Minimum external sample rate
The minimum external sample rate can be as low as DC and the maximum sample rate depends on the specific type of board. The maximum
sample rates for your type of board are shown in the tables below.

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Register Value Direction Description

SPC_REFERENCECLOCK 20140 read/write Programs the external reference clock in the range from 1 MHz to 125 MHz.

External sampling rate in Hz as an integer value You need to set up this register exactly to the frequency of the external fed in clock.

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_EXTREFCLOCK); // Set to reference clock mode
spcm_dwSetParam_i32 (hDrv, SPC_REFERENCECLOCK, 10000000); // Reference clock that is fed in is 10 MHz
spcm_dwSetParam_i32 (hDrv, SPC_SAMPLERATE, 25000000); // We want to have 25 MHz as sampling rate

Register Value Direction Description

SPC_CLOCK50OHM 20120 read/write A „1“ enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_EXTERNAL 8 Enables external clock input for direct sample clock generation

Register Value Direction Description

SPC_CLOCK50OHM 20120 read/write A „1“ enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.
(c) Spectrum GmbH 95

External clocking Clock generation
Maximum external sampling rate in MS/s

An external sample rate above the mentioned maximum can cause damage to the board.

The following table shows the available ranges when using external clocking:

The range must not be left by more than 5% when the board is running. Remember that the ranges depend
on the activated channels as well, so a different board setup for external clocking must always include the
related clock ranges.

This table below shows the ranges that are defined by the two range registers mentioned above. The range depends on the activated channels
per module. For details about what channels of your specific type of board is located on which module, please take a look at the according
introduction chapter. Please be sure to select the correct external range, as otherwise it is possible that the card will not run properly.

How to read this table? If you have a card with a total number of four channels (available on two modules with two channels each), you have
an external clock source with 30 MHz and you activate channel 0 and channel 2 (one channel per module), you will have to set the external
range to EXRANGE_LOW. If you activate channel 0 and channel 1 on the same card and use the same 30 MHz external clock, you will
have to set the external range EXRANGE_HIGH instead. Example:

Further external clock details
• When using the high clock range the external clock has to be stable, needs to be continuously and is not allowed to have gaps or fast

changes in frequency.
• When using the high clock range there must be a valid external clock be present before the start command is given.
• The external clock is directly used to feed the converters (on analog boards) or to feed the input registers (on digital boards). Therefore the

quality and jitter of this clock may improve or degrade the dynamic performance of the card depending on the quality of the provided
clock.

• When using the low clock range the clock needn’t to be continuously and may have gaps. When using a A/D card please keep in mind
that most A/D converters need a stable clock and there might be false samples inbetween directly after a gap or after a fast clock fre-
quency change. The quality of the analog samples may also be worse than with a continuous clock.

External clock with divider
In some cases it is necessary to generate a slower frequency for sampling rate generation, than the available external source delivers. For
these applications one can use an external clock and divide it.

activated Channels

M
2i

.6
01

1

M
2i

.6
01

2

M
2i

.6
02

1

M
2i

.6
02

2

M
2i

.6
03

0

M
2i

.6
03

1

M
2i

.6
03

3

M
2i

.6
03

4

Ch0 Ch1 Ch2 Ch3

X 20 MS/s 20 MS/s 60 MS/s 60 MS/s 125 MS/s 125 MS/s 125 MS/s 125 MS/s
X 20 MS/s 20 MS/s 60 MS/s 60 MS/s n.a. 125 MS/s 125 MS/s 125 MS/s

X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s
X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s

X X 20 MS/s 20 MS/s 60 MS/s 60 MS/s n.a. 125 MS/s 62.5 MS/s 62.5 MS/s
X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s
X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s

X X n.a. 20 MS/s. n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s
X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 125 MS/s

X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 62.5 MS/s
X X X X n.a. 20 MS/s n.a. 60 MS/s n.a. n.a. n.a. 62.5 MS/s

Register Value Direction Description

SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use one of the below mentioned ranges

EXRANGE_LOW 64 External range for slower clocks

EXRANGE_HIGH 128 External range for faster clocks

For cards with 8 bit converter resolution For cards with 12, 14, 16 bit converter resolution
Activated Channels
on one module

EXRANGE_LOW EXRANGE_HIGH EXRANGE_LOW EXRANGE_HIGH

1 < 50.0 MHz >= 50.0 MHz < 50.0 MHz >= 50.0 MHz
2 < 50.0 MHz >= 50.0 MHz < 25.0 MHz >= 25.0 MHz
4 < 25.0 MHz >= 25.0 MHz < 12.5 MHz >= 12.5 MHz
8 < 12.5 MHz >= 12.5 MHz < 6.0 MHz >= 6.0 MHz

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_EXTERNAL); // activate ext. clock (which is e.g. 30 MHz)
spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1); // activate two channels (asuming that they
 // are located on one module) you
spcm_dwSetParam_i32 (hDrv, SPC_EXTERNRANGE, EXRANGE_HIGH); // set external range to EXRANGE_HIGH

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode
96 generatorNETBOX DN2.60x Manual

Clock generation External clocking
The value for the clock divider must be written to the register shown in the table below:

Please set the external clock range register matching your fed in clock.

Ranges for external sampling rate
Due to the internal structure of the board it is essential for the driver to know in which clock range the external clock is operating at the divider
output. The external range register must be set according to the result of the clock that is fed in externally divided by the programmed clock
divider.

 The following table shows the available ranges when using external clocking:

The range must not be left by more than 5% when the board is running. Remember that the ranges depend
on the activated channels as well, so a different board setup for external clocking must always include the
related clock ranges.

This table below shows the ranges that are defined by the two range registers mentioned above. The range depends on the activated channels
per module. For details about what channels of your specific type of board is located on which module, please take a look at the according
introduction chapter. Please be sure to select the correct external range, as otherwise it is possible that the card will not run properly.

How to read this table? If you have a card with a total number of four channels (available on two modules with two channels each), you have
an external clock source with 30 MHz and you activate channel 0 and channel 2 (one channel per module), you will have to set the external
range to EXRANGE_LOW. If you activate channel 0 and channel 1 on the same card and use the same 30 MHz external clock, you will
have to set the external range EXRANGE_HIGH instead. Example:

Further external clock details
• When using the high clock range the external clock has to be stable, needs to be continuously and is not allowed to have gaps or fast

changes in frequency.
• When using the high clock range there must be a valid external clock be present before the start command is given.
• The external clock is directly used to feed the converters (on analog boards) or to feed the input registers (on digital boards). Therefore the

quality and jitter of this clock may improve or degrade the dynamic performance of the card depending on the quality of the provided
clock.

• When using the low clock range the clock needn’t to be continuously and may have gaps. When using a A/D card please keep in mind
that most A/D converters need a stable clock and there might be false samples inbetween directly after a gap or after a fast clock fre-
quency change. The quality of the analog samples may also be worse than with a continuous clock.

Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

SPC_CM_EXTDIVIDER 16 Enables external clock input for divided sample clock generation

Register Value Direction Description

SPC_CLOCKDIV 20040 read/write Register for setting the clock divider. Values up to 8190 in steps of two are allowed.

Register Value Direction Description

SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use one of the below mentioned ranges

EXRANGE_LOW 64 External range for slower clocks

EXRANGE_HIGH 128 External range for faster clocks

For cards with 8 bit converter resolution For cards with 12, 14, 16 bit converter resolution
Activated Channels
on one module

EXRANGE_LOW EXRANGE_HIGH EXRANGE_LOW EXRANGE_HIGH

1 < 50.0 MHz >= 50.0 MHz < 50.0 MHz >= 50.0 MHz
2 < 50.0 MHz >= 50.0 MHz < 25.0 MHz >= 25.0 MHz
4 < 25.0 MHz >= 25.0 MHz < 12.5 MHz >= 12.5 MHz
8 < 12.5 MHz >= 12.5 MHz < 6.0 MHz >= 6.0 MHz

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_EXTERNAL); // activate ext. clock (which is e.g. 30 MHz)
spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1); // activate two channels (asuming that they
 // are located on one module) you
spcm_dwSetParam_i32 (hDrv, SPC_EXTERNRANGE, EXRANGE_HIGH); // set external range to EXRANGE_HIGH

Register Value Direction Description

SPC_CLOCK50OHM 20120 read/write A „1“ enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.
(c) Spectrum GmbH 97

General Description Trigger modes and appendant registers
Trigger modes and appendant registers

General Description
The trigger modes of the Spectrum M2i series D/A cards are very extensive and give you the possibility to detect nearly any trigger event,
you can think of. You can choose between seven external TTL trigger modes and software trigger.

Every analog Spectrum board has one dedicated SMB connector mounted in it’s bracket for feeding in an external trigger signal or generating
a trigger output of an internal trigger event. Due to the fact that only one connector is available for external trigger I/O, it is not possible to
forward the fed in external trigger signal to another board. If this is however necessary, you need to split up the external trigger signal before.

Trigger Engine Overview
To extend trigger facilities of the various trigger
sources/modes further on, the trigger engine of
the Spectrum M2i series allows the logical combi-
nation of different trigger events by an AND-mask
and an OR-mask.

The Enable trigger allows the user to enable or dis-
able all trigger sources (including channel trigger
and external TTL trigger) with a single software
command.

Channel trigger is only available on data acquisi-
tion cards.

When the card is waiting for a trigger event, ei-
ther for a channel trigger or an external trigger,
the force-trigger command allows to force a trig-
ger event with a single software command.

Before the trigger event is finally generated, it is
wired through a programmable trigger delay.

All analog D/A and A/D cards have one external trigger input (External0) and digital i/o cards and pattern generators have one to two
external trigger inouts (External0 and External1). In addition using the option BaseXIO it is possible to have two additional trigger inputs
named XIO0 and XIO1 in the drawing.

Trigger masks

Trigger OR mask
The purpose of this passage is to explain the trigger OR mask (see left figure) and all the appendant software
registers in detail.

The OR mask shown in the overview before as one object, is separated into two parts: a general OR mask for
external TTL trigger and software trigger and a channel OR mask.

Every trigger source of the M2i series cards is
wired to one of the above mentioned OR masks. The user then can program
which trigger source will be recognized, and which one won’t.

This selection for the general mask is realized with the SPC_TRIG_ORMASK
register in combination with constants for every possible trigger source.

This selection for the channel mask is realized with the
SPC_TRIG_CH_ORMASK0 and the SPC_TRIG_CH_ORMASK1 register in
combination with constants for every possible channel trigger source.

In either case the sources are coded as a bitfield, so that they can be com-
bined by one access to the driver with the help of a bitwise OR.
98 generatorNETBOX DN2.60x Manual

Trigger modes and appendant registers Trigger masks
The table below shows the relating register for the general OR mask and the possible constants that can be written to it.

Please note that as default the SPC_TRIG_ORMASK is set to SPC_TMASK_SOFTWARE. When not using any trig-
ger mode requiring values in the SPC_TRIG_ORMASK register, this mask should explicitely cleared, as other-
wise the software trigger will override other modes.

The following example shows, how to setup the OR mask, for an external TTL trigger. As an example a simple edge detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

The table below is showing the registers for the channel OR mask and the possible constants that can be written to it.

Please note that channel trigger sources are only available on data acquisition cards and not on pure generator
cards. If you have purchased an arbitary waveform generator or a pattern generator please just ignore this part.

The following example shows, how to setup the OR mask, for an external TTL trigger. As an example a simple edge detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

Register Value Direction Description

SPC_TRIG_AVAILORMASK 40400 read Bitmask, in which all bits of the below mentioned sources for the OR mask are set, if available.

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TMASK_NONE 0 No trigger source selected

SPC_TMASK_SOFTWARE 1h Enables the software trigger for the OR mask. The card will trigger immediately after start.

SPC_TMASK_EXT0 2h Enables the external trigger0 for the OR mask. The card will trigger when the programmed condition for this input is
valid.

SPC_TMASK_EXT1 4h Enables the external trigger1 for the OR mask. This input is only available on digital cards. The card will trigger when
the programmed condition for this input is valid.

SPC_TMASK_XIO0 100h Enables the extra TTL trigger 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is
installed. As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enables the extra TTL trigger 1 for the OR mask. This input is only available if the option BaseXIO is installed.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // Enable external trigger within the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Setting up external TTL trigger for rising edges

Register Value Direction Description

SPC_TRIG_CH_AVAILORMASK0 40450 read Bitmask, in which all bits of the below mentioned sources/channels (0…31) for the channel OR mask
are set, if available.

SPC_TRIG_CH_AVAILORMASK1 40451 read Bitmask, in which all bits of the below mentioned sources/ channels (32…63) for the channel OR
mask are set, if available.

SPC_TRIG_CH_ORMASK0 40460 read/write Includes the analog or digital channels (0…31) within the channel trigger OR mask of the card.

SPC_TRIG_CH_ORMASK1 40461 read/write Includes the analog or digital channels (32…63) within the channel trigger OR mask of the card.

SPC_TMASK0_CH0 1h Enables channel0 (channel32) for recognition within the channel OR mask.

SPC_TMASK0_CH1 2h Enables channel1 (channel33) for recognition within the channel OR mask.

SPC_TMASK0_CH2 4h Enables channel2 (channel34) for recognition within the channel OR mask.

SPC_TMASK0_CH3 8h Enables channel3 (channel35) for recognition within the channel OR mask.

… … …

SPC_TMASK0_CH28 10000000h Enables channel28 (channel60) for recognition within the channel OR mask.

SPC_TMASK0_CH29 20000000h Enables channel29 (channel61 for recognition within the channel OR mask.

SPC_TMASK0_CH30 40000000h Enables channel30 (channel62) for recognition within the channel OR mask.

SPC_TMASK0_CH31 80000000h Enables channel31 (channel63) for recognition within the channel OR mask.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK_CH0); // Enable channel0 trigger within the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Setting up external trigger for rising edges
(c) Spectrum GmbH 99

Trigger masks Trigger modes and appendant registers
Trigger AND mask
The purpose of this passage is to explain the trigger AND mask (see left figure) and all the appendant software
registers in detail.

The AND mask shown in the overview before as one object, is separated into two parts: a general AND mask
for external TTL trigger and software trigger and a channel AND mask.

Every trigger source of the M2i series cards
except the software trigger is wired to one of the above mentioned AND
masks. The user then can program which trigger source will be recognized,
and which one won’t.

This selection for the general mask is realized with the SPC_TRIG_ANDMASK
register in combination with constants for every possible trigger source.

This selection for the channel mask is realized with the
SPC_TRIG_CH_ANDMASK0 and the SPC_TRIG_CH_ANDMASK1 register
in combination with constants for every possible channel trigger source. In
either case the sources are coded as a bitfield, so that they can be combined
by one access to the driver with the help of a bitwise OR.

The table below shows the relating register for the general AND mask and
the possible constants that can be written to it.

The following example shows, how to setup the AND mask, for an external TTL trigger. As an example a simple level detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

The table below is showing the constants for the channel AND mask and all the constants for the different channels.

The following example shows how to setup the AND mask, for a channel trigger. As an example a simple level detection has been chosen.

Register Value Direction Description

SPC_TRIG_AVAILANDMASK 40420 read Bitmask, in which all bits of the below mentioned sources for the AND mask are set, if available.

SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.

SPC_TMASK_EXT0 2h Enables the external trigger0 for the AND mask. The card will trigger when the programmed condition for this input is
valid.

SPC_TMASK_EXT1 4h Enables the external trigger1 for the AND mask. This input is only available on digital cards. The card will trigger
when the programmed condition for this input is valid.

SPC_TMASK_XIO0 100h Enables the extra TTL trigger 0 for the AND mask. On plain cards this input is only available if the option BaseXIO is
installed. As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enables the extra TTL trigger 1 for the AND mask. This input is only available ift the option BaseXIO is installed.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ANDMASK, SPC_TMASK_EXT0); // Enable external trigger within the AND mask
spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_HIGH); // Setting up external TTL trigger for HIGH level

Register Value Direction Description

SPC_TRIG_CH_AVAILANDASK0 40470 read Bitmask, in which all bits of the below mentioned sources/channels (0…31) for the channel AND
mask are set, if available.

SPC_TRIG_CH_AVAILANDMASK1 40471 read Bitmask, in which all bits of the below mentioned sources/ channels (32…63) for the channel AND
mask are set, if available.

SPC_TRIG_CH_ANDMASK0 40480 read/write Includes the analog or digital channels (0…31) within the channel trigger AND mask of the card.

SPC_TRIG_CH_ANDRMASK1 40481 read/write Includes the analog or digital channels (32…63) within the channel trigger AND mask of the card.

SPC_TMASK0_CH0 1h Enables channel0 (channel32) for recognition within the channel AND mask.

SPC_TMASK0_CH1 2h Enables channel1 (channel33) for recognition within the channel AND mask.

SPC_TMASK0_CH2 4h Enables channel2 (channel34) for recognition within the channel AND mask.

SPC_TMASK0_CH3 8h Enables channel3 (channel35) for recognition within the channel AND mask.

… … …

SPC_TMASK0_CH28 10000000h Enables channel28 (channel60) for recognition within the channel AND mask.

SPC_TMASK0_CH29 20000000h Enables channel29 (channel61 for recognition within the channel AND mask.

SPC_TMASK0_CH30 40000000h Enables channel30 (channel62) for recognition within the channel AND mask.

SPC_TMASK0_CH31 80000000h Enables channel31 (channel63) for recognition within the channel AND mask.
100 generatorNETBOX DN2.60x Manual

Trigger modes and appendant registers Software trigger
The explanation and a detailed description of the different trigger modes for the channel trigger will be shown in the dedicated passage
within this chapter.

Software trigger
The software trigger is the easiest way of triggering any Spectrum
board. The acquisition or replay of data will start immediately af-
ter the card is started and the trigger engine is armed. The result-
ing delay upon start includes the time the board needs for its
setup and the time for recording the pre-trigger area (for acquisi-
tion cards).
For enabling the software trigger one simply has to include the
software event within the trigger OR mask, as the following table is showing:

Due to the fact that the software trigger is an internal trigger mode, you can optionally enable the external trigger output to generate a high
active trigger signal, which indicates when the data acquisition or replay begins. This can be useful to synchronize external equipment with
your Spectrum board.

Example for setting up the software trigger:

Force- and Enable trigger
In addition to the software trigger (free run) it is also possible to force a trigger event by software while the board is waiting for a real physical
trigger event. The forcetrigger command will only have any effect, when the board is waiting for a trigger event. The command for forcing
a trigger event is shown in the table below.

Issuing the forcetrigger command will every time only generate one trigger event. If for example using Multiple Recording that will result in
only one segment being acquired by forcetrigger. After execution of the forcetrigger command the trigger engine will fall back to the trigger
mode that was originally programmed and will again wait for a trigger event.

The example shows, how to use the forcetrigger command:

It is also possible to enable (arm) or disable (disarm) the card’s whole triggerengine by software. By default the trigger engine is disabled.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ANDMASK0, SPC_TMASK_CH0); // Enable channel0 trigger within the AND mask
spcm_dwSetParam_i32 (hDrv,SPC_TRIG_CH0_MODE, SPC_TM_HIGH); // Setting up ch0 trigger for HIGH levels

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TMASK_SOFTWARE 1h Sets the trigger mode to software, so that the recording/replay starts immediately.

Register Value Direction Description

SPC_TRIG_OUTPUT 40100 read/write Defines the data direction of the external trigger connector.

0 The trigger connector is not used and the line driver is disabled.

1 The trigger connector is used as an output that indicates a detected internal trigger event.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_SOFTWARE); // Internal software trigger mode is used
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_OUTPUT, 1); // And the trigger output is enabled

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p series cards.

M2CMD_CARD_FORCETRIGGER 10h Forces a trigger event if the hardware is still waiting for a trigger event.

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER); // Force trigger is used.

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p series cards.

M2CMD_CARD_ENABLETRIGGER 8h Enables the trigger engine. Any trigger event will now be recognized.

M2CMD_CARD_DISABLETRIGGER 20h Disables the trigger engine. No trigger events will be recognized, except force trigger.
(c) Spectrum GmbH 101

Delay trigger Trigger modes and appendant registers
The example shows, how to arm and disarm the card’s trigger engine properly:

Delay trigger
All of the Spectrum M2i series cards allow the user to program an additional trigger delay. As shown in the trigger overview section, this
delay is the last element in the trigger chain. Therefore the user does not have to care for the sources when programming the trigger delay.
The following table shows the related register and the possible values. A value of 0 disables the extra delay. The resulting delays (due to the
internal structure of the card) can be found in the technical data section of this manual.

The example shows, how to use the delay trigger command:

Using the delay trigger does not affect the ratio between pre trigger and post trigger recorded number of samples, but only shifts
the trigger event itself. For changing these values, please take a look in the relating chapter about „Acquisition Modes“.

Please note that the trigger delay setting is not used when synchronizing cards. If you need a trigger delay
on synchronized systems it is necessary to program posttrigger, segmentsize and memsize to fulfill this task.

External TTL trigger

Enabling the external trigger input(s) is done, if you choose one of the following external trigger modes. The dedicated register for that op-
eration is shown below.

Using the SPC_TM_PULSESTRETCH mode requires driver version V2.11 (or newer) and firmware version V18
(or newer). Please update your system to the newest versions to use this mode.

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_ENABLETRIGGER); // Trigger engine is armed.
...
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_DISABLETRIGGER); // Trigger engine is disarmed.

Register Value Direction Description

SPC_TRIG_AVAILDELAY 40800 read Contains the maximum available delay as a decimal integer value.

SPC_TRIG_DELAY 40810 read/write Defines the delay for the detected trigger events.

0 No additional delay will be added. The resulting internal delay is mentioned in the technical data section.

0…65535 Defines the additional trigger delay in number of sample clocks.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_DELAY, 2000); // A detected trigger event will be
 // delayed for 2000 sample clocks.

Register Value Direction Description

SPC_TRIG_EXT_AVAILMODES 40500 read Bitmask, in which all bits of the below mentioned modes for the external trigger are set, if available.

SPC_TRIG_EXT0_MODE 40510 read/write Defines the external TTL trigger mode for the external SMB connector (A/D and D/A boards only).
On digital boards this defines the TTL trigger mode for the trigger input of the first module (Mod A).

SPC_TRIG_EXT1_MODE 40511 read/write Defines the external TTL trigger mode for the trigger input of the second module (digital boards only).

SPC_TRIG_XIO0_MODE 40560 read/write Defines the trigger mode for the extra TTL input 0. On plain cards this input is only available if the
option BaseXIO is installed. As part of the digitizerNETBOX this input is available as connector Trig-
ger B.

SPC_TRIG_XIO1_MODE 40561 read/write Defines the trigger mode for the extra TTL input 1. These trigger inputs are only available, when
option BaseXIO is installed.

SPC_TM_NONE 0h Input is not used for trigger detection. This is as with the trigger masks another possibility for disabling TTL sources.

SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.

SPC_TM_POS |
SPC_TM_PULSESTRETCH

10000001h Sets the trigger mode for external TTL trigger to stretch and detect HIGH pulses.

SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges

SPC_TM_NEG |
SPC_TM_PULSESTRETCH

10000002h Sets the trigger mode for external TTL trigger to stretch and detect LOW pulses.

SPC_TM_BOTH 4h Sets the trigger mode for external TTL trigger to detect positive and negative edges

SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect HIGH levels.

SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect LOW levels.

SPC_TM_POS |
SPC_TM_PW_GREATER

4000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.

SPC_TM_POS |
SPC_TM_PW_SMALLER

2000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are shorter than a programmed pulsewidth.

SPC_TM_NEG |
SPC_TM_PW_GREATER

4000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.

SPC_TM_NEG |
SPC_TM_PW_SMALLER

2000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are shorter than a programmed pulsewidth.
102 generatorNETBOX DN2.60x Manual

Trigger modes and appendant registers External TTL trigger
For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

If you choose an external trigger mode the SPC_TRIGGEROUT register will be overwritten and the trigger connector will be used as an input
any ways.

As the trigger connector is used as an input, you can decide whether the input is 50 Ohm terminated or not. If you enable the termination,
please make sure, that your trigger source is capable to deliver the needed current. Please check carefully whether the source is able to fulfil
the trigger input specification given in the technical data section. If termination is disabled, the input is at high impedance.

The following short example shows how to set up the board for external positive edge TTL trigger. The trigger input is 50 Ohm terminated.
The different modes for external TTL trigger are to be detailed described in the next few passages.

Edge and level triggers

Positive (rising) edge TTL trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The board will trigger on the first rising edge that is detected
after starting the board. The next triggerevent will then be detect-
ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.
This mode can be combined with the pulse strech feature to detect
pulses that are shorter than the sample period.

Example on how to set up the board for positive TTL trigger:

HIGH level TTL trigger

This mode is for detecting the HIGH levels of an external TTL sig-
nal. The board will trigger on the first HIGH level that is detected
after starting the board. If this condition is fulfilled when the board
is started, a trigger event will be detected.
The next triggerevent will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for
a trigger again.

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT0 2h Enable external trigger input for the OR mask

SPC_TMASK_XIO0 100h Enable extra TTL input 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is installed.
As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enable extra TTL input 1 for the OR mask. These trigger inputs are only available, when option BaseXIO is installed.

Register Value Direction Description

SPC_TRIG_OUTPUT 40100 read/write Enables the trigger output if internal trigger is detected

X If external trigger modes are used, this register will have no effect.

Register Value Direction Description

SPC_TRIG_TERM 40110 read/write A „1“ sets the 50 Ohm termination, if the trigger connector is used as an input for external trigger sig-
nals. A „0“ sets the high impedance termination

spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Setting up external TTL
 // trigger to detect rising edges
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_TERM, 1); // Enables the 50 Ohm input termination
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the OR mask

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.

SPC_TM_POS |
SPC_TM_PULSESTRETCH

10000001h Sets the trigger mode for external TTL trigger to stretch and detect HIGH pulses. Not available on all cards, please
check SPC_TRIG_EXT_AVAILMODES register for availability.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS);// Set up ext. TTL trigger to detect positive edges

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.
(c) Spectrum GmbH 103

External TTL trigger Trigger modes and appendant registers
Negative (falling) edge TTL trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The board will trigger on the first falling edge that is detected
after starting the board. The next triggerevent will then be detect-
ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.
This mode can be combined with the pulse strech feature to detect
pulses that are shorter than the sample period.

LOW level TTL trigger

This mode is for detecting the LOW levels of an external TTL sig-
nal. The board will trigger on the first LOW level that is detected
after starting the board. If this condition is fulfilled when the board
is started, a trigger event will be detected.
The next triggerevent will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for
a trigger again.

Positive (rising) and negative (falling) edges TTL trigger

This mode is for detecting the rising and falling edges of an ex-
ternal TTL signal. The board will trigger on the first rising or falling
edge that is detected after starting the board. The next trigger-
event will then be detected, if the actual recording/replay has fin-
ished and the board is armed and waiting for a trigger again.

Pulsewidth triggers

TTL pulsewidth trigger for long HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will trigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and
the board is armed and waiting for a trigger again.

SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect HIGH levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges.

SPC_TM_NEG |
SPC_TM_PULSESTRETCH

10000002h Sets the trigger mode for external TTL trigger to stretch and detect LOW pulses. Not available on all cards, please
check SPC_TRIG_EXT_AVAILMODES register for availability.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect LOW levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_BOTH 4h Sets the trigger mode for external TTL trigger to detect positive and negative edges.

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_POS | SPC_TM_PW_GREATER) 4000001h
104 generatorNETBOX DN2.60x Manual

Trigger modes and appendant registers External TTL trigger
TTL pulsewidth trigger for short HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are shorter than a programmed pulsewidth. If the pulse is
longer than the programmed pulsewidth, no trigger will be detect-
ed. The board will trigger on the first pulse matching the trigger
condition after starting the board. The next triggerevent will then
be detected, if the actual recording/replay has finished and the
board is armed and waiting for a trigger again.

TTL pulsewidth trigger for long LOW pulses

This mode is for detecting LOW pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will trigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and
the board is armed and waiting for a trigger again.

TTL pulsewidth trigger for short LOW pulses

This mode is for detecting LOW pulses of an external TTL signal
that are shorter than a programmed pulsewidth. If the pulse is
longer than the programmed pulsewidth, no trigger will be detect-
ed. The board will trigger on the first pulse matching the trigger
condition after starting the board. The next triggerevent will then
be detected, if the actual recording/replay has finished and the
board is armed and waiting for a trigger again.

The following example shows, how to setup the card for using external TTL pulse width trigger:

To find out what maximum pulsewidth (in samples) is available, please read out the register shown in the table below:

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_POS | SPC_TM_PW_SMALLER) 2000001h

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_NEG | SPC_TM_PW_GREATER) 4000002h

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_NEG | SPC_TM_PW_SMALLER) 2000002h

spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_NEG | SPC_TM_PW_GREATER); // Setting up external TTL
 // trigger to detect low pulses
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_PULSEWIDTH , 50); // that are longer than 50 samples.
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the OR mask

Register Value Direction Description

SPC_TRIG_EXT_AVAILPULSEWIDTH 44200 read Contains the maximum possible value for the external trigger pulsewidth counter.
(c) Spectrum GmbH 105

Trigger Modes Mode Multiple Replay
Mode Multiple Replay
The Multiple Replay mode allows the generation of data blocks with multi-
ple trigger events without restarting the hardware.

The on-board memory will be divided into several segments of the same
size. On each trigger event one segment of data will be replayed.

As this mode is totally controlled in hardware there is a very small re-arm
time from end of one segment until the trigger detection is enabled again.
You’ll find that re-arm time in the technical data section of this manual.

The following table shows the register for defining the structure of the segments to be replayed with each trigger event.

Trigger Modes
When using Multiple Recording all of the card’s trigger modes can be used except the software trigger. For detailed information on the avail-
able trigger modes, please take a look at the relating chapter earlier in this manual.

Programming examples
The following example shows how to set up the card for Multiple Replay in standard mode.

The following example shows how to set up the card for Multiple Replay in FIFO mode.

Replay modes

Standard Mode
With every detected trigger event one data block is replayed. The length of one multiple replay segment is set by the value of the segment
size register SPC_SEGMENTSIZE. The total amount of samples to be replayed is defined by the memsize register.
Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Multiple Recording. For detailed
information on how to setup and start the standard replay mode please refer to the according chapter earlier in this manual.

The total number of samples to be replayed from the on-board memory in standard mode is defined by the SPC_MEMSIZE register. When
using the SPC_LOOPS parameter one can further program whether all segments should be replayed once or continuously or whether a ded-
icated number of segments should be replayed

Register Value Direction Description

SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Replay segment: the total number of samples to be replayed per channel after
detection of one trigger event.

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_STD_MULTI); // Enables Standard Multiple Replay

spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, 1024); // Set the segment size to 1024 samples
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 4096); // Set the total memsize for recording to 4096 samples
 // so that actually four segments will be replayed

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Set trig mode to ext. TTL mode (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_FIFO_MULTI); // Enables FIFO Multiple Replay

spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, 2048); // Set the segment size to 2048 samples
spcm_dwSetParam_i64 (hDrv, SPC_LOOPS 256); // 256 segments will be replayed

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_NEG); // Set trig mode to ext. TTL mode (falling edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REP_STD_MULTI 200h Enables Multiple Replay for standard replay.

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Defines the total number of samples to be replayed.

SPC_LOOPS 10020 read/write When writing a 1 the complete memory is replayed once, when writing a zero the replay continues
from the beginning forever. When writing a number >1 this number of segments is replayed until the
card stops automatically.
106 generatorNETBOX DN2.60x Manual

Mode Multiple Replay Limits of segment size, memory size
Replay modes with the use of SPC_LOOPS

FIFO Mode
The Multiple Replay in FIFO mode is similar to the Multiple Replay in standard mode. In contrast to the standard mode it is not necessary to
program the number of samples to be replayed. The replay is running until the user stops it. The data is written block by block by the driver
as described under single FIFO mode example earlier in this manual. These blocks can be online calculated or loaded from hard disk. This
mode significantly reduces the amount of data to be transfered on the PCI bus as gaps with no significant output did not have to be transferred.
This enables you to use faster sample rates then you would be able to in FIFO mode without Multiple Recording.
The table below shows the dedicated register for enabling Multiple Replay. For detailed information how to setup and start the board in FIFO
mode please refer to the according chapter earlier in this manual.

The number of segments to be replayed must be set separately with the register shown in the following table:

Limits of segment size, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 2 bytes of memory to be stored.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning memory size, segment size and loops. The table shows all values in relation
to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase according to the complete
installed memory:

0 Replay will be infinite until the user stops it. When replay reaches the end of programmed memory it will start from the
beginning again.

1 The complete memory is replayed once.

2 … [4G - 1] Defines the number of segments to be replayed. After replaying this number of segments the card will stop automati-
cally.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REP_FIFO_MULTI 1000h Enables Multiple Replay for FIFO mode.

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be replayed

0 Replay will be infinite until the user stops it.

1 … [4G - 1] Defines the total segments to be replayed.

Activated Used Memory size Segment size Loops
Channels Mode SPC_MEMSIZE SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step
1 channel Standard Single 8 Mem 8 not used 0 (∞) 4G - 1 1

Single Restart 8 Mem 8 not used 0 (∞) 4G - 1 1
Standard Multi 8 Mem 8 8 Mem/2 8 not used
Standard Gate 8 Mem 8 not used not used
FIFO Single not used 8 8G - 8 8 0 (∞) 4G - 1 1
FIFO Multi not used 8 Mem/2 8 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

2 channels Standard Single 4 Mem/2 4 not used 0 (∞) 4G - 1 1
Single Restart 4 Mem/2 4 not used 0 (∞) 4G - 1 1
Standard Multi 4 Mem/2 4 4 Mem/4 4 not used
Standard Gate 4 Mem/2 4 not used not used
FIFO Single not used 4 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi not used 4 Mem/4 4 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

4 channels Standard Single 4 Mem/4 4 not used 0 (∞) 4G - 1 1
Single Restart 4 Mem/4 4 not used 0 (∞) 4G - 1 1
Standard Multi 4 Mem/4 4 4 Mem/8 4 not used
(c) Spectrum GmbH 107

Limits of segment size, memory size Mode Multiple Replay
All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Programming the behaviour in pauses and after replay
Usually the used outputs of the analog generation boards are set to zero level after replay. This is in most cases adequate. In some cases it
can be necessary to hold the last sample, to output the maximum positive level or maximum negative level after replay. The stoplevel will
stay on the defined level until the next output has been made. With the following registers you can define the behaviour after replay:

All outputs that are not activated for replay, will keep the programmed stoplevel also while the replay is in progress.

Because the STOPLEVEL registers impact the digital samples fed to the D/A converter, the output is still shifted by the programmed
output offset, as described before.

Standard Gate 4 Mem/4 4 not used not used
FIFO Single not used 4 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi not used 4 Mem/8 4 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

Installed Memory
32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample

Mem 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 2 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 4 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample
Mem / 8 4 MSample 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample

Register Value Direction Description

SPC_CH0_STOPLEVEL 206020 read/write Defines the behavior after replay for channel 0

SPC_CH1_STOPLEVEL 206021 read/write Defines the behavior after replay for channel 1

SPC_CH2_STOPLEVEL 206022 read/write Defines the behavior after replay for channel 2

SPC_CH3_STOPLEVEL 206023 read/write Defines the behavior after replay for channel 3

SPCM_STOPLVL_ZERO 16 Defines the analog output to enter zero level (D/A converter is fed with digital zero value)

SPCM_STOPLVL_LOW 2 Defines the analog output to enter maximum negative level (D/A converter is fed with most negative level)

SPCM_STOPLVL_HIGH 4 Defines the analog output to enter maximum positive level (D/A converter is fed with most positive level)

SPCM_STOPLVL_HOLDLAST 8 Holds the last replayed sample on the analog output

Activated Used Memory size Segment size Loops
Channels Mode SPC_MEMSIZE SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step
108 generatorNETBOX DN2.60x Manual

Mode Gated Replay Generation Modes
Mode Gated Replay
The Gated Replay mode allows the data generation controlled by an exter-
nal or an internal gate signal. Data will only be replayed if the programmed
gate condition is true.

This chapter will explain all the necessary software register to set up the
card for Gated Replay properly.

The section on the allowed trigger modes deals with detailed description on
the different trigger events and the resulting gates.

Generation Modes

Standard Mode
Data will be replayed as long as the gate signal fulfils the programmed gate condition. At the end of the gate interval the replay will be
stopped and the card will pause until another gates signal appears. If loops (SPC_LOOPS) is set to 1 the card stops immediately as soon as
the total amount of data (SPC_MEMSIZE) has been replayed. In that case the last gate segment is ended by the expiring memory size counter
and not by the gate end signal. If loops is set to zero the Gated Replay mode will run in a continuous loop until explicitly stopped by user. If
the replay reaches the end of the programmed memory it will start again at the beginning with no gap in between. If setting loops to a number
larger than 1 this number of complete gates will be replayed and the card stopped afterwards automatically.

The table below shows the register for enabling Gated Sampling. For detailed information on how to setup and start the standard acquisition
mode please refer to the according chapter earlier in this manual.

The total number of samples to be replayed from the on-board memory in standard mode is defined by the SPC_MEMSIZE register.

Examples of Standard Gated Replay with the use of SPC_LOOPS parameter
To keep the diagram easy to read there’s no delay shown in here and there’s also only a very small number of samples shown. Any further
restrictions are described later in this chapter.

FIFO Mode
The Gated Replay in FIFO mode is similar to the Gated Replay in standard mode. The replay can either run until the user stops it by software
(infinite replay, loops = 0) or until a programmed number of gates has been played (loops = 1). The data is written continuously by the driver
and can be either online calculated or loaded from hard disk. The table below shows the dedicated register for enabling Gated Sampling in
FIFO mode. For detailed information how to setup and start the card in FIFO mode please refer to the according chapter earlier in this manual.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REP_STD_GATE 400h Enables Gated Sampling for standard acquisition.

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Defines the total number of samples to be replayed.

SPC_LOOPS 10020 read/write Defines the number of gates to be replayed

0 Replay will be infinite until the user stops it. When replay reaches the end of programmed memory it will start from the
beginning with no gap.

1 The complete memory is replayed once. The last gate segement is cut off when end of memory is reached.

2 … [4G - 1] Defines the number of gate segments to be replayed.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REP_FIFO_GATE 2000h Enables Gated Replay with FIFO mode
(c) Spectrum GmbH 109

Limits of segment size, memory size Mode Gated Replay
The number of gates to be replayed must be set separately with the register shown in the following table:

Limits of segment size, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 2 bytes of memory to be stored.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning memory size, segment size and loops. The table shows all values in relation
to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase according to the complete
installed memory:

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Allowed trigger modes

Edge and level triggers
For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of gates to be replayed

0 Replay will be infinite until the user stops it or an underrun occurs

1 … [4G - 1] Defines the total gates to be replayed.

Activated Used Memory size Segment size Loops
Channels Mode SPC_MEMSIZE SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step
1 channel Standard Single 8 Mem 8 not used 0 (∞) 4G - 1 1

Single Restart 8 Mem 8 not used 0 (∞) 4G - 1 1
Standard Multi 8 Mem 8 8 Mem/2 8 not used
Standard Gate 8 Mem 8 not used not used
FIFO Single not used 8 8G - 8 8 0 (∞) 4G - 1 1
FIFO Multi not used 8 Mem/2 8 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

2 channels Standard Single 4 Mem/2 4 not used 0 (∞) 4G - 1 1
Single Restart 4 Mem/2 4 not used 0 (∞) 4G - 1 1
Standard Multi 4 Mem/2 4 4 Mem/4 4 not used
Standard Gate 4 Mem/2 4 not used not used
FIFO Single not used 4 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi not used 4 Mem/4 4 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

4 channels Standard Single 4 Mem/4 4 not used 0 (∞) 4G - 1 1
Single Restart 4 Mem/4 4 not used 0 (∞) 4G - 1 1
Standard Multi 4 Mem/4 4 4 Mem/8 4 not used
Standard Gate 4 Mem/4 4 not used not used
FIFO Single not used 4 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi not used 4 Mem/8 4 0 (∞) 4G - 1 1
FIFO Gate not used not used 0 (∞) 4G - 1 1

Installed Memory
32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample

Mem 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 2 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 4 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample
Mem / 8 4 MSample 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT0 2h Enable external trigger input for the OR mask

SPC_TMASK_XIO0 100h Enable extra TTL input 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is installed.
As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enable extra TTL input 1 for the OR mask. These trigger inputs are only available, when option BaseXIO is installed.
110 generatorNETBOX DN2.60x Manual

Mode Gated Replay Allowed trigger modes
Positive TTL single edge trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The gate will start on rising edges that are detected after start-
ing the board.

As this mode is purely edge-triggered, the high level at the cards
start time, does not trigger the board.

With the next falling edge the gate will be stopped.

HIGH TTL level trigger

This mode is for detecting the high levels of an external TTL signal.
The gate will start on high levels that are detected after starting
the board acquisition/generation.

As this mode is purely level-triggered, the high level at the cards
start time, does trigger the board.

With the next low level the gate will be stopped.

Positive TTL double edge trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The gate will start on the first rising edge that is detected after
starting the board.

As this mode is purely edge-triggered, the high level at the cards
start time, does not trigger the board.

The gate will stop on the second rising edge that is detected.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect high levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_POS |
SPC_TM_DOUBLEEDGE

08000001h Sets the gate mode for external TTL trigger to start and stop on positive edges.
(c) Spectrum GmbH 111

Allowed trigger modes Mode Gated Replay
Negative TTL single edge trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The gate will start on falling edges that are detected after
starting the board.

As this mode is purely edge-triggered, the low level at the cards
start time, does not trigger the board.

With the next rising edge the gate will be stopped.

LOW TTL level trigger

This mode is for detecting the low levels of an external TTL signal.
The gate will start on low levels that are detected after starting the
board.

As this mode is purely level-triggered, the low level at the cards
start time, does trigger the board.

With the next high level the gate will be stopped.

Negative TTL double edge trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The gate will start on the first falling edge that is detected af-
ter starting the board.

As this mode is purely edge-triggered, the low level at the cards
start time, does not trigger the board.

The gate will stop on the second falling edge that is detected.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect low levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_NEG |
SPC_TM_DOUBLEEDGE

08000002h Sets the gate mode for external TTL trigger to start and stop on negative edges
112 generatorNETBOX DN2.60x Manual

Mode Gated Replay Allowed trigger modes
Pulsewidth triggers
For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

TTL pulsewidth trigger for long HIGH pulses

This mode is for detecting a rising edge of an external TTL signal
followed by a HIGH pulse that are longer than a programmed
pulsewidth. If the pulse is shorter than the programmed pulse-
width, no trigger will be detected.

The gate will start on the first pulse matching the trigger condition
after starting the board.

The gate will stop with the next falling edge.

TTL pulsewidth trigger for long LOW pulses

This mode is for detecting a falling edge of an external TTL signal
followed by a LOW pulse that are longer than a programmed
pulsewidth. If the pulse is shorter than the programmed pulse-
width, no trigger will be detected.

The gate will start on the first pulse matching the trigger condition
after starting the board.

The gate will stop with the next rising edge.

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT0 2h Enable external trigger input for the OR mask

SPC_TMASK_XIO0 100h Enable extra TTL input 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is installed.
As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enable extra TTL input 1 for the OR mask. These trigger inputs are only available, when option BaseXIO is installed.

Register Value Direction Description

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.

SPC_TRIG_EXT0_MODE 40510 read/write Sets the trigger mode for the board.

(SPC_TM_POS |
SPC_TM_PW_GREATER)

4000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.

Register Value Direction Description

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.

SPC_TRIG_EXT0_MODE 40510 read/write Sets the trigger mode for the board.

(SPC_TM_NEG |
SPC_TM_PW_GREATER)

4000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.

spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_NEG | SPC_TM_PW_GREATER); // Setting up external TTL
 // trigger to detect low pulses
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_PULSEWIDTH , 50); // that are longer than 50 samples.
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the OR mask
(c) Spectrum GmbH 113

Allowed trigger modes Mode Gated Replay
Programming examples
The following examples shows how to set up the card for Gated Replay in standard mode for Gated Replay in FIFO mode.

Programming the behaviour in pauses and after replay
Usually the used outputs of the analog generation boards are set to zero level after replay. This is in most cases adequate. In some cases it
can be necessary to hold the last sample, to output the maximum positive level or maximum negative level after replay. The stoplevel will
stay on the defined level until the next output has been made. With the following registers you can define the behaviour after replay:

All outputs that are not activated for replay, will keep the programmed stoplevel also while the replay is in progress.

Because the STOPLEVEL registers impact the digital samples fed to the D/A converter, the output is still shifted by the programmed
output offset, as described before.

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_STD_GATE); // Enables Standard Gated Replay

spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 8192); // Set the total memsize for replay to 8192 samples

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Set triggermode to ext. TTL rising edge
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_FIFO_GATE); // Enables FIFO Gated Replay

pcm_dwSetParam_i64 (hDrv, SPC_LOOP, 1024); // 1024 gates will be replayed

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_NEG);// Set triggermode to ext. TTL falling edge
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0);// and enable it within the trigger OR-mask

Register Value Direction Description

SPC_CH0_STOPLEVEL 206020 read/write Defines the behavior after replay for channel 0

SPC_CH1_STOPLEVEL 206021 read/write Defines the behavior after replay for channel 1

SPC_CH2_STOPLEVEL 206022 read/write Defines the behavior after replay for channel 2

SPC_CH3_STOPLEVEL 206023 read/write Defines the behavior after replay for channel 3

SPCM_STOPLVL_ZERO 16 Defines the analog output to enter zero level (D/A converter is fed with digital zero value)

SPCM_STOPLVL_LOW 2 Defines the analog output to enter maximum negative level (D/A converter is fed with most negative level)

SPCM_STOPLVL_HIGH 4 Defines the analog output to enter maximum positive level (D/A converter is fed with most positive level)

SPCM_STOPLVL_HOLDLAST 8 Holds the last replayed sample on the analog output
114 generatorNETBOX DN2.60x Manual

Sequence Replay Mode Theory of operation
Sequence Replay Mode
The sequence replay mode is a special firmware mode that allows to program an output sequence by defining one or more sequences each
associated with a certain memory pattern. Therefore the user is provided with two different memories, one for the sequence steps and one
for the data patterns. The separated sequence memory can hold different sequence steps (the actual number depends on the hardware and
can be found in the technical data section). Each step itself contains information about how often it should be repeated in a loop, which step
will be next and on what condition the change will happen. To define the pattern for the steps, the on-board memory is split up into several
segments of different length. The switch over from one segment to the other is seamless, without any missing samples or spikes. The powerful
sequence mode option adds a huge variety of different application areas to Spectrum’s generator cards.

Theory of operation

Define segments in data memory
The complete installed on-board memory of the card is divided into a user de-
finable number of segments. Each segment space has the same length limiting
the maximum length of one data segment to [Installed Memory] / [Number of
Segments]. Each data segment can be filled by the user with patterns of differ-
ent lengths or can even be left completely empty if unused:

In our example we see the complete installed card memory is being split into
8 segments and 6 of these segments are actually filled with data sequences of
different length afterwards (indicated in red). Two of these segments are not
needed for the assumed sequence and therefore left empty as an example. Due to the fact that each sequence step can be associated with
any of the data segments, it is also possible to use one data segment in multiple steps or to just once upload the data for multiple sequences,
and just change the order of the sequence.

Define steps in sequence memory
The sequence memory defines a number of data loop steps that are executed
step by step either linear or interrupted by waiting for trigger event. The first
step that is entered after a card start is separately defined by software. When
being entered, each step first repeats the associated data segment the number
times defined by its loop parameter. Afterwards the sequencer will either au-
tomatically proceed either unconditionally or check for a trigger event as a
condition to change over to the next step, which is defined by the steps next
parameter. This next segment can be the same segment again performing an
endless loop or the beginning of the sequence to repeat the sequence until be-
ing stopped by the user. Additionally a step can also be defined to be the last step in a sequence such that the card is stopped afterwards.

In our example 4 steps have been defined. Three of them (Step #1, Step #3, Step #4) perform an endless loop that will be repeated contin-
uously. The output of the card will then be 10 times data segment #2, 100 times data segment #4, 1 time data segment #7 and then starting
over with 10 times data segment #2 and so on...
In this first simple example the sequence consisting of the three steps is once defined prior to the card start and not changed during runtime,
therefore the shown Step #2 is not used here. There will be an extra passage later, that shows how the sequence memory can be updated
or modified even during runtime, whilst the replay is in progress.

(c) Spectrum GmbH 115

Programming Sequence Replay Mode
Programming
Programming of the sequence mode is done using the known driver interface with the addition of a few new registers.

Gathering information
If the sequence mode is installed on the card, the different details and limits of the sequence programming can be read out:

Setting up the registers

Define the card mode
To enable the sequencer the card mode needs to be set appropriately first:

Prepare the data memory
Setting up the segmentation of the on-board data memory is done by using the following registers:

Due to the internal organization of the card memory there is a certain minimum, maximum and stepsize when setting the segmentsize for the
sequence memory. The following table gives you an overview of all limits. The table shows all values in relation to the installed memory size
in samples. If more memory is installed the maximum memory size figures will increase according to the complete installed memory:

For analog generator cards

Register Value Direction Description

SPC_PCIFEATURES 2120 read only PCI feature register. Holds the installed features and options as a bit field. The return value must be
masked out with one of the masks below to get information about one certain feature.

SPCM_FEAT_SEQUENCE 1000h Replay sequence mode available (only available for arbitrary generator and digital I/O cards).

Register Value Direction Description

SPC_SEQMODE_AVAILMAXSEGMENT 349900 read only Returns the maximum number of segments the memory can be divided into. Please note that only
dividers with a power of 2 are possible return values.

SPC_SEQMODE_AVAILMAXSTEPS 349901 read only Returns the maximum number of sequence steps that can be used on this card.

SPC_SEQMODE_AVAILMAXLOOP 349902 read only Returns the maximum number of loops that can be programmed for a step.

SPC_SEQMODE_AVAILFEATURES 349903 read only Returns the available features for each sequence step as shown below:

SPCSEQ_ENDLOOPONTRIG 40000000h The step runs endless until a trigger is received. If no trigger has been detected, the step will enter itself again, count-
ing down its own loops and check for a trigger again. For a minimum reaction time on an external trigger event it is
good practice to set the loop parameter to 1 in the step checking for the trigger.

SPCSEQ_END 80000000h This sequence step is the end of the sequence. The card is stopped somewhere inside this step.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode.

SPC_REP_STD_SEQUENCE 40000h Data generation from on-board memory, by splitting the memory into several segments and replaying the data using
a programmable order coming from a special sequence memory.

Register Value Direction Description

SPC_SEQMODE_MAXSEGMENTS 349910 read/write Programs the number of segments the on-board memory should be divided into. If changing the num-
ber of segments all information that has been stored before is lost and all sequence data and all
sequence setup has to be written again. Only a power of two is allowed, but not all of the segments
must be actually used in the sequence.
If reading this register the number of segments the memory is currently divided into is returned.

SPC_SEQMODE_WRITESEGMENT 349920 read/write Defines the current segment to be addressed by the user. Must be programmed prior to changing any
segment parameters.

SPC_SEQMODE_SEGMENTSIZE 349940 read/write Defines the number of valid/to be replayed samples for the current selected memory segment.

For cards with 14 bit converter resolution For cards with 8 bit converter resolution
Activated Pattern size for register Pattern size for currently register
Channels SPC_SEQMODE_SEGMENTSIZE SPC_SEQMODE_SEGMENTSIZE

Min Max Step Min Max Step
1 channel 32 (Mem/1) / SPC_SEQMODE_MAXSEGMENTS) 8 48 (Mem/1) / SPC_SEQMODE_MAXSEGMENTS) 16
2 channels 32 (Mem/2) / SPC_SEQMODE_MAXSEGMENTS) 8 48 (Mem/2) / SPC_SEQMODE_MAXSEGMENTS) 16
4 channels 32 (Mem/4) / SPC_SEQMODE_MAXSEGMENTS) 8 48 (Mem/4) / SPC_SEQMODE_MAXSEGMENTS) 16
116 generatorNETBOX DN2.60x Manual

Sequence Replay Mode Programming
For Digital I/O cards

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples. The given memory
and memory / divider figures depend on the installed on-board memory as listed below:

Definition of the transfer buffer
The data transfer itself is done using the standard data transfer commands, with the exception that the buffer type and the direction is fixed
in combination with the sequence mode. The definition of the buffer is done with the spcm_dwDefTransfer function as explained in an earlier
chapter.

The programming examples further below will show the setup and also some examples of data transfer.

Set up the sequence memory
Sequence steps are programmed using a dedicated register for each step. Please note that the register has to be written with 64 bit of data
to cover all settings. It is possible to either use raw 64 bit access or multiplexed 64 bit access (2 times 32 bit data). The masks mentioned in
the table below are 32 bit masks only, so that they can be used for 64 bit and 32 bit accesses.

The start step register allows to define which of the set up steps is used first after card start. Therefore is possible to upload multiple sequences
prior to the start and switch between these sequences by using a simple command, setting a different starting point:

For cards with 8 bit converter resolution
Activated Pattern size for currently selected segment
Channels SPC_SEQMODE_SEGMENTSIZE

Min Max Step
1
2 Not allwed
4
8 48 (Mem/1) / SPC_SEQMODE_MAXSEGMENTS) 16
16 32 (Mem/2) / SPC_SEQMODE_MAXSEGMENTS) 8
32 32 (Mem/4) / SPC_SEQMODE_MAXSEGMENTS) 4
64 32 (Mem/8) / SPC_SEQMODE_MAXSEGMENTS) 4

Installed Memory
32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample

Mem 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 4 MSample 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

uint32 _stdcall spcm_dwDefTransfer_i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // fixed SPCM_BUF_DATA (segment memory is always in on-board memory)
 uint32 dwDirection, // fixed SPCM_DIR_PCTOCARD (only available for replay cards)
 uint32 dwNotifySize, // number of bytes after which an event is sent (0=end of transfer)
 void* pvDataBuffer, // pointer to the data buffer
 uint64 qwBrdOffs, // offset for transfer in relation to the currently selected segment
 uint64 qwTransferLen); // buffer length for the currently selected segment

Register Value Direction Description

SPC_SEQMODE_STEPMEM0 340000 read/write First address (sequence step 0) of the 64 bit organized sequence memory.

...

SPC_SEQMODE_STEPMEM0 +
ReturnValue(SPC_SEQMODE_AVAILMAXSTEPS - 1)

340511 read/write Writes the sequence step 511, as an example. The maximum number of steps should be read
out by using the SPC_SEQMODE_AVAILMAXSTEPS register as described above.

Lower 32 bit:

SPCSEQ_SEGMENTMASK 0000FFFFh Associates the current sequence step with one of the memory segments.

SPCSEQ_NEXTSTEPMASK FFFF0000h Defines the next step in the sequence.

Upper 32 bit:

SPCSEQ_LOOPMASK 000FFFFFh Defines how often the memory segment associated with the current step will be repeated before the next step
condition will be evaluated.

SPCSEQ_ENDLOOPALWAYS 0h Unconditionally change to the next step, if defined loops for the current segment have been replayed.

SPCSEQ_ENDLOOPONTRIG 40000000h Feature flag that marks the step to conditionally change to the next step on a trigger condition. The occurrence
of a trigger event is repeatedly checked each time the defined loops for the current segment have been
replayed. A temporarily valid trigger condition will be stored until evaluation at the end of the step.

SPCSEQ_END 80000000h Feature flag that marks the current step to be the last in the sequence. The stop itself is not sample accurate.
Therefore it is best practice when using the SPCSEQ_END marker, to use one of the available segments as a
dummy stop segment, set the loop parameter to 1 and pre-fill the complete memory segment with data samples,
that hold the same pattern as the one defined by the SPC_STOPLEVEL.
For details on „Programming the behaviour after output“ please see the according chapter in this manual.

Register Value Direction Description

SPC_SEQMODE_STARTSTEP 349930 read/write Defines which of all defined steps in the sequence memory will be used first directly after the
card start.
(c) Spectrum GmbH 117

Synchronization Sequence Replay Mode
Due to the internal structure of the sequencer , the delay between a trigger event and the change in the se-
quence, when using the SPCSEQ_ENDLOOPONTRIG feature, is not a fixed value but rather varies with the
current fill-size of the Output FIFO. Please see „Output latency“ section in this manual for the size of the

Output FIFO on your card.

Changing sequences or step parameters during runtime
Due to the strict separation of the two memory areas it is also possible to change the sequence memory during runtime. If we look again on
the example sequence below, we can see that there is an unused step #2:

In our example 3 steps have been defined, prior to the card start, and these at first are not changed. Additionally Step#2 is set up to repeat
itself, but due to the defined start step it is normally not used. Due to the nature of the sequence memory (read-before-write) it is possible to
write to any step register in the sequence memory during runtime without corrupting the sequence memory. By addressing a certain step and
changing for example its next parameter, it is possible switch between two sequences by software. Because the user does not know what
sequence is currently replayed, one cannot leave the „current“ step but instead has to address one certain step and therefore defines an
exit/change state.

Assuming in the example above, that we change the next parameter of Step#4 from Next=1 to Next=2, the infinitely executed 3-step se-
quence that is used as default after card start will be left the next time that the replay finishes the last sample of the pattern associated with
Step#4 (which in this case is Segment#7), will then jump to step #2 and seamlessly continue replaying with the first sample off the associated
segment #3. As step #2 links back to itself it will generate data segment #3 in an endless loop until being either stopped by a software
command or another change in the sequence is applied.

Any of the three step parameters „Next“, „Segment“ and „Loop“ of any step in the sequence memory can be changed during runtime, without
corruption the sequence memory. However once a step is entered, it will first execute the current parameters such as replay the associated
pattern and repeating it the programmed number of times.

Changing data patterns during runtime
In addition to the possible runtime changes within the sequence memory as described above, it is also possible to change the parts of the
pattern memory.

However since the data memory’s nature is not „read-before-write“, the user must take care not to change
the content of the memory segments, which are used within the currently active sequence.

Changing the data pattern can be useful in applications, where the data for the next test needs to be updated based on results from the
currently running test. Remember to update the sequence step entries if the segment length has changed, so that the driver can automatically
re-calculate the internal start-addresses of the segments.

Synchronization
Please note that the sequence mode is NOT synchronized using the star-hub. This also relates to generator-
NETBOX products with an internal star-hub. Using sequence mode together with star-hub, it is still possible
to synchronize the clock and the start of the cards. However it is neither possible to synchronize any changes

inside the step memory nor to synchronize software commands that change the step memory order nor to synchro-
nize a trigger that ends a steps loop.

118 generatorNETBOX DN2.60x Manual

Sequence Replay Mode Programming example
Programming example
The following example shows a very simple sequence as an example. Only two segments are used, the first is replayed 10 times and then
unconditionally left and replay switches over to the second segment. This segment is repeated until a trigger event is detected by the card.
After the trigger has been detected the sequence starts over again ... until the card is stopped.

// Setup of channel enable, output conditioning as well as trigger setup not shown for simplicity

#define MAX_SEGMENTS 2 // only 2 segments used here for simplicity
int32 lBytesPerSample;

// Read out used bytes per sample
spcm_dwGetParam_i32 (hDrv, SPC_MIINST_BYTESPERSAMPLE, &lBytesPerSample);

// Setting up the card mode
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REP_STD_SEQUENCE); // enable sequence mode
spcm_dwSetParam_i32 (hDrv, SPC_SEQMODE_MAXSEGMENTS, 2); // Divide on-board mem in two parts
spcm_dwSetParam_i32 (hDrv, SPC_SEQMODE_STARTSTEP, 0); // Step#0 is the first step after card start

// Setting up the data memory and transfer data
spcm_dwSetParam_i32 (hDrv, SPC_SEQMODE_WRITESEGMENT, 0); // set current configuration switch to segment 0
spcm_dwSetParam_i32 (hDrv, SPC_SEQMODE_SEGMENTSIZE, 1024); // define size of current segment 0

// it is assumed, that the Buffer memory has been allocated and is already filled with valid data
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD, 0, pData, 0, 1024 * lBytesPerSample);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// Setting up the data memory and transfer data
spcm_dwSetParam_i32 (hDrv, SPC_SEQMODE_WRITESEGMENT, 1); // set current configuration switch to segment 1
spcm_dwSetParam_i32 (hDrv, SPC_SEQMODE_SEGMENTSIZE, 512); // define size of current segment 1

// it is assumed, that the Buffer memory has been allocated and is already filled with valid data
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD, 0, pData, 0, 512 * lBytesPerSample);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// Setting up the sequence memory (Only two steps used here as an example)
lStep = 0; // current step is Step#0
llSegment = 0; // associated with data memory segment 0
llLoop = 10; // Pattern will be repeated 10 times
llNext = 1; // Next step is Step#1
llCondition = SPCSEQ_ENDLOOPALWAYS; // Unconditionally leave current step

// combine all the parameters to one int64 bit value
llValue = (llCondition << 32) | (llLoop << 32) | (llNext << 16) | (llSegment);
spcm_dwSetParam_i64 (hDrv, SPC_SEQMODE_STEPMEM0 + lStep, llValue);

lStep = 1; // current step is Step#1
llSegment = 1; // associated with data memory segment 1
llLoop = 1; // Pattern will be repeated once before condition is checked
llNext = 0; // Next step is Step#0
llCondition = SPCSEQ_ENDLOOPONTRIG; // Repeat current step until a trigger has occurred

llValue = (llCondition << 32) | (llLoop << 32) | (llNext << 16) | (llSegment);
spcm_dwSetParam_i64 (hDrv, SPC_SEQMODE_STEPMEM0 + lStep, llValue);

// Start the card
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);

// ... wait here or do something else ...

// Stop the card
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_STOP);
(c) Spectrum GmbH 119

Star-Hub introduction Option Star-Hub
Option Star-Hub

Star-Hub introduction
The purpose of the Star-Hub is to extend the number of channels available for acquisition or generation by interconnecting multiple cards and
running them simultaneously. It is even possible to interconnect multiple systems using the system Star-Hubs described further below.

The Star-Hub option allows to synchronize
several cards of the M2i series that are
mounted within one host system (PC). Two
different versions are available: a small ver-
sion with 5 connectors (option SH5) for syn-
chronizing up to five cards and a big
version with 16 connectors (option SH16)
for synchronizing up to 16 cards.

Both versions are implemented as a piggy -
back module that is mounted to one of the
cards. For details on how to install several
cards including the one carrying the Star-
Hub module, please refer to the section on
hardware installation.

Either which of the two available Star-Hub
options is used, there will be no phase delay
between the sampling clocks of the synchro-
nized cards and either no delay between
the trigger events, if all synchronized cards run with the same sampling rate. Any one of the synchronized cards can be used as a clock
master and besides any card can be part of the trigger generation.

When accesinng a digitizerNETBOX multiple digitizer modules are internally synchronized using a Star-Hub also. Synchronization of the
cards and accessing the Star-Hub is done in the very exact way like a Star-Hub that is installed on a plug-in card.

Star-Hub trigger engine
The trigger bus between an M2i
card and the Star-Hub option con-
sists of three lines. Two of them
send the trigger information from
the card’s trigger engine to the
Star-Hub and one line receives the
resulting trigger from the Star-
Hub.

While the returned trigger is iden-
tical for all synchronized cards,
the sent out trigger of every single
card depends on their trigger set-
tings.

Two lines are used to send the trig-
ger from the card to the Star-Hub
to provide the possibility to use
the same OR/AND conjunctions
for the resulting synchronization
trigger like on a card that runs on its own.

By this separation all OR masks of all synchronized cards are therefore extended to one big OR mask, while all AND masks of the synchro-
nized cards are extended to one overall AND mask. This allows to combine the various trigger sources of all synchronized cards with AND
and OR conditions and so to create highly complex trigger conditions that will certainly suit your application’s needs.

For details on the card’s trigger engine and the usage of the OR/AND trigger masks please refer to the relating section of this manual.

As an option it is also possible to synchronize multiple host systems each containing one Star-Hub module. These system slaves then will simply
listen on the trigger line from the system master and distribute it to the connected cards. As this multi-system synchronization comes with some
limits on certain settings and also needs some special attention on synchronizing the application software as well, it is therefore described in
a separate section later in this manual.
120 generatorNETBOX DN2.60x Manual

Option Star-Hub Software Interface
Star-Hub clock engine
One of the cards can be the clock master for the complete
system. This can be any card of the system even one card
that does not contain the Star-Hub. As shown in the drawing
on the right the clock master can use any of its clock sources
to be broadcasted to all other cards.

All cards including the clock master itself receive the distrib-
uted clock with equal phase information. This makes sure
that there is no phase delay between the cards running with
the same speed.

Each slave card can use an additional divider on the re-
ceived Star-Hub clock. This allows to synchronize fast and
slow cards in one system.

Software Interface
The software interface is similar to the card software interface that is explained earlier in this manual. The same functions and some of the
registers are used with the Star-Hub. The Star-Hub is accessed using its own handle which has some extra commands for synchronization
setup. All card functions are programmed directly on card as before. There are only a few commands that need to be programmed directly
to the Star-Hub for synchronization.

The software interface as well as the hardware supports multiple Star-Hubs in one system. Each set of cards connected by a Star-Hub then
runs totally independent. It is also possible to mix cards that are connected with the Star-Hub with other cards that run independent in one
system.

Star-Hub Initialization
The interconnection between the Star-Hubs is probed at driver load time and does not need to be programmed separately. Instead the cards
can be accessed using a logical index. This card index is only based on the ordering of the cards in the system and is not influenced by the
current cabling. It is even possible to change the cable connections between two system starts without changing the logical card order that
is used for Star-Hub programming.

The Star-Hub initialization must be done AFTER initialization of all cards in the system. Otherwise the inter-
connection won’t be received properly.

The Star-Hubs are accessed using a special device name „sync“ followed by the index of the star-hub to access. The Star-Hub is handled
completely like a physical card allowing all functions based on the handle like the card itself.

Example with 4 cards and one Star-Hub (no error checking to keep example simple)

Example for a digitizerNETBOX with two internal digitizer/generator modules, This example is also suitable for accessing a remote server

drv_handle hSync;
drv_handle hCard[4];

for (i = 0; i < 4; i++)
 {
 sprintf (s, "/dev/spcm%d", i);
 hCard[i] = spcm_hOpen (s);
 }
hSync = spcm_hOpen ("sync0");

...

spcm_vClose (hSync);
for (i = 0; i < 4; i++)
 spcm_vClose (hCard[i]);
(c) Spectrum GmbH 121

Software Interface Option Star-Hub
with two cards installed:

When opening the Star-Hub the cable interconnection is checked. The Star-Hub may return an error if it sees internal cabling problems or if
the connection between Star-Hub and the card that holds the Star-Hub is broken. It can’t identify broken connections between Star-Hub and
other cards as it doesn’t know that there has to be a connection.

The synchronization setup is done using bit masks where one bit stands for one recognized card. All cards that are connected with a Star-
Hub are internally numbered beginning with 0. The number of connected cards as well as the connections of the star-hub can be read out
after initialization. For each card that is connected to the star-hub one can read the index of that card:

In standard systems where all cards are connected to one star-hub reading the star-hub logical index will simply return the index of the card
again. This results in bit 0 of star-hub mask being 1 when doing the setup for card 0, bit 1 in star-hub mask being 1 when setting up card 1
and so on. On such systems it is sufficient to read out the SPC_SYNC_READ_SYNCCOUNT register to check whether the star-hub has found
the expected number of cards to be connected.

In case of 4 cards in one system and all are connected with the star-hub this program excerpt will return:

Let’s see a more complex example with two Star-Hubs and one independent card in one system. Star-Hub A connects card 2, card 4 and
card 5. Star-Hub B connects card 0 and card 3. Card 1 is running completely independent and is not synchronized at all:

drv_handle hSync;
drv_handle hCard[2];

for (i = 0; i < 2; i++)
 {
 sprintf (s, "TCPIP::192.168.169.14::INST%d::INSTR", i);
 hCard[i] = spcm_hOpen (s);
 }
hSync = spcm_hOpen ("sync0");

...

spcm_vClose (hSync);
for (i = 0; i < 2; i++)
 spcm_vClose (hCard[i]);

Register Value Direction Description

SPC_SYNC_READ_NUMCONNECTORS 48991 read Number of connectors that the Star-Hub offers at max. (available with driver V5.6 or newer)

SPC_SYNC_READ_SYNCCOUNT 48990 read Number of cards that are connected to this Star-Hub

SPC_SYNC_READ_CARDIDX0 49000 read Index of card that is connected to star-hub logical index 0 (mask 0x0001)

SPC_SYNC_READ_CARDIDX1 49001 read Index of card that is connected to star-hub logical index 1 (mask 0x0002)

... read ...

SPC_SYNC_READ_CARDIDX7 49007 read Index of card that is connected to star-hub logical index 7 (mask 0x0080)

SPC_SYNC_READ_CARDIDX8 49008 read M2i only: Index of card that is connected to star-hub logical index 8 (mask 0x0100)

... read ...

SPC_SYNC_READ_CARDIDX15 49015 read M2i only: Index of card that is connected to star-hub logical index 15 (mask 0x8000)

SPC_SYNC_READ_CABLECON0 read Returns the index of the cable connection that is used for the logical connection 0. The cable connec-
tions can be seen printed on the PCB of the star-hub. Use these cable connection information in case
that there are hardware failures with the star-hub cabeling.

... 49100 read ...

SPC_SYNC_READ_CABLECON15 49115 read Returns the index of the cable connection that is used for the logical connection 15.

spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);
for (i = 0; i < lSyncCount; i++)
 {
 spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ_CARDIDX0 + i, &lCardIdx);
 printf ("star-hub logical index %d is connected with card %d\n“, i, lCardIdx);
 }

star-hub logical index 0 is connected with card 0
star-hub logical index 1 is connected with card 1
star-hub logical index 2 is connected with card 2
star-hub logical index 3 is connected with card 3

card Star-Hub connection card handle star-hub handle card index in star-hub mask for this card in
star-hub

card 0 - /dev/spcm0 0 (of star-hub B) 0x0001
card 1 - /dev/spcm1 -
card 2 star-hub A /dev/spcm2 sync0 0 (of star-hub A) 0x0001
card 3 star-hub B /dev/spcm3 sync1 1 (of star-hub B) 0x0002
card 4 - /dev/spcm4 1 (of star-hub A) 0x0002
card 5 - /dev/spcm5 2 (of star-hub A) 0x0004
122 generatorNETBOX DN2.60x Manual

Option Star-Hub Software Interface
Now the program has to check both star-hubs:

In case of the above mentioned cabling this program excerpt will return:

For the following examples we will assume that 4 cards in one system are all connected to one star-hub to keep things easier.

Setup of Synchronization and Clock
The synchronization setup only requires two additional registers to enable the cards that are synchronized in the next run and to select a clock
master for the next run.

The enable mask is based on the logical index explained above. It is possible to just select a couple of cards for the synchronization. All other
cards then will run independently. Please be sure to always enable the card on which the star-hub is located as this one is a must for the
synchronization.

One of the enabled cards must be selected to be the clock master for the complete system. If you intend to run cards with different clock
speeds the clock master must have the highest clock as all other cards will derive their clock by dividing the master clock. The locally selected
clock source from the clock master is routed throughout the complete synchronized system.

When using external clock please be sure that the external clock stays within all limits of all synchronized
cards. Please take special care regarding the minimum and maximum frequencies as offending these may
damage components on the cards!

In our example we synchronize all four cards and select card number 2 to be the clock master:

When running the slave cards with a divided clock it is simply necessary to write the desired sampling rate to this card. The synchronization
will automatically calculate the matching divider and set up all details internally:

for (j = 0; j < lStarhubCount; j++)
 {
 spcm_dwGetParam_i32 (hSync[j], SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);
 for (i = 0; i < lSyncCount; i++)
 {
 spcm_dwGetParam_i32 (hSync[j], SPC_SYNC_READ_CARDIDX0 + i, &lCardIdx);
 printf ("star-hub %c logical index %d is connected with card %d\n“, (!j ? ’A’ : ’B’), i, lCardIdx);
 }
 printf ("\n");
 }

star-hub A logical index 0 is connected with card 2
star-hub A logical index 1 is connected with card 4
star-hub A logical index 2 is connected with card 5

star-hub B logical index 0 is connected with card 0
star-hub B logical index 1 is connected with card 3

Register Value Direction Description

SPC_SYNC_ENABLEMASK 49200 read/write Mask of all cards that are enabled for the synchronization

Register Value Direction Description

SPC_SYNC_CLKMASK 49220 read/write Mask of the card that is the clock master, only one bit is allowed to be set

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x000F); // all 4 cards are masked
spcm_dwSetParam_i32 (hSync, SPC_SYNC_CLKMASK, 0x0004); // card 2 is selected as clock master

// set the clock master to 1 MS/s internal clock
spcm_dwSetParam_i32 (hCard[2], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[2], SPC_SAMPLERATE, MEGA(1));

// set all the slaves to run synchronously with 1 MS/s
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[3], SPC_SAMPLERATE, MEGA(1));

// set the clock master to 1 MS/s internal clock
spcm_dwSetParam_i32 (hCard[2], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[2], SPC_SAMPLERATE, MEGA(1));

// set all the slaves to run with 100 kS/s only
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLERATE, KILO(100));
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLERATE, KILO(100));
spcm_dwSetParam_i32 (hCard[3], SPC_SAMPLERATE, KILO(100));
(c) Spectrum GmbH 123

Software Interface Option Star-Hub
The slaves can only run with a sampling rate divided from the master clock using a divider up to 8190 in
steps of two. Values that are not matching will be calculated to the nearest matching value on start of the
synchronization.

Setup of Trigger
Setting up the trigger does not need any further steps of synchronization setup. Simply all trigger settings of all cards that have been enabled
for synchronization are connected together. All trigger sources and all trigger modes can be used on synchronization as well.

Having positive edge of external trigger on card 0 to be the trigger source for the complete system needs the following setup:

Assuming that the 4 cards are analog data acquisition cards with 4 channels each we can simply setup a synchronous system with all channels
of all cards being trigger source. The following setup will show how to set up all trigger events of all channels to be OR connected. If any of
the channels will now have a signal above the programmed trigger level the complete system will do an acquisition:

Trigger Delay on synchronized cards

Please note that the trigger delay setting is not used when synchronizing cards. If you need a trigger delay
on synchronized systems it is necessary to program posttrigger, segmentsize and memsize to fulfill this task.

Run the synchronized cards
Running of the cards is very simple. The star-hub acts as one big card containing all synchronized cards. All card commands have to be
omitted directly to the star-hub which will check the setup, do the synchronization and distribute the commands in the correct order to all
synchronized cards. The same card commands can be used that are also possible for single cards:

All other commands and settings need to be send directly to the card that it refers to.

spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

spcm_dwSetParam_i32 (hCard[1], SPC_TRIG_ORMASK, SPC_TM_NONE);
spcm_dwSetParam_i32 (hCard[2], SPC_TRIG_ORMASK, SPC_TM_NONE);
spcm_dwSetParam_i32 (hCard[3], SPC_TRIG_ORMASK, SPC_TM_NONE);

for (i = 0; i < lSyncCount; i++)
 {
 int32 lAllChannels = (SPC_TMASK0_CH0 | SPC_TMASK0_CH1 | SPC_TMASK_CH2 | SPC_TMASK_CH3);
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH_ORMASK0, lAllChannels);
 for (j = 0; j < 2; j++)
 {

 // set all channels to trigger on positive edge crossing trigger level 100
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH0_MODE + j, SPC_TM_POS);
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH0_LEVEL0 + j, 100);
 }
 }

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the settings can be
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.
124 generatorNETBOX DN2.60x Manual

Option Star-Hub Software Interface
This example shows the complete setup and synchronization start for our four cards:

Using one of the wait commands for the Star-Hub will return as soon as the card holding the Star-Hub has
reached this state. However when synchronizing cards with different sampling rates or different memory siz-
es there may be other cards that still haven’t reached this level.

Error Handling
The Star-Hub error handling is similar to the card error handling and uses the function spcm_dwGetErrorInfo_i32. Please see the example in
the card error handling chapter to see how the error handling is done.

Excluding cards from trigger synchronization
When synchronizing cards with the Star-Hub option it is possible and most likely to synchronize clock and trigger. For some applications it
can be useful to synchronize the sampling clock only for one or multiple cards. This can be useful, when acquisition cards are synchronized
together with one or multiple generation cards. When these cards are used to feed a DUT (device under test) with signals and the result/re-
action is to be recorded, it is often necessary that the generation is in progress before the acquisition can begin.

For such applications it is possible to exclude one or multiple of the synchronized cards from receiving the Star-Hub trigger:

The following example shows, how to exclude certain cards from receiving the synchronization trigger:

By default all cards that are enabled for synchronization are set to take part in clock and trigger synchronization.

SH-Direct: using the Star-Hub clock directly without synchronization
Starting with driver version 1.26 build 1754 it is possible to use the clock from the Star-Hub just like an external clock and running one or
more cards totally independent of the synchronized card. The mode is by example useful if one has one or more output cards that run con-
tinuously in a loop and are synchronized with Star-Hub and in addition to this one or more acquisition cards should make multiple acquisitions
but using the same clock.

For all M2i cards is is also possible to run the „slave“ cards with a divided clock. Therefore please program a desired divided sampling rate
in the SPC_SAMPLERATE register (example: running the Star-Hub card with 10 MS/s and the independent cards with 1 MS/s). The sampling
rate is automatically adjusted by the driver to the next matching value.

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x000F); // all 4 cards are masked
spcm_dwSetParam_i32 (hSync, SPC_SYNC_CLKMASK, 0x0004); // card 2 is selected as clock master

// to keep it easy we set all card to the same clock and disable trigger
for (i = 0; i < 4; i++)
 {
 spcm_dwSetParam_i32 (hCard[i], SPC_CLOCKMODE, SPC_CM_INTPLL);
 spcm_dwSetParam_i32 (hCard[i], SPC_SAMPLERATE, MEGA(1));
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_ORMASK, SPC_TM_NONE);
 }

// card 0 is trigger master and waits for external positive edge
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

// start the cards and wait for them a maximum of 1 second to be ready
spcm_dwSetParam_i32 (hSync, SPC_TIMEOUT, 1000);
spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);
if (spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_WAITREADY) == ERR_TIMEOUT)
 printf ("Timeout occured - no trigger received within time\n")

Register Value Direction Description

SPC_SYNC_NOTRIGSYNCMASK 49210 read/write Bitmask that defines which of the connected cards is using its own trigger engine as trigger source
instead of using the synchronization trigger. If set to 1, a card only uses the synchronization clock,
when set to 0 the card uses also the synchronization trigger. By default this mask is set to 0 for all
cards.

spcm_dwSetParam_i32 (hSync, SPC_SYNC_NOTRIGSYNCMASK, 0x00000005); // Exclude cards 0 and 2 from sync trigger
(c) Spectrum GmbH 125

Software Interface Option Star-Hub
What is necessary?
• All cards need to be connected to the Star-Hub
• The card(s) that should run independently can not hold the Star-Hub
• The card(s) with the Star-Hub must be setup to synchronization even if it’s only one card
• The synchronized card(s) have to be started prior to the card(s) that run with the direct Star-Hub clock

Setup
At first all cards that should run synchronized with the Star-Hub are set-up exactly as explained before. The card(s) that should run indepen-
dently and use the Star-Hub clock need to use the following clock mode:

When using SH_Direct mode, the register call to SPC_CLOCKMODE enabling this mode must be written before
initiating a card start command to any of the connected cards. Also it is not allowed to be modified later in
the programming sequence to prevent the driver from calculating wrong sample rates.

Example
In this example we have one generator card with the Star-Hub mounted running in a continuous loop and one acquisition card running inde-
pendently using the SH-Direct clock.

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_SHDIRECT 128 Uses the clock from the Star-Hub as if this was an external clock

// setup of the generator card
spcm_dwSetParam_i32 (hCard[0], SPC_CARDMODE, SPC_REP_STD_SINGLE);
spcm_dwSetParam_i32 (hCard[0], SPC_LOOPS, 0); // infinite data replay
spcm_dwSetParam_i32 (hCard[0], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TM_SOFTWARE);

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x0001); // card 0 is the generator card
spcm_dwSetParam_i32 (hSync, SPC_SYNC_CLKMASK, 0x0001); // only for M2i/M3i cards: set ClkMask

// Setup of the acquisition card (waiting for external trigger)
spcm_dwSetParam_i32 (hCard[1], SPC_CARDMODE, SPC_REC_STD_SINGLE);
spcm_dwSetParam_i32 (hCard[1], SPC_CLOCKMODE, SPC_CM_SHDIRECT);
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[1], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[1], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

// now start the generator card (sync!) first and then the acquisition card
spcm_dwSetParam_i32 (hSync, SPC_TIMEOUT, 1000);
spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);

// start first acquisition
spcm_dwSetParam_i32 (hCard[1], SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

// process data

// start next acquistion
spcm_dwSetParam_i32 (hCard[1], SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

// process data
126 generatorNETBOX DN2.60x Manual

Option Embedded Server Acessing the Embedded Server
Option Embedded Server
The option turns the digitizerNETBOX/generatorNETBOX in a powerful PC that allows to run own pro-
grams on a small and remote data acquisition system. The digitizerNETBOX/generatorNETBOX is en-
hanced by more memory, a powerful CPU, a freely accessable internal SSD and a remote software
development access method.

The digitizerNETBOX/generatorNETBOX can either run connected to LAN or it can run totally indepen-
dent, storing/replaying data to/from the internal SSD. The original digitizerNETBOX/generatorNETBOX

remote instrument functionality is still 100% available. Running the embedded server option it is possible to pre-calculate results based on the
acquired data, pre-calculate generator data, store acquisitions locally and to transfer just the required data or results parts in a client-server
based software structure. A different example for the digitizerNETBOX embedded server is surveillance/logger application which can run
totally independent for days and send notification emails only over LAN or offloads stored data as soon as it’s connected again.

Access to the embedded server is done through a standard text based Linux shell based on the ssh secure shell.

Acessing the Embedded Server
Access to the Embedded Server is only available if that particular option is installed. As this option is a combination of hardware features
and software access a later update with that options needs some factory work. As long as no one uses the embedded server connection and
no programs are placed in the autostart folder, the digitizerNETBOX/generatorNETBOX will behave just like a standard digitizerNETBOX
or generatorNETBOX and can be used as a remote LXI device.

SSH Connection
The embedded server is accessed using a standard SSH (secure shell) connection. Please install a
SSH client on your working system and connect to the digitizerNETBOX/generatorNETBOX IP ad-
dress (found in the control center) using port 22. Any SSH compatible client will do the job.

An example for a Windows based SSH client is PuTTY which shown on the right.

You may enter the login parameters here also and save a session for faster access.

Login
Login is done using a separate user space with some restricted access to the system. A login as root
isn’t possible due to security and system stability reasons. Please use the following default user set-
tings:

After first login you should immediately change the password to a personal one using the command „passwd“. Please keep in mind that it is
possible to reset the password using the web interface of the digitizerNETBOX/generatorNETBOX. To fully secure access to the
digitizerNETBOX/generatorNETBOX it is necessary to give a password to the web interface setup.

Mounting network folders
Network folders can be mounted and unmounted using the standard Linux mount/unmount command. Please note that you need root rights
to do a mounting/unmounting of a network folder. You get root rights for this command by using the „sudo“ command which gives you root
rights for some dedicated commands.

Mounting a test folder from a Windows server with active directory may look like this:

You may unmount the folder again with:

Access to the /etc/fstab table is not available.

Access to NTP (Network Time Protocol)
You access NTP with (requires firmware version V34 or newer):

Username embedded
Password embedded

cd
mkdir tmp
sudo mount -t cifs //192.168.169.123/tmp tmp -o user=YourUsername,domain=YourDomain,password=YourPassword

sudo umount tmp

sudo /usr/sbin/sntp -s de.pool.ntp.org
(c) Spectrum GmbH 127

Programming Option Embedded Server
Editors
As a default there are two standard editors installed on the system:

• GNU nano
• vim

Installing packages
Any matching RPM modules can be installed to the system using root rights and the rpm packet manager:

Programming
For general information on programming of the internal Spectrum cards please have a look through the complete manual. Programming the
cards inside the Embedded Server is 100% similar to programming of the cards of any other host system.

Accessing the cards
Depending on the type of digitizerNETBOX/generatorNETBOX that you have there might be one or two cards installed in the system. If two
cards are installed then there is also a Star-Hub installed. Please refer to the chapter „Introduction - Internal Digitizer Modules“ or „Introduction
- Internal Generator Modules“ respectively to see how many digitizers are installed in your digitizerNETBOX/generatorNETBOX and whether
a starhub is present or not.

As an example, for a DN2.491-16 you will find the information that you have 2 cards M2i.4912-exp and one Star-Hub installed. Accessing
these components is done with the following handles:

Examples
The home folder „examples-cpp“ contains all Linux based examples that are currently available. Please use and modify these examples for
your own programs as you like.

The sub-folder „netbox_embedded_server“ contains some additional examples for using the embedded server features. The following exam-
ples are available:

Client/Server
A simple example showing the communication over TCP/IP between the digitizerNETBOX/generatorNETBOX (server) and the host PC (cli-
ent). The server is running an acquisition in FIFO Multiple Recording mode and calculates minimum and maximum value from every block.
These results are then sent to the client program for further processing. In our example the results are simply printed to console.

Please change the TCP/IP settings inside the client program to your local settings to get it running.

simple_rec_fifo_mail
This example will run a FIFO multi acquisition and send a mail for each acquired segment as a SBench6 - compatible binary file and text
header for that file. The example can easily be modified and used as a base for a monitoring application.

Please be sure to change the email settings to a server and port settings that is available on your system.

Please keep in mind that a high trigger frequency will flood your mailserver with emails which might trigger some spam detection mechanisms.
You should therefore use this example only with single trigger events.

dbus
This is an example on how to connect to the digitizerNETBOX/generatorNETBOX internal signals (currently only LAN state).

Autostart
All executable files in the autostart folder will automatically be executed on system start-up. Please place any program in here that should run
automatically after powering the system. It is requested to use the „fork()“ command to continue a program or a service in the background if
multiple commands should be running.

The autoastart feature can be turned off using the web interface in case that some failing program prevents the machine from starting.

sudo rpm -ihv mypackage.rpm

1st card: „/dev/spcm0“
2nd card: „/dev/spcm1“
Star-Hub: „sync0“
128 generatorNETBOX DN2.60x Manual

Option Embedded Server Programming
LEDs
The digitizerNETBOX/generatorNETBOX LEDs can be accessed using the special system command „netbox_led_client“. Calling this system
command from inside a C++ program is shown in the client-server example.

The following commands will manipulate the Arm/Trig and Connected LEDs on the frontplate:

system ("netbox_led_client armgreen=1");
system ("netbox_led_client armgreen=0");
system ("netbox_led_client conngreen=1");
system ("netbox_led_client conngreen=0");
(c) Spectrum GmbH 129

Error Codes Appendix
Appendix

Error Codes
The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and
change the settings to run the program.

error name value (hex) value (dec.) error description
ERR_OK 0h 0 Execution OK, no error.
ERR_INIT 1h 1 An error occurred when initializing the given card. Either the card has already been opened by another process or an

hardware error occurred.
ERR_TYP 3h 3 Initialization only: The type of board is unknown. This is a critical error. Please check whether the board is correctly

plugged in the slot and whether you have the latest driver version.
ERR_FNCNOTSUPPORTED 4h 4 This function is not supported by the hardware version.
ERR_BRDREMAP 5h 5 The board index re map table in the registry is wrong. Either delete this table or check it carefully for double values.
ERR_KERNELVERSION 6h 6 The version of the kernel driver is not matching the version of the DLL. Please do a complete re-installation of the hard-

ware driver. This error normally only occurs if someone copies the driver library and the kernel driver manually.
ERR_HWDRVVERSION 7h 7 The hardware needs a newer driver version to run properly. Please install the driver that was delivered together with

the card.
ERR_ADRRANGE 8h 8 One of the address ranges is disabled (fatal error), can only occur under Linux.
ERR_INVALIDHANDLE 9h 9 The used handle is not valid.
ERR_BOARDNOTFOUND Ah 10 A card with the given name has not been found.
ERR_BOARDINUSE Bh 11 A card with given name is already in use by another application.
ERR_EXPHW64BITADR Ch 12 Express hardware version not able to handle 64 bit addressing -> update needed.
ERR_FWVERSION Dh 13 Firmware versions of synchronized cards or for this driver do not match -> update needed.
ERR_SYNCPROTOCOL Eh 14 Synchronization protocol versions of synchronized cards do not match -> update needed
ERR_LASTERR 10h 16 Old error waiting to be read. Please read the full error information before proceeding. The driver is locked until the

error information has been read.
ERR_BOARDINUSE 11h 17 Board is already used by another application. It is not possible to use one hardware from two different programs at the

same time.
ERR_ABORT 20h 32 Abort of wait function. This return value just tells that the function has been aborted from another thread. The driver

library is not locked if this error occurs.
ERR_BOARDLOCKED 30h 48 The card is already in access and therefore locked by another process. It is not possible to access one card through

multiple processes. Only one process can access a specific card at the time.
ERR_DEVICE_MAPPING 32h 50 The device is mapped to an invalid device. The device mapping can be accessed via the Control Center.
ERR_NETWORKSETUP 40h 64 The network setup of a digitizerNETBOX has failed.
ERR_NETWORKTRANSFER 41h 65 The network data transfer from/to a digitizerNETBOX has failed.
ERR_FWPOWERCYCLE 42h 66 Power cycle (PC off/on) is needed to update the card's firmware (a simple OS reboot is not sufficient !)
ERR_NETWORKTIMEOUT 43h 67 A network timeout has occurred.
ERR_BUFFERSIZE 44h 68 The buffer size is not sufficient (too small).
ERR_RESTRICTEDACCESS 45h 69 The access to the card has been intentionally restricted.
ERR_INVALIDPARAM 46h 70 An invalid parameter has been used for a certain function.
ERR_TEMPERATURE 47h 71 The temperature of at least one of the card’s sensors measures a temperature, that is too high for the hardware.

ERR_REG 100h 256 The register is not valid for this type of board.
ERR_VALUE 101h 257 The value for this register is not in a valid range. The allowed values and ranges are listed in the board specific docu-

mentation.
ERR_FEATURE 102h 258 Feature (option) is not installed on this board. It’s not possible to access this feature if it’s not installed.
ERR_SEQUENCE 103h 259 Command sequence is not allowed. Please check the manual carefully to see which command sequences are possible.
ERR_READABORT 104h 260 Data read is not allowed after aborting the data acquisition.
ERR_NOACCESS 105h 261 Access to this register is denied. This register is not accessible for users.
ERR_TIMEOUT 107h 263 A timeout occurred while waiting for an interrupt. This error does not lock the driver.
ERR_CALLTYPE 108h 264 The access to the register is only allowed with one 64 bit access but not with the multiplexed 32 bit (high and low dou-

ble word) version.
ERR_EXCEEDSINT32 109h 265 The return value is int32 but the software register exceeds the 32 bit integer range. Use double int32 or int64 accesses

instead, to get correct return values.
ERR_NOWRITEALLOWED 10Ah 266 The register that should be written is a read-only register. No write accesses are allowed.
ERR_SETUP 10Bh 267 The programmed setup for the card is not valid. The error register will show you which setting generates the error mes-

sage. This error is returned if the card is started or the setup is written.
ERR_CLOCKNOTLOCKED 10Ch 268 Synchronization to external clock failed: no signal connected or signal not stable. Please check external clock or try to

use a different sampling clock to make the PLL locking easier.
ERR_MEMINIT 10Dh 269 On-board memory initialization error. Power cycle the PC and try another PCIe slot (if possible). In case that the error

persists, please contact Spectrum support for further assistance.
ERR_POWERSUPPLY 10Eh 270 On-board power supply error. Power cycle the PC and try another PCIe slot (if possible). In case that the error persists,

please contact Spectrum support for further assistance.
ERR_ADCCOMMUNICATION 10Fh 271 Communication with ADC failed.P ower cycle the PC and try another PCIe slot (if possible). In case that the error per-

sists, please contact Spectrum support for further assistance.
ERR_CHANNEL 110h 272 The channel number may not be accessed on the board: Either it is not a valid channel number or the channel is not

accessible due to the current setup (e.g. Only channel 0 is accessible in interlace mode)
ERR_NOTIFYSIZE 111h 273 The notify size of the last spcm_dwDefTransfer call is not valid. The notify size must be a multiple of the page size of

4096. For data transfer it may also be a fraction of 4k in the range of 16, 32, 64, 128, 256, 512, 1k or 2k. For ABA
and timestamp the notify size can be 2k as a minimum.

ERR_RUNNING 120h 288 The board is still running, this function is not available now or this register is not accessible now.
ERR_ADJUST 130h 304 Automatic card calibration has reported an error. Please check the card inputs.
ERR_PRETRIGGERLEN 140h 320 The calculated pretrigger size (resulting from the user defined posttrigger values) exceeds the allowed limit.
ERR_DIRMISMATCH 141h 321 The direction of card and memory transfer mismatch. In normal operation mode it is not possible to transfer data from

PC memory to card if the card is an acquisition card nor it is possible to transfer data from card to PC memory if the
card is a generation card.

ERR_POSTEXCDSEGMENT 142h 322 The posttrigger value exceeds the programmed segment size in multiple recording/ABA mode. A delay of the multiple
recording segments is only possible by using the delay trigger!

ERR_SEGMENTINMEM 143h 323 Memsize is not a multiple of segment size when using Multiple Recording/Replay or ABA mode. The programmed seg-
ment size must match the programmed memory size.

ERR_MULTIPLEPW 144h 324 Multiple pulsewidth counters used but card only supports one at the time.
130 generatorNETBOX DN2.60x Manual

Appendix Error Codes

Spectrum Knowledge Base
You will also find additional help and information in our knowledge base available on our website:

https://spectrum-instrumentation.com/en/knowledge-base-overview

ERR_NOCHANNELPWOR 145h 325 The channel pulsewidth on this card can’t be used together with the OR conjunction. Please use the AND conjunction
of the channel trigger sources.

ERR_ANDORMASKOVRLAP 146h 326 Trigger AND mask and OR mask overlap in at least one channel. Each trigger source can only be used either in the
AND mask or in the OR mask, no source can be used for both.

ERR_ANDMASKEDGE 147h 327 One channel is activated for trigger detection in the AND mask but has been programmed to a trigger mode using an
edge trigger. The AND mask can only work with level trigger modes.

ERR_ORMASKLEVEL 148h 328 One channel is activated for trigger detection in the OR mask but has been programmed to a trigger mode using a
level trigger. The OR mask can only work together with edge trigger modes.

ERR_EDGEPERMOD 149h 329 This card is only capable to have one programmed trigger edge for each module that is installed. It is not possible to
mix different trigger edges on one module.

ERR_DOLEVELMINDIFF 14Ah 330 The minimum difference between low output level and high output level is not reached.
ERR_STARHUBENABLE 14Bh 331 The card holding the star-hub must be enabled when doing synchronization.
ERR_PATPWSMALLEDGE 14Ch 332 Combination of pattern with pulsewidth smaller and edge is not allowed.
ERR_PCICHECKSUM 203h 515 The check sum of the card information has failed. This could be a critical hardware failure. Restart the system and

check the connection of the card in the slot.
ERR_MEMALLOC 205h 517 Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.
ERR_EEPROMLOAD 206h 518 Timeout occurred while loading information from the on-board EEProm. This could be a critical hardware failure.

Please restart the system and check the PCI connector.
ERR_CARDNOSUPPORT 207h 519 The card that has been found in the system seems to be a valid Spectrum card of a type that is supported by the driver

but the driver did not find this special type internally. Please get the latest driver from
www.spectrum-instrumentation.com and install this one.

ERR_CONFIGACCESS 208h 520 Internal error occured during config writes or reads. Please contact Spectrum support for further assistance.
ERR_FIFOHWOVERRUN 301h 769 Hardware buffer overrun in FIFO mode. The complete on-board memory has been filled with data and data wasn’t

transferred fast enough to PC memory. If acquisition speed is smaller than the theoretical bus transfer speed please
check the application buffer and try to improve the handling of this one.

ERR_FIFOFINISHED 302h 770 FIFO transfer has been finished, programmed data length has been transferred completely.
ERR_TIMESTAMP_SYNC 310h 784 Synchronization to timestamp reference clock failed. Please check the connection and the signal levels of the reference

clock input.
ERR_STARHUB 320h 800 The auto routing function of the Star-Hub initialization has failed. Please check whether all cables are mounted cor-

rectly.
ERR_INTERNAL_ERROR FFFFh 65535 Internal hardware error detected. Please check for driver and firmware update of the card.

error name value (hex) value (dec.) error description
(c) Spectrum GmbH 131

132 generatorNETBOX DN2.60x Manual

Details on M2i cards clock and trigger I/O section

Details on M2i cards clock and trigger I/O section
The SMB clock and trigger I/O connectors of the M2i
cards from Spectrum are protected against over voltage
conditions.

For this purpose clamping diodes of the types 1N4148
are used. Both I/O lines are internally clamped to sig-
nal ground and to a specific clamping voltage named
Vt* for the trigger and Vc* for the clock line. So when
connecting sources with a higher level than the clamp-
ing voltage plus the forward voltage of typically
0.6..0.7 V will be the resulting maximum high-level lev-
el.

The maximum forward current limit for the used
1N4148 diodes is 100 mA.

When connecting a high performance clock or trigger
source with the card’s clock or trigger inputs, with logic
high levels above the clamping voltage please make
sure to not exceed the current limit of the clamping di-
odes.

This can most easily be ensured, when using the card’s
50 Ohm termination and a series resistor of 33 Ohm up
to 47 Ohm on the clock or trigger source.

To avoid floating levels with unconnected inputs, a pull
up resistor of 4.7 kOhm to 3,3V is used on each line.

The following table shows the values for the both clamp-
ing voltages Vt* and Vc*:

For details on how to read out the base hardware version from the driver or where to find that information on the cards type plate
please look up the relating sections in this manual.

Card series Base Hardware Version Vt* Vc* Trigger input 5.0 V tolerant Clock input 5.0 V tolerant

M2i.xxxx < V20 3.3 V 3.3 V no no
M2i.xxxx > V20 5.0 V 3.3 V yes no
M2i.xxxx-exp > V20 5.0 V 3.3 V yes no

	Introduction
	Preface
	General Information
	generatorNETBOX Overview
	Internal Generator Modules
	Differences between plain cards and generator modules inside the generatorNETBOX

	Different models of the DN2.60x series
	Additional options
	19“ Rack Mount Kit
	DC Power Supply

	AC Cable Options
	The Spectrum type plate
	Hardware information
	Block diagram of generatorNETBOX DN2
	Block diagram of generatorNETBOX module DN2.60x
	Technical Data
	Dynamic Parameters

	Order Information

	Hardware Installation
	Warnings
	ESD Precautions
	Opening the Chassis
	Cooling Precautions
	Sources of noise

	Installing 19“ rack mount option for DN2
	Installing 19“ rack mount option for DN6
	Setup of digitizerNETBOX/generatorNETBOX
	Connections
	Back Side DN2
	Front Panel DN2
	Front Panel DN6
	Ethernet Default Settings

	Detecting the digitizerNETBOX
	Discovery Function
	Finding the digitizerNETBOX/generatorNETBOX in the network
	Troubleshooting

	Software Driver Installation
	Needed Software for operating
	Location
	Linux
	Overview
	Standard Driver Installation
	Standard Driver Update
	Compilation of kernel driver sources (optional and local cards only)
	Update of a self compiled kernel driver
	Installing the library only without a kernel (for remote devices)
	Control Center

	Software
	Software Overview
	Card Control Center
	Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products
	Wake On LAN of digitizerNETBOX/generatorNETBOX
	Netbox Monitor
	Device identification
	Hardware information
	Firmware information
	Software License information
	Driver information
	Installing and removing Demo cards
	Feature upgrade
	Software License upgrade
	Performing card calibration
	Performing memory test
	Transfer speed test
	Debug logging for support cases
	Device mapping

	Accessing the hardware with SBench 6
	C/C++ Driver Interface
	Header files
	General Information on Windows 64 bit drivers
	Microsoft Visual C++ 6.0, 2005 and newer 32 Bit
	Microsoft Visual C++ 2005 and newer 64 Bit
	C++ Builder 32 Bit
	Linux Gnu C/C++ 32/64 Bit
	C++ for .NET
	Other Windows C/C++ compilers 32 Bit
	Other Windows C/C++ compilers 64 Bit

	Driver functions
	Delphi (Pascal) Programming Interface
	Driver interface
	Examples

	.NET programming languages
	Library
	Declaration
	Using C#
	Using Managed C++/CLI
	Using VB.NET
	Using J#

	Python Programming Interface and Examples
	Driver interface
	Examples

	Java Programming Interface and Examples
	Driver interface
	Examples

	LabVIEW driver and examples
	MATLAB driver and examples

	Integrated Webserver
	Home Screen
	LAN Configuration
	Status
	Security
	Documentation
	Firmware Update
	Power
	Downloads
	Logging
	Access
	Embedded Server
	Login/Logout

	IVI Driver
	About IVI
	General Concept of the Spectrum IVI driver
	Supported Spectrum Hardware
	Supported data acquisition card families:
	Supported digitizerNETBOX families
	Supported generatorNETBOX families

	IVI Compliance
	Supported Operating Systems
	Supported Standard Driver Features
	IVIScope Supported Class Capabilities
	IVIDigitizer Supported Class Capabilities
	IVIFGen Supported Class Capabilities

	Find more Information on IVI
	General Information on IVI
	IVI Getting Started Guides and Videos

	Installation
	Installer
	Shared Components
	Installation Procedure
	Installation of the IVI driver package

	Configuration Store
	General Information
	Repeated Capabilities

	Programming the Board
	Overview
	Register tables
	Programming examples
	Initialization
	Initialization of Remote Products
	Error handling
	Gathering information from the card
	Card type
	Hardware version
	Firmware versions
	Production date
	Last calibration date (analog cards only)
	Serial number
	Maximum possible sampling rate
	Installed memory
	Installed features and options
	Miscellaneous Card Information
	Function type of the card
	Used type of driver

	Reset
	digitizerNETBOX/generatorNETBOX specific registers

	Analog Outputs
	Channel Selection
	Important note on channel selection

	Setting up the outputs
	Output Amplifiers
	Output offset
	Maximum Output Range
	Output Filters
	Differential Output
	Double Out Mode
	Programming the behaviour in pauses and after replay
	Read out of output features

	Generation modes
	Overview
	Setup of the mode

	Commands
	Card Status
	Acquisition cards status overview
	Generation card status overview
	Data Transfer

	Standard Single Replay modes
	Card mode
	Memory setup
	Continuous marker output
	Example

	FIFO Single replay mode
	Card mode
	Length of FIFO mode
	Difference to standard single mode
	Example (FIFO replay)

	Limits of segment size, memory size
	Buffer handling
	Output latency
	Data organisation
	Sample format
	Hardware data conversion

	Clock generation
	Overview
	The different clock modes
	Clock Mode Register

	Internally generated sample rate
	Standard internal sampling clock (PLL)
	Using plain Quartz1 without PLL
	Using plain Quartz2 without PLL (optional)

	External reference clock
	External clocking
	Direct external clock
	External clock with divider

	Trigger modes and appendant registers
	General Description
	Trigger Engine Overview
	Trigger masks
	Trigger OR mask
	Trigger AND mask

	Software trigger
	Force- and Enable trigger
	Delay trigger
	External TTL trigger
	Edge and level triggers
	Pulsewidth triggers

	Mode Multiple Replay
	Trigger Modes
	Programming examples
	Replay modes
	Standard Mode
	FIFO Mode

	Limits of segment size, memory size
	Programming the behaviour in pauses and after replay

	Mode Gated Replay
	Generation Modes
	Standard Mode
	Examples of Standard Gated Replay with the use of SPC_LOOPS parameter
	FIFO Mode

	Limits of segment size, memory size
	Allowed trigger modes
	Edge and level triggers
	Pulsewidth triggers
	Programming examples
	Programming the behaviour in pauses and after replay

	Sequence Replay Mode
	Theory of operation
	Define segments in data memory
	Define steps in sequence memory

	Programming
	Gathering information
	Setting up the registers
	Changing sequences or step parameters during runtime
	Changing data patterns during runtime

	Synchronization
	Programming example

	Option Star-Hub
	Star-Hub introduction
	Star-Hub trigger engine
	Star-Hub clock engine

	Software Interface
	Star-Hub Initialization
	Setup of Synchronization and Clock
	Setup of Trigger
	Trigger Delay on synchronized cards
	Run the synchronized cards
	Error Handling
	Excluding cards from trigger synchronization
	SH-Direct: using the Star-Hub clock directly without synchronization

	Option Embedded Server
	Acessing the Embedded Server
	SSH Connection
	Login
	Mounting network folders
	Access to NTP (Network Time Protocol)
	Editors
	Installing packages

	Programming
	Accessing the cards
	Examples
	Autostart
	LEDs

	Appendix
	Error Codes
	Spectrum Knowledge Base

	Details on M2i cards clock and trigger I/O section

