Sie sind hier

Hydrogen fuel cell technology pushed by Spectrum digitizers | Spectrum

Hydrogen fuel cell research with virtuell and real world data
Hydrogen fuel cells will play an important role in cutting carbon emissions especially for mobile applications such as automotive and heavy duty trucks and buses. Having water vapor as the only emission, the fuel is hydrogen that is abundant and can be made using renewable energy. However, at present, this emerging technology is expensive. ZBT GmbH, the hydrogen and fuel cell center in Duisburg, Germany has an ongoing research project to improve the design of hydrogen fuel cells. Having created a computer model of a fuel cell, they are using 8-channel digitizers M2i.4652 from Spectrum Instrumentation to analyze the performance of different fuel cells on a test bench, providing real world data to improve the virtual cell model.
Two fuel cell test stations at the ZBT main laboratory

Dr.-Ing. Sönke Gössling, Group Leader for Fuel Cell Systems Simulations and Controls, explained: "The computer model of the fuel cell is very sophisticated such that we can adjust the many variables that affect its performance to see what changes provide performance enhancements. However, these are just theoretical, so the test bench enables us to see how changes in real world parameters affect performance. We quickly realised that the data capture of rate of every second was not providing us with the level of fine detail that we needed."

"We now use three Spectrum digitizers that dramatically improved our data rate capture to three mega-samples per second as well as having twenty simultaneous channels of data. This enables us to analyse the dynamic step changes as well as analyse superimposed high frequencies at an incredible level of detail. The synchronization of the cards with each other and the connection to the test bench environment were intuitive and free of complications. The performance and quality of the cards is first class and they have worked perfectly from day one."

The measurements make it possible to get an insight into the processes inside the fuel cell. They answer the question of how the processes are distributed with which dynamics within the fuel cell. This is of crucial importance, for example, to avoid local undersupply in dynamic operation or to optimize the operating conditions in a focused manner. If the computer model can be validated with the data, the reliability of the predictions of the model increases in general. As a result, development and optimization processes can increasingly be carried out virtually, which promises a major cost and time advantage. Dr.-Ing. Gössling said: "Validating predictions with real world results is a vital part of the scientific method and will really help us improving fuel cell design to meet our target of significantly reducing the costs of fuel cells, which will really open up adoption by becoming more economical and competitive."

The core of the developments is the correct dynamic mapping of all components along the cathode path of the fuel cell. On the basis of these models, a predictive control model has been developed that controls the interplay of the compressor, the throttles and also the fuel cell load. This is used to optimize the holistic operation of the fuel cell to increase the efficiency while maintaining the same service life.
By using model-based control methods with tailor-made dynamic models of the fuel cell, including peripherals, the advantages of the fuel cell are optimally exploited. On the one hand, the operating point of the fuel cell can be selected to be as energy-efficient as possible; on the other hand, an operating-parameter-dependent strategy of the fuel cell enables its operating range to be expanded and thus avoid undesirable shortening of the service life.

Read the full news story