Search

You are here

Astronomy Applications | Spectrum

Astronomy

Even though it is one of the oldest scientific disciplines astronomy remains at the cutting edge of technology and engineering. Once limited to the the observation of visible light, mostly in the night time sky, the 20th century saw the development of a host of new methods for exploring the cosmos. Using instrumentation sensitive to an ever expanding part of the electromagnetic spectrum scientists have been able to detect a host of previously unknown phenomena and look further into space than ever before. Radio telescopes were developed revealing the remnants of exploding stars while even higher energy instruments, like those using X-rays and gamma rays, made it possible to study the behavior of matter in extreme states, such as those found in pulsars and blazars.

Radio telescopes and interferometers typically capture and analyze millimeter wavelength molecular spectra using a spectrometer. Historically this was done using analog technology but recent developments have seen the use of high speed digitizers coupled with FFT based data analysis. For radio astronomy Spectrum digitizers with high sampling rates and wide bandwidth can offer advantages in dynamic range, frequency stability, size and cost.

In gamma ray astronomy scientists observe Cherenkov radiation that is produced when gamma rays are absorbed in the earth’s atmosphere. The Cherenkov radiation detected is fast, lasting only a few nanoseconds, and low level. As such fast and sensitive electronics is required to detect the phenomena. Typically banks of detectors are arranged in arrays so that the arrival times of each event can be be used determine the direction from which the gamma rays originated.

For radio and gamma ray astronomy Spectrum offers digitizers with a range of bandwidths, sampling rates, and dynamic range so that they can best match the requirements of the application. When large dynamic range and maximum sensitivity is needed high-resolution 14 and 16 bit digitizers are available for the capture and analysis of signals that go as high as 250 MHz in frequency. These high-resolution cards deliver outstanding signal-to-noise ratio's (up to 72 dB) and spurious free dynamic range (of up to 90 dB) so that low level signals can be detected and analyzed. For even higher frequencies 8 bit digitizers are available that offer up to 5 GS/s sampling rates and 1.5 GHz bandwidth.

Each digitizer card can have from one to four channels and up to eight cards can be linked together with Spectrum's StarHub system to create instruments with up to 32 fully synchronous channels. This makes them ideally suited to applications where multiple receivers or detectors are used. With  large on-board memories (up to 4 Gsamples/card) and advanced streaming and readout modes the digitizers are ideal for capturing long and complex signals. Streaming data over the cards fast PCIe bus to a RAID based storage array can even allow the capture and storage of hours of information. Spectrum's S Bench 6 software can also be used to view and qualify signals as well as perform FFT calculations for frequency domain analysis.

Spectrum Product Features

  • 14 and 16 Bit Resolution
  • Sampling rates up to 5 GS/s and Bandwidth over 1.5 GHz
  • Segmented Memory with FIFO Readout
  • Streaming data to RAID disc array at up to 3 GByte/s continuously
  • Star-Hub for creating systems with up to 32 fully synchronous channels

Matching Card Families

  • M4i.44xx: 14/16 Bit 500 MS/s to 130 MS/s digitizer
  • M4i.22xx: 8 Bit 1.25 GS/s to 5 GS/s digitizer
  • M2i.49xx: 16 Bit 10 MS/s to 60 MS/s digitizer

Related Documents

RF Measurements App NoteRF Measurements Using a Modular Digitizer

Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before. Although they are in the class of general purpose measuring instruments they are capable of many RF and lower microwave frequency measurements. This article focuses on some examples of common RF measurements that can be performed with these modular digitizers.

Signal Processing for DigitizersSignal Processing for Digitizers

Modular digitizers allow accurate, high resolution data acquisition that can be quickly transferred to a host computer. Signal processing functions, applied in the digitizer or in the host computer, permit the enhancement of the acquired data or the extraction of extremely useful information from a simple measurement.