
SPECTRUM INSTRUME
PHONE: +49 (0)4102-6956-0
M3i.xxxx LabVIEW Driver
Driver for all M3i cards

and related digitizerNETBOX products

Installation, Libraries,
Data sorting, Examples,

Standard mode, FIFO mode

English version November 22, 2019
NTATION GMBH · AHRENSFELDER WEG 13-17 · 22927 GROSSHANSDORF · GERMANY
· FAX: +49 (0)4102-6956-66 · E-MAIL: info@spec.de · INTERNET: www.spectrum-instrumentation.com

(c) SPECTRUM INSTRUMENTATION GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY

SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH.
Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows Server are trademarks/registered trademarks of Microsoft Corporation.
LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.
Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc.
Keysight VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc.
FlexPro is a registered trademark of Weisang GmbH & Co. KG.
PCIe, PCI Express, PCI-X and PCI-SIG are trademarks of PCI-SIG.
PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group.
PXI is a trademark of the PXI Systems Alliance.
LXI is a registered trademark of the LXI Consortium.
IVI is a registered trademark of the IVI Foundation
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation.
AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
NVIDIA, CUDA, GeForce, Quadro and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation.

(c) Spectrum GmbH 3

General Information .. 4
Installation... 4

LabVIEW Driver Installation.. 4
LabVIEW Driver Update .. 4

General Information ... 4
Demo mode... 4
Driver Structure .. 5
Not supported functions .. 5

Libraries .. 6
Library spcm_drv_interface.llb.. 6

Overview .. 6
Library Functions .. 6
Data transfer library functions .. 7

Library spcm_card.llb.. 10
Overview .. 10
Standard library functions.. 10
Commands .. 11
AI specific library functions .. 12
Example for setting up the AI input section... 14
Acquisition specific library functions.. 15
Synchronization specific library functions .. 16
Option BaseXIO specific library functions .. 17
Multi Purpose I/O specific library functions.. 17

Library spcm_tools.llb ... 19
Overview .. 19
Library Functions .. 19

Examples .. 20
Card Information (card_info.vi) .. 20
M3i 2 Channel Analog Scope (Scope_M3i.vi) ... 21

The User Interface... 21
Remarks on the example.. 21
The example diagram ... 22

M3i FIFO Acquisition Example (Stream_M3i.vi) ... 23
User Interface... 23
Remarks .. 23
Example diagram ... 23

Error Codes ... 24

Installation General Information
General Information
This driver is suitable for all cards of the M2i and M3i series as well as the related digitizerNETBOX and generatorNETBOX
products from Spectrum. The driver supports all LabVIEW versions starting with LabVIEW 2015. The Spectrum LabVIEW driver supports Win-
dows (32bit and 64bit) operating systems only, LabVIEW for Linux and LabVIEW RT are not supported. Please follow the install instructions
to have the drivers properly installed in your system.

These examples are not tailored to the newer generation M4i, M4x or M2p cards. For these newer families
please use the unified „spcm_xxxx“ LabVIEW examples.

Installation

LabVIEW Driver Installation
Please follow these steps when installing the LabVIEW driver:

• Install the card(s) into the system as shown in the hardware manual
• Install the standard Windows driver as shown in the hardware manual
• Install the LabVIEW driver as explained below

The LabVIEW driver is delivered as a self extracting archive. You’ll find the cur-
rent driver on the USB-Stick delivered with the card. Please follow the USB-Stick
menu to „Software Installation“ -> „Spectrum LabVIEW driver“ as shown on the
right side.

It is also possible to install the LabVIEW driver manually selecting the install file
with the Windows explorer. Please select the path:

<USB-Stick>:\Install\win\spcm_drv_labview_install.exe

and execute the installer file. The installer will guide you through the installation rou-
tine step by step.

At any time you can download the latest version from the Spectrum homepage
https://spectrum-instrumentation.com/en/downloads/drivers

Please store the downloaded installer *.exe file somewhere on your system and
start it from this location.

During the installation routine you will need to select which type of LabVIEW is in-
stalled on your computer (either a 32 bit or 64 bit version) and for what Spectrum
products you want the examples to be installed for.

The LabVIEW driver files are installed per default in the user directory within the „my documents“ folder as an extra directory:

• 32 bit LabVIEW: \Users\<WINDOWS_USERNAME>\Spectrum GmbH\SpcmLabVIEWDriver32
• 64 bit LabVIEW: \Users\<WINDOWS_USERNAME>\Spectrum GmbH\SpcmLabVIEWDriver64

When moving the files please make sure to move the complete directory with all sub-directories as the driver consists of several examples and
libraries that are used together with the examples.

Please note that the installer has been updated January 2013. Drivers released before this date needed a
separate installation license. Nowadays a separate license for the LabVIEW driver is no longer needed. You
can download and install the latest LabVIEW driver at any time from the Spectrum homepage.

LabVIEW Driver Update
As the LabVIEW driver also uses the standard Windows drivers as a base, any updates on these drivers will improve the system and any
changes are available under LabVIEW immediately. Updating the LabVIEW driver can simply be done by installation of the new LabVIEW
driver archive.

General Information

Demo mode
The LabVIEW driver runs fine with demo cards installed in your system. Please follow the steps in the hardware manual to see how you insert
a simulated demo card as a virtual card into your system. Please keep in mind that the generated data is only simulated. The simulation and
4 M3i.xxxx LabVIEW Driver

General Information General Information
calculation of demo data takes more time than just transferring data from hardware to the PC. Therefore the performance of the system is
worse when using demo cards.

Driver Structure
The driver itself consists of three LabVIEW libraries in either 32 bit
or 64 bit version (shown in blue) and one additional DLL
spcm_datasort_win32.dll or spcm_datasort_win64.dll (shown in
yellow). All hardware access is routed through the standard Win-
dows drivers and using the standard Windows kernel driver.

Access of the cards can be solely done by using the direct driver
interface spcm_drv_interface.llb but using the more comfortable
spcm_card.llb as shown in the examples is the much easier way.

The components of the Spectrum LabVIEW driver are:

spcm_win32.dll / spcm_win64.dll
This is the standard Windows driver as it is installed along with the
kernel driver when the new hardware is detected in the system for
the first time. The Windows driver can be updated from the Spec-
trum website at any time under www.spectrum-instrumentation.com.
This driver is used by all software that will access the cards.
The driver library is available as 32 bit version (spcm_win32.dll)
and 64 bit version (spcm_win64.dll).

spcm_datasort_win32.dll / spcm_datasort_win64.dll
This is a special helper DLL that is used by several Spectrum drivers for third-party products like LabVIEW or MATLAB. It handles the data
access and offers some additional functions to sort data and allows also to re-calculate RAW data samples to true voltage values. This library
also handles the FIFO mode and holds the application data buffer when FIFO mode is used. This DLL is also updated with the regular Windows
driver updates.

spcm_drv_interface.llb
This LabVIEW library implements the complete driver interface between LabVIEW and the DLL. It mainly handles the driver handle and the
error code and calls the different driver function inside the DLLs. The installer will automatically select the matching version for either 32 bit
or 64 bit systems.

spcm_card.llb
This is an additional LabVIEW library that uses the functions of the driver interface spcm_drv_interface.llb and groups functions that contain
together. The included VIs are more complex and offer an easy way to get started. All the spcm_card.llb VIs are explained in greater detail
later on. The VIs included in this library cover about 99% of the driver functionality. The installer will automatically select the matching version
for either 32 bit or 64 bit systems.

spcm_tools.llb
This library offers some simple helper functions to convert hardware details to readable strings like version or data conversion. Feel free to
use these tools or to implement your own ones.

Not supported functions
The spcm_card.llb library doesn’t cover some special modes of single cards. It can also be that some functionality is added to the standard
driver later on. As changing the VI interface would mean that none of the examples or customer applications would work any more after an
update these VI interfaces are not updated in the future. Any further or later added content can be directly accessed using the driver functions
that are located in the spcm_drv_interface.llb library.
(c) Spectrum GmbH 5

Library spcm_drv_interface.llb Libraries
Libraries

Library spcm_drv_interface.llb

Overview
All library functions get a cluster containing the driver handle and the current error code. The function is only executed if the error code is
zero. This allows easy error routing without the need to check for driver errors after each call. An example is shown below:

On the left one sees the open function generating the cluster that is routed
through all other driver calls until it stops in the close function.

In this example we open the driver, read out the card type (shown in the
digital indicator „Type“) and try to set the sampling rate from the digital
control „Samplerate“. The sampling rate register number is found in the
hardware manual, it is „20000“.

After these two function calls we check for the driver error and display the error message in the string indicator „Error“.

Library Functions
The following library functions are available inside the library

spcm_hOpen.vi
Calls the spcm_hOpen function of the driver. The open function tries to open the driver handle. It will return
a valid card information cluster containing the card handle and the error code. This card information cluster
is routed through all VIs of this library. The function can open real cards as well as demo cards with no
difference calls.

Card Device Name the device name to open. Under windows it can be any name finishing by a number giving the index of the card to
open.

Card Info Out the generated card information cluster. It contains the card handle and the error information. If the open function
succeeded the error information will be zero.

spcm_vClose.vi
Calls the spcm_vClose function of the driver. The close function closes the card handle allowing further use of this card
by other software. If the close function isn’t called the card will be locked preventing any other software from accessing
this card. The close function is automatically called when the DLL is unloaded. LabVIEW will unload the DLL when clos-
ing.

Card Info In a valid card information cluster containing a valid card handle

spcm_dwSetParam_i32.vi
Calls the spcm_dwSetParam_i32 function of the driver. The function will set a software register with a 32
bit integer value. Please use the spcm_dwSetParam_i64m function if the value of the software register ex-
ceeds the 32 bit integer range.

Card Info In a valid card information cluster containing a valid card handle

Register the value of the software register to write. Please have a look at the hardware
manual to see the valid software registers

Value (int32) the value to write to the software register limited to 32 bit integer

Card Info Out a copy of the card information cluster input containing an error code if the DLL function has returned with an error

spcm_dwSetParam_i64m.vi
Calls the spcm_dwSetParam_i64m function of the driver. The function will set a software register with
a 64 bit integer value. The value to write needs to be given in two 32 bit integer words.

Card Info In a valid card information cluster containing a valid card handle

Register the value of the software register to write. Please have a look at the hard-
ware manual to see the valid software registers

Value high (int32) the high 32 bit part of the 64 bit value to write to the software register. This
part contains the sign bit

Value low (uint32) the low 32 bit part of the 64 bit value to write. This part is unsigned.

Card Info Out a copy of the card information cluster input containing an error code if the DLL function has returned with an error
6 M3i.xxxx LabVIEW Driver

Libraries Library spcm_drv_interface.llb
spcm_dwSetParam_i64.vi
Calls the spcm_dwSetParam_i64 function of the driver. The function will set a software register with
a 64 bit integer value.

Card Info In a valid card information cluster containing a valid card handle

Register the value of the software register to write. Please have a look at the hard-
ware manual to see the valid software registers

Value (int64) the value to write to the software register as a 64 bit integer

Card Info Out a copy of the card information cluster input containing an error code if the DLL function has returned with an error

spcm_dwGetParam_i32.vi
Calls the spcm_dwGetParam_i32 function of the driver. The VI reads a software register with up to 32 bit
integer values. If the value exceeds the 32 bit integer range one is requested to use the
spcm_dwGetParam_i64m.vi. Using the 32 bit function with a value exceeding the range will result in an
error generated.

Card Info In a valid card information cluster containing a valid card handle

Register the value of the software register to read. Please have a look at the hardware manual to see the valid software reg-
isters

Card Info Out a copy of the card information cluster input containing an error code if the DLL function has returned with an error

Value (inbt32) the current value of the software register limited to 32 bit integer

spcm_dwGetParam_i64m.vi
Calls the spcm_dwGetParam_i64m function of the driver. The VI reads a software register with 64 bit
integer values. The value is split up in two parts and returned as two 32 bit integer values.

Card Info In a valid card information cluster containing a valid card handle

Register the value of the software register to read. Please have a look at the hardware
manual to see the valid software registers

Card Info Out a copy of the card information cluster input containing an error code if the DLL function has returned with an error

Value high (int32) the high 32 bit part of the 64 bit value that is read from the software register. This part contains the sign bit

Value low (uint32) the low 32 bit part of the 64 bit value that is read. This part is unsigned

spcm_dwGetParam_i64.vi
Calls the spcm_dwGetParam_i64 function of the driver. The VI reads a software register with 64 bit in-
teger values.

Card Info In a valid card information cluster containing a valid card handle

Register the value of the software register to read. Please have a look at the hardware
manual to see the valid software registers

Card Info Out a copy of the card information cluster input containing an error code if the DLL function has returned with an error

Value (int64) the current value of the software register as a 64 bit integer

spcm_dwGetErrorInfo.vi
Calls the spcm_dwGetErrorInfo function of the driver. The function checks for an error code and
reads out all error information and the error message if an error has occurred.

Card Info In a valid card information cluster containing a valid card handle

Card Info Out a copy of the card information cluster input containing an error code if the
DLL function has returned with an error

Error Message the error message from the driver. This error message will help to examine
which part of the setup was wrong

Error Code the error code from the driver. If no error occurred this value is zero

Error Register the register that generates the error. Please see the hardware manual for a cross reference list of the software regis-
ters

Error Value the value that was written when the error occurred.

Data transfer library functions
The following functions are used for data transfer and FIFO mode control. These functions are located inside the helper DLL
spcm_datasort_win32.dll.
(c) Spectrum GmbH 7

Library spcm_drv_interface.llb Libraries
dwSetupFIFOMode.vi
This VI handles the FIFO mode of the card and all transfers for timestamps and ABA data. Before
starting FIFO transfer one has to allocate a FIFO buffer calling this setup function with the allocate
flag set. After finishing the FIFO transfer a second call with the allocate flag cleared will delete the
FIFO buffer again. Data can be accessed with the functions explained further below.

Card Info In a valid card information cluster containing a valid card handle

Buffertype the type of FIFO buffer to allocate, a 0 stands for data, a 1 for timestamps
and a 2 for slow ABA data

Allocate allocates the FIFO buffer if true and deletes the FIFO buffer if false

Bufferlength (Bytes) the length of the FIFO buffer in bytes. Be sure to check the samples format to do the correct calculations on this value

Notify (Bytes) the notify length in bytes. Every time after this number of bytes have been transferred an interrupt is generated and
the user program is informed that new data is available. This value must be a multiple of 4k (4096). Please see the
hardware manual for further information on the notify size

Read the flag defines the direction of the following FIFO transfer

Card Info Out a copy of the card information cluster input containing an error code if the DLL function has returned with an error

dwDataRead_raw16.vi
This VI reads the data from the card in raw format for all cards that have 16 bit wide samples
(analog resolution > 8 bit) or digital cards with at least 16 digital channels. Using this function
is the fasted way to get data into LabVIEW. Data is unsorted and in no way converted. Please
check the hardware manual to see the data ordering in the RAW buffer.

This VI can be used with FIFO mode as well as with standard mode. In FIFO mode it will read
out the next free block of data, in standard mode it will read some data directly from the on-
board memory.

Card Info In a valid card information cluster containing a valid card handle

Channel Count the number of channels to be read. This value must match the number of channels that have been acquired!

Offset (Samples/Ch) the offset from where the reading should start (standard mode). Offset is given in samples per channel, not in bytes

Length (Samples/Ch) the length of the data to be read starting from offset (standard mode) or from the current buffer position (FIFO mode).
The length value is given in samples per channel and must not exceed the previously acquired data

Card Info Out a copy of the card information cluster input containing an error code if the dll function has returned with an error

RAW Data An array containing the raw and unsorted data as 16 bit integer values.

dwDataRead_raw8.vi
This VI does exactly the same as the above described but returning 8 bit wide raw data instead of 16 bit. Use this function for all analog
cards with 8 bit resolution and digital cards with 8 channels only activated.

dwDataRead_i16.vi
The DataRead function reads data, sorts them and returns up to 16 arrays of data (only 4 shown
in the picture on the right). Each array contains data of one analog channel or a bundle of 16
digital channels and can be directly used for display and further calculations.

Data is stored as 16 bit integer values independent of the original data format. For 8 bit cards
this means that memory storage space is doubled! Each 8 bit sample will be converted to 16 bit
integer value.

Card Info In a valid card information cluster containing a valid card handle

Channel Count the number of channels to be read. This number must be equal to the number of installed channels on the card. Chan-
nels that are not acquired due to a different channel enable mask will be left empty

Offset (Samples/Ch) the offset from where the reading should start (standard mode). Offset is given in samples per channel, not in bytes

Length (Samples/Ch) the length of the data to be read starting from offset (standard mode) or from the current buffer position (FIFO mode).
The length value is given in samples per channel and must not exceed the previously acquired data

Card Info Out a copy of the card information cluster input containing an error code if the dll function has returned with an error

Ch0, Ch1,... Ch15 arrays containing the sorted data for one channel
8 M3i.xxxx LabVIEW Driver

Libraries Library spcm_drv_interface.llb
dwDataRead_float.vi
The DataRead function reads data, sorts them, recalculates them to voltage and returns up to 16
arrays of data (only 4 shown in the picture on the right). Each array contains data of one analog
channel and can be directly used for display and further calculations.

Data is stored as float values with single precision. The sorting functions recalculates the raw in-
teger data to a true voltage level taking the programmed input range and also the programmed
offset into account.

Please keep in mind that single values have 4 bytes for each sample. Acquiring 4 channels of 8
bit data with 10 MSamples of memory per each channel would result in a PC memory usage of 4 channels * 10 MSamples * 4 bytes = 160
MBytes when using this sorting function.

Card Info In a valid card information cluster containing a valid card handle

Channel Count the number of channels to be read. This number must be equal to the number of installed channels on the card. Chan-
nels that are not acquired due to a different channel enable mask will be left empty

Offset (Samples/Ch) the offset from where the reading should start (standard mode). Offset is given in samples per channel, not in bytes

Length (Samples/Ch) the length of the data to be read starting from offset (standard mode) or from the current buffer position (FIFO mode).
The length value is given in samples per channel and must not exceed the previously acquired data

Card Info Out a copy of the card information cluster input containing an error code if the dll function has returned with an error

Ch0, Ch1,... Ch15 arrays containing the sorted data for one channel, data format is single precision float containing the real voltage
levels of the inputs

(c) Spectrum GmbH 9

Library spcm_card.llb
Library spcm_card.llb

Overview
The spcm_card.llb library is the main library for accessing the Spectrum cards. All VIs route the standard card infor-
mation shown on the right containing the card handle and the current error code. All VIs can simply be placed one
after the other as none of these VIs execute their function if an error code is set.

Standard library functions

init card.vi
This VI is the main entrance point for the card. It must be called first to get a valid card handle. The VI
tries to open the card that is given with the index and if successful it reads out some standard information
from the card shown below as the card information cluster.

Each card can only be opened by one software at the time. Multiple calls of this initialization function
with different index values will open multiple cards. Multiple calls with the same index value will result in an error as the card is opened and
locked with the first call.

This function can open real cards as well as demo cards.

Card Index the index of the card to open. All cards in the system are numbered beginning with a 0. Demo cards are handled
a little different. If virtual demo cards are installed by software the card index will be ignored and the first call of the
init function will return the first virtual demo card of the system

Card Info Out A filled card info cluster that is routed through all the other functions. If initialization failed the error code will show
an initialization error. The card info cluster is shown above in the overview

Card Information A filled card information cluster containing all details that are common for all cards

Card information cluster
The cluster contains all common information for Spectrums M2i/M3i/M4i/M4x/M2p cards, as well
as digitizerNETBOX and generatorNETBOX products. The information can be used to show card de-
tails in the software or to check the correct type or version.

Card Type the type of card found at that position. Card types are listed in the hardware
manual. You may use the translation function in the spcm_tools.llb library to
show a real name for the card type

Inst Mem (high + low) installed on-board memory in bytes, in the example the card has a memory of
64 MBytes installed

Serial Number serial number of the card. The serial number is an unique identifier

Function Type the card function type (like analog input, digital i/o), details can be found in
the hardware manual, in our example the card is an analog input card (1)

Installed Features shows all installed features on the card. The features are returned as a bit-
mask, each activated bit stands for one feature installed. In our example bit 4, 3, 1 and 0 are set meaning that
feature ABA mode, Timestamp, Gated Sampling and Multiple Recording is installed on the card. All feature codes
are explained in the hardware manual

Base card version the version of the base card split in major and minor version. Please use the translation function from spcm_tools.llb
to have a correct version display

Module version version of the used front-end module, same format as above

Extension version version of the extension module if one is installed, same format as above

Production date the production week of the card, the lower 16 bit contain the year, the upper 16 bit the week. Please use the trans-
lation function from spcm_tools.llb to have the date printed in correct format

Max Sampling Rate the maximum sampling rate of the card in hertz. In our example it is 50 MS/s (50000000 Hz). This is the absolute
maximum sampling rate that may not be available with all channel combinations!

Demo Card a simple flag indicating whether this is a virtual demo card or a real card (zero)

error check and message.vi
This VI is used to check the card info for an error and to display an error message if requested. To
keep programming simple the VI also gives an error flag that can be directly used for case struc-
tures

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with cleared error information

Display Message the flag selects whether the function should display an error message in case that an error occurred. As default this
flag is true
10 M3i.xxxx LabVIEW Driver

Library spcm_card.llb
Error Message the error message string that can be used for own error display routines. Can be ignored if the error message is
displayed by the VI itself

Error occurred A flag indicating the an error has been found, error code is not zero. Can be directly used to drive case structures

read card status.vi
The VI reads the current card status and returns some flags indicating the status. The flags can be directly
used to drive case structures or to end while loops.

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with the error output of this function

Pretrigger full acquistion cards only: the pretrigger area has been filled once, card is armed
now and can detect trigger events

Trigger detected a trigger event has been detected

Card ready the acquisition/generation of data has been finished

read data status.vi
The VI reads the current status of the data transfer. This function is used together with the FIFO mode
and controls the transfer and the current transfer status.

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with the error output of this function

Next block ready is true if a new block of data is ready. That means at least the programmed
number of bytes are ready that have been programmed with the
dwSetupFIFOMode call as notify size.

Available Bytes returns the number of bytes that are available for the user and for the copy function

Fillsize o/oo Gives the current fill size of the hardware FIFO in 1/1000

M3i setup clock
The VI programs the sampling clock and all clock related setup to the card. The clock settings are
available as a cluster that is explained next.

Card Info In a valid card info cluster containing driver handle and error information

Clock Settings contains all clock related settings as explained below. All these settings
are programmed to the card

Card Info Out a copy of the card info cluster with the error output of this function

Sampling Rate (Hz) contains the current programmed sampling rate that is read back from the driver. This sampling rate may differ from
the one that has been programmed before depending on the capabilities of the card and the clock fed as reference
clock.

M3i Clock settings cluster
The cluster contains the complete clock setup and is also used throughout our examples. Not all of the
settings are used for every clock mode. Please have a look at the hardware documentation to see details
about the clock mode and the different setups.

Mode (on top) selects one of the clock generating modes. The clock mode defines which of the
other settings are used and which are ignored. In our examples we use the
property nodes of this cluster and disable these settings depending on the currently selected clock mode.

Sampling rate (kHz) defines the sampling rate for all internal clock modes in kHz (kS/s) and also for the reference clock mode. The driver
sets the nearest matching sampling rate which can be read back using the current clock settings cluster described
below

Clock Output if enabled the clock connector outputs the currently used internal sampling clock. This output is only available if using
internal sampling clock generation

Reference Clock (kHz) defines the exact frequency of the reference clock that is fed into the external clock connector. This value is only used
if the reference clock mode is selected

Commands

cmd reset
Performs a hardware and software reset of the card

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with the error output of this function
(c) Spectrum GmbH 11

Library spcm_card.llb
cmd start
The card is started with the current setup that has to be programmed before using a valid combination
of the setup VIs.

Card Info In a valid card info cluster containing driver handle and error information

Enable Trigger defines whether the trigger engine should be enabled directly with the start
(default) or whether the trigger engine should be enabled with a separate enable trigger command

Card Info Out a copy of the card info cluster with the error output of this function

cmd en/dis trigger
Enables or disables the trigger engine. No trigger detection is done as long as the trigger engine is
disabled.

Card Info In a valid card info cluster containing driver handle and error information

Enable Trigger a true enables the trigger engine, a false disables it

Card Info Out a copy of the card info cluster with the error output of this function

cmd force
This VI sends a force trigger command that immediately triggers the card if it is waiting for a trigger
event

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with the error output of this function

cmd stop
This VI stops the current run, the card data acquisition or generation is aborted

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with the error output of this function

AI specific library functions
These VIs are used for analog input cards only. In general it is necessary to read out the AI features after initialization to allow the setup of
the analog input ranges according to these features.

M3i read AI details.vi
This VI reads out all analog input details from the card. These details are used throughout our
examples to setup the analog input clusters according to the specific card that is installed in
the system. The VI returns two complete sets of information, one for each input path.

Card Info In a valid card info cluster containing driver handle and error informa-
tion

Card Info Out a copy of the card info cluster with the error output of this function

AI Details Path 0 a cluster with complete details of the analog input path 0 as described below

AI Details Path 1 a cluster with complete details of the analog input path 1 as described below

M3i Cluster AI details
This cluster is returned by the „M3i read AI deatils.vi“ and contains all information on the analog inputs
for each path separately. All these details are read from the driver. The cluster is mainly used to keep the
examples and the programs universal as the analog inputs may differ from card to card in the number of
input ranges, the availability of certain features or the offset programming mode.

AI Channels the number of analog input channels (in this example 1 channel)

AI Path count the number of different input paths per channel

AI Ranges the number of ranges for each channel for this input path. This is normally fixed
for one card series but can differ if special options are ordered. The input ranges
are therefore stored in the on-board eeprom and read out with this value and the
array just following next in the description

Input Ranges (mV) an array containing all input ranges as mV values that are available on your card.
A 1000 as shown in the example means an input range of +/-1000 mV

Termination Available if true each analog input has a software programmable 50 ohm termination avail-
able

SE/Diff switchable if true each analog input can be changed from single-ended to differential by software command
12 M3i.xxxx LabVIEW Driver

Library spcm_card.llb
Offset in percent/mV if true the offset is programmed in mV absolute, if false the offset is programmed in percent of the input range

AC Coupling available if true the input can be programmed to be AC or DC coupled

BW Limit available if true the input has a software selectable bandwidth limit (anti aliasing filter)

Offset calibration if true the card has a complete on-board automatic offset calibration

Gain calibration if true the card has a complete on-board automatic gain calibration

Offset with open inputs if true the card has a on-board automatic offset calibration that needs all signals to be disconnected from the inputs
for doing the offset calibration

AI Range Strings contains a number of input range strings that can be directly used to fill the ring control of the analog input setup
cluster as shown in the example further below

Bit Resolution contains the analog resolution of the ADC

M3i setup AI channel.vi
This VI performs the complete analog input setup for one channel. It therefore gets an AI
setup cluster and the number of the channel to perform. To keep the setup of the channel
mask easy it will also add the correct channel mask bit to the routed channel mask. After
calling all analog input setups the channel mask output of the last VI contains the correct
channel mask to be set.

Card Info In a valid card info cluster containing driver handle and error infor-
mation

Card Info Out a copy of the card info cluster with the error output of this function

Channel Index the index of the channel which settings should be programmed.
The channel indexing starts with zero!

Channel Mask In the current channel mask that will be modified by the VI if the channel is activated. The first „setup AI channel“ call
must be fed with a zero and all following calls need to be fed with the output of the last call

Channel Mask Out the modified channel mask to be routed to the next call of „setup AI channel“

Input Channel Settings the cluster with the channel setup as explained below

AI Details Path0/1 the AI details clusters that were returned by the „M3i read AI details“ VI. This cluster is absolutely necessary as this
VI can handle all different card types and has to know which functions the card supports

Minimum, Maximum (V) These outputs can be optionally used to scale a waveform graph. They contain the minimum and maximum value
the input channel will generate as a voltage level. The calculation checks the selected input range as well as the
selected user offset

Cluster Input Channel Settings
This cluster contains all analog input channel settings and is used together with the „M3i setup AI
channel“ VI. It supports all possible settings that an analog input channel can have. It is recommend-
ed to adjust the controls of this cluster according to the analog input details as shown in our exam-
ple.

Enable selects whether this channel should be acquired or not. This input is used
by the „setup AI channel“ function to set up the channel mask

Set Path Defines the input path to be used. The settings are available for each input
path and only the matching settings are used.

Range (top left) selects the input range for the channel. In our example the input ranges are just numbered starting by zero. It is rec-
ommended to use the „AI range strings[]“ from the „M3i AI details cluster“ to fill this ring element with valid setup

Termination (top middle)selects the input termination if the card supports software programmable input termination

SE/Diff (top right) switches the input from single-ended to differential by software if the card supports this feature

AC/DC (bottom left) switches the input between AC coupling and DC coupling if the card supports this features

BW (bottom middle) activates the bandwidth limit (anti aliasing filter) if the card supports this feature

Offs (bottom right) programs the input offset of the channel if the card supports this feature. Depending on the used card the offset can
either be a percent value of the input range or an absolute mV value
(c) Spectrum GmbH 13

Library spcm_card.llb
Example for setting up the AI input section
This example is an excerpt from our LabVIEW exam-
ples. It shows how one reads out the AI details and
sets up the universal analog input cluster to match the
current card.

After doing the initialization and reading the AI input
details we setup the parts of the input clusters. In our
example we have 2 channels where we disable or
enable the termination and the SE/Diff switch and
where we set the range ring selector with the range
strings returned by the „read AI details“ VI.

The AI details are also routed to the „AI chan. setup“
VI as we need them for the settings. The channel mask
is initialized with zero and routed through these two
VIs to the „DAQ std mode setup“. The „AI chan. set-
up“ VI is called for every channel that should be set
and gets the channel number as an input (0 and 1 on
top of the icons)

Finally the „DAQ std mode setup“ sets the current mode and also programs the channel mask that has been modified by the two channel
setup VIs.

The further VI calls are not shown in this example

M3i setup simple AI trigger.vi
The VI is used to have a simple method for setting triggers. This VI is limited to one trigger source at
the time. Doing more complex trigger setups can be done with the function „setup complex AI trig-
ger“ that is described next. Throughout the most examples we use this function as it’s very easy to
program and covers most of the trigger modes one would use.

Card Info In a valid card info cluster containing driver handle and error information

Trigger Settings the cluster containing the simple trigger settings. The cluster itself is described next

Card Info Out a copy of the card info cluster with the error output of this function

Cluster M3i Simple AI Trigger
This cluster contains the simple AI trigger setup. It covers all Spectrum M3i analog input cards and
therefore lists all channels that may be available with any Spectrum card. Please use only the chan-
nels that are available on your card as a trigger source as using another channel will result in an
error message from the driver.

Please note that besides the trigger source on top of the window and the trigger delay all other
settings are only used for certain trigger modes. All settings in the left column are only used if ex-
ternal trigger has been selected, all settings in the right column are only used if a channel trigger
has been selected.

Trigger Source (top) selects the single trigger source to be used. In our example the software
trigger is selected. If selecting one of the multi purpose trigger inputs
please be sure to program this multi purpose line to trigger input

External Analog Trigger selects the external trigger mode if the trigger source is set to external analog trigger, otherwise this setting is ignored

Level 0 (Ext Analog) defines the level 0 of external analog trigger in mV

Level 1 (Ext Analog) defines the level 1 of external analog trigger in mV

AC/DC Coupling defines the external analog trigger coupling

Trig Termination switches the 50 ohm trigger termination if external trigger source has been selected

Multi Purpose IO Trig defines the trigger mode of the selectes multi purpose (TTL) trigger

Channel Trigger Mode selects the channel trigger mode if one of the channel trigger sources has been selected

Level 0 defines the trigger level 0 (upper level) as integer value. Please check the re-calculation and the valid range of the
trigger level in the hardware manual

Level 1 defines the trigger level 1 (lower level) as integer value. Only available for certain channel trigger modes that need
two trigger levels. Please check the hardware manual for details

Trigger Delay programs the trigger delay in samples. Is used for all trigger sources and trigger modes
14 M3i.xxxx LabVIEW Driver

Library spcm_card.llb
setup M3i complex AI trigger.vi
This VI can be used to set complete complex trigger for analog input cards. It allows to program all
details of the trigger engine and is not limited by any pre-selected ring lists. It especially allows to do
trigger combinations with OR and AND masks and also individual pulsewidth if the hardware supports
this. For a more simple AI trigger setup please have a look at the above „setup simple AI trigger“

The VI can be used for all Spectrum analog input card as it is valid up to 16 analog channels. Please be sure not to activate channels that
are not present on your card. Doing so will result in an driver error message.

Please have a look at the example complex_trigger_scope.vi to see an example how to use this VI and also having some buttons for different
example setups of this VI. The example is described in greater detail in the next chapter.

Card Info In a valid card info cluster containing driver handle and error information

Trigger Settings the cluster containing the complex trigger settings. The cluster itself is described next

Card Info Out a copy of the card info cluster with the error output of this function

M3i Cluster Complex AI Trigger
All details are directly inserted as raw mode values. Please check the hardware
manual to see the valid settings. If the setup contains errors the driver will report
these.

OR Mask (hex) the global OR mask as found in the register
SPC_TRIG_ORMASK containing the enable bits for
software and external trigger sources

AND the global AND mask as found in the register
SPC_TRIG_AND containing the enable bits for soft-
ware and external trigger sources

CH OR Mask (hex) the channel OR mask. Each analog channel corre-
sponds to one bit. The register behind this control is
SPC_TRIG_CH_ORMASK. Please be sure to have a val-
id trigger mode selected for every channel that has
been enabled in this mask

CH AND the channel AND mask as written to software register SPC_TRIG_CH_ANDMASK0

Trig switches the 50 ohm trigger termination if an external analog trigger source has been selected

AC enables the AC coupling of the external analog trigger (if not enabled, trigger will be DC coupled)

Delay programs the trigger delay in samples. Is used for all trigger sources and trigger modes

Ext 0/1/2 Mode selects the external trigger mode if this trigger source has been activated in OR Mask or AND Mask

Ext 0/1 Pulsewidth selects the external pulsewidth if an external mode using pulsewidth counter has been selected

Ext 0 Level 0 Sets the upper trigger level for external analog trigger in mV

Ext 0 Level 1 Sets the lower trigger level for external analog trigger in mV

Ch 0..3 Mode sets the channel trigger mode if this trigger source has been activated in the Channel OR Mask or Channel AND
Mask

Ch 0..3 Level 0 Sets the upper trigger level for this channel trigger

Ch 0..3 Level 1 Sets the lower trigger level for this channel trigger if the selected trigger mode uses two trigger levels

Ch 0..3 Pulsewidth Sets the pulsewidth for this channel trigger if the selected trigger mode uses a pulsewidth counter. Please check
whether your hardware supports multiple pulsewidth counters or only one global before programming multiple pulse-
width

Acquisition specific library functions
These VIs are used for setting up all acquisition modes. As Standard mode and FIFO mode differ from the possible settings there are separate
VIs for these two modes. Please keep in mind that the VIs allow the setup of all acquisition modes even if the mode (like Multiple Recording)
is not installed in the hardware. Setting up such a mode in this case will result in a driver error message.

setup DAQ standard.vi
This VI programs all standard acquisition modes and programs all related settings to this
mode. Either the „setup DAQ standard“ or the „setup DAQ FIFO“ VI needs to be used in one
LabVIEW program.

Card Info In a valid card info cluster containing driver handle and error informa-
tion

Card Info Out a copy of the card info cluster with the error output of this function

Channel Mask High upper 32 bit of channel mask for all cards that have more than 32 channels on-board (like some digital I/O cards),
can be left unconnected for all cards that have less than 32 channels
(c) Spectrum GmbH 15

Library spcm_card.llb
Channel Mask Low lower 32 bit of the channel mask. Each channel corresponds to one bit of the mask. This channel mask defines which
channels are used for the next acquisition. Please see the hardware manual to see which restrictions are given for
the channel mask selection

M ode Setup a cluster containing the mode setup as show below

X-Offset the x-offset in samples that can be used to scale a waveform graph correctly. The offset is given in relation to the
trigger event

Cluster Standard Mode Setup
This cluster is used to feed the „setup DAQ standard.vi“. It contains all standard mode setup. Depending
on the selected mode some of the settings are not used. Please have a look at the scope example ex-
plained in the next chapter to see a way how to disable these settings depending on the selected mode.

Mode (top left) selects the standard acquisition mode. Please be sure that the selected mode is
installed on your hardware before selecting it

Mem selects the on-board memory in samples per channel that is used for the next acquisition

Seg selects the segment size, only valid if Multiple Recording or ABA mode is selected

Post selects the posttrigger in samples per channel. Depending on the selected mode this value has a little different mean-
ing:
Singleshot: number of samples to acquire after detection of trigger event
Multiple Recording, ABA mode: number of samples to acquire after trigger event for each segment
Gated Sampling: number of samples to acquire after detection of gate-end signal

Pre number of samples to acquire before the gate-start signal, therefore only valid if Gated Sampling is selected

ABA ABA mode only: divides the current sampling rate to form the slow ABA clock to acquire the A-samples

setup DAQ FIFO.vi
This VI programs all FIFO acquisition modes and programs all related settings to this mode.
Either the „setup DAQ standard“ or the „setup DAQ FIFO“ VI needs to be used in one Lab-
VIEW program.

Most settings are similar to the „setup DAQ standard“. Please look above for further infor-
mation on these settings.

Scaling returns a scaling factor to scale bytes to samples per channel. This
scaling factor can be used for the dwSetupFIFOMode VI. If for example 2 channels are active, each with 12 bit
resolution, the scaling factor will be 4 as one needs 4 bytes in total to store 1 sample per channel

Active Channels returns the number of active channels to allow easy multiplexing and de-multiplexing

Cluster FIFO Mode Setup
This cluster contains all DAQ FIFO mode related settings:

Mode (top left) selects the FIFO acquisition mode. Please be sure that the selected mode is in-
stalled on your hardware before selecting it

Loop selects the number of segments/gates to acquire, leave zero if FIFO should run
endless

Seg selects the segment size for Multiple Recording and ABA mode, for singleshot it forms together with Loop the total
data length to acquire

Post selects the posttrigger in samples per channel:
Multiple Recording, ABA mode: number of samples to acquire after trigger event for each segment
Gated Sampling: number of samples to acquire after detection of gate-end signal

Pre number of samples to acquire before the gate-start signal, therefore only valid if Gated Sampling is selected

ABA ABA mode only: divides the current sampling rate to form the slow ABA clock to acquire the A-samples

Synchronization specific library functions
These VIs are used for setting up all synchronization setup. These VIs need the option Star-Hub installed on one of the cards in the system.
Without this option none of the functions will work.

These two VIs are the only ones that are needed to set up the synchronization. All the remaining setup is done via the standard VIs. The trigger
modes that are programmed are automatically combined inside the Star-Hub. That means programming an OR trigger on card0 and an OR
trigger on card 1 automatically sets these two cards as OR’d inside the Star-Hub.
16 M3i.xxxx LabVIEW Driver

Library spcm_card.llb
init sync.vi
This VI must be called when a Star-Hub should be used to synchronize the installed cards. The VI tries to open
the Star-Hub that is given with Sync Index and if successful it gives back the Sync Info Out which is similar to
the Card Info Out and how many cards are connected to it.

Sync Index the index of the Star-Hub. Use this if there is more than one Star-Hub in the system
(standard is "0": the first Star-Hub).

Sync Info Out a filled Star-Hub Info Cluster. Similar to the Card Info Cluster it contains the Star-Hub Handle and Error Code.

Sync Count the number of Cards connected to the Star-Hub.

setup sync.vi
This VI programs the Star-Hub settings.

Sync Info In a valid Star-Hub info cluster containing driver handle and error information.

Sync Settings the synchronization setup cluster as described below.

Sync Info Out a copy of the Star-Hub info cluster with the error output of this function.

Cluster Sync settings
The cluster that is used for the above documented setup sync.vi. The cluster contains the complete synchronization
setup.

Clock Master selects the card that acts as clock master for the complete synchronization

Enable Mask a bit mask that enables or disables all the cards that should participate on the synchroni-
zation.

Notrig Mask a bit mask to exclude the cards that shouldn't be triggered by the Star-Hub trigger but use their own local trigger
engine.

Option BaseXIO specific library functions
These VIs are used for programming the BaseXIO option. The VIs will only work if that option is installed on your card. The BaseXIO option
is running completely independent from the main card function and can be called asynchronously at any time.

BaseXIO direction.vi
The VI sets the data direction for the BaseXIO option. The direction of each 4 channels can
be set separetely. Please see the hardware manual for the details

Card Info In a valid card info cluster containing driver handle and error informa-
tion

Card Info Out a copy of the card info cluster with the error output of this function

Direction In the direction word

BaseXIO data.vi
The VI programs the BaseXIO outputs and reads the inputs.

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with the error output of this function

BaseXIO in data to be put out. To output data the corresponding direction bits
have to be set to output

WriteData flag that enables the output. If disabled data is only read and no data is written to the driver

BaseXIO out the data of the BaseXIO inputs. If channels are set to output this value contains the prior written data

Multi Purpose I/O specific library functions
These VIs are used for programming the behavior of the multi purpose I/O functions of the M3i cards. Please be sure to program these func-
tions according to the above selected functionality. If using multi purpose trigger input the input must be switched here to the correct mode.

Setup Multi Purpose I/O lines.vi
The VI defines the behavior of the multi purpose I/O lines and also allows to read and write the
asynchronous lines.

Card Info In a valid card info cluster containing driver handle and error information

Card Info Out a copy of the card info cluster with the error output of this function

Multi Purpose I/O Lines A cluster defining the behavior

ASync Read Return value from asynchronous read
(c) Spectrum GmbH 17

Library spcm_card.llb
cluster M3i mulit purpose.vi
Used for the Setup M3i Multi Purpose I/O lines VI

XO Mode for Multi Purpose Line X0

X1 Mode for Multi Purpose Line X1

Async Write Value to write asynchronous

18 M3i.xxxx LabVIEW Driver

Library spcm_tools.llb

(c) Spectrum GmbH 19

Library spcm_tools.llb

Overview
This library offers some simple helper functions to convert values used by our driver to readable strings.

Library Functions

spcm_translate_card_type.vi
This VI translates the card type from an 32 bit integer value as returned by the driver to a card name string of
the form M2i.2031.

Card Type the card type as returned by the driver

Card Name the card name as listed in our documentation and the order information

spcm_translate_date.vi
The VI translates the date code from a 32 bit integer value to a readable string of the form „week 12 of 2006“.
The date code contains week and year put together in one 32 bit value.

Date the date code as returned by the driver for production date or calibration date

Text the formatted date text

spcm_translate_version.vi
The VI translates the version code from a 32 bit integer value to a readable string in the form „V2.1“. The version
code contains major and minor version number put together in one 32 bit integer value.

Version the version code as returned by the driver for base card version, module version or ex-
tension version

Text the formatted version text

spcm_translate_status.vi
The VI translates the status bit information into a readable status string that is used throughout our examples to
show the current status of the card. The translate function can directly be connected to the status read function
„read card status“

Pretrigger pretrigger flag from read card status

Trigger trigger flag from read card status

Ready ready flag from read card status

Text the formatted status text

20 M3i.xxxx LabVIEW Driver

Card Information (card_info.vi) Examples

Examples
This chapter gives you a brief overview of the examples that come together with the driver. Please keep in mind that these are only examples
to show how the driver can be programmed. Although most of these examples can also be used as complete and comfortable stand-alone
programs that wasn’t our intention. Therefore there might be some limits in the examples and some settings are not checked on LabVIEW
example level but only on the level of the standard driver.

Encountering an error message as shown on the right is not a bug of the LabVIEW
driver or the example but it is simply a setup that isn’t valid. Please check all details
of the hardware manual to see what was going wrong here. In our example one tries
to use Multiple Recording and exceeds the available pretrigger length. The register
name (SPC_PRETRIGGER) gives you a clue where to search inside the hardware man-
ual.

The examples are delivered „as is“ and they’re not intended to become more powerful applications as this makes the understanding of the
examples very difficult. If you encounter any general problems with the examples please contact our support.

Please feel free to use the examples and to modify them for your own applications. Please keep in mind that we do not support any modified
examples!

Card Information (card_info.vi)
This VI shows how to initialize the card and how to read out fur-
ther information on the card. The VI does the following steps:

• Open the driver
• Read out the common card information
• Translate some of the information using one of the tools that

are included in the delivery
• Display the translated content like card type, versions and

production date
• Read out the card type specific information (in our example

the card is an analog acquisition card) and display the infor-
mation on screen

• Check for an error
• Close the driver again

This example can be used as a base for own programs that do
not fit under one of the other examples that are explained on
the following pages.

M3i 2 Channel Analog Scope (Scope_M3i.vi)
M3i 2 Channel Analog Scope (Scope_M3i.vi)
This example gives you the chance to use the M3i analog acquisition
card as a simple scope. It is possible to make single acquisitions as well
as to run the card in a acquisition loop. All clock settings, single trigger
sources and all input channel settings can be tested and changed in the
interface. The example covers all acquisitions cards with up to 2 channels
independent of the analog resolution or the maximum speed the card
has. When using cards with more channels together with this example
please keep in mind that only the first 2 channels can be used.

The User Interface
The user interface was built to allow a fast start with all basic functions.
Depending on the used mode and the availability of the card some of the
settings may be disabled as they’re not available at the moment. If you
encounter any error messages from the driver please check the current
setup very carefully by examining the hardware manual. The LabVIEW
example didn’t check for valid combinations as this is done inside the
driver.

Card Index
The card index tells which card of the system should be used for the scope
example. Card numbering starts at 0.

Buttons + Status
Loop starts the card in an acquisition loop as known from stand-alone scopes. The setup can be changed while the acqui-

sition loop is running, the changed setup will be used on the next run.

Single makes a single acquisition with the current setup. The card will stop after this single acquisition and can be restarted
by another click on the single button or can be switched to loop mode by clicking the loop button.

Stop stops the current acquisition and changes to the stop mode. A new acquisition can be started by using the single or
loop button.

Force forces a trigger if no trigger event is found by the hardware. One click on this button forces one time a trigger event
resulting in an acquisition with no fixed phase relation to any outside signals.

Quit quits the example. Please keep in mind to use the quit button as this makes sure that the driver is correctly un-loaded
from memory and is accessible for other software.

Status display shows the current run mode as well as the current acquisition state. The acquisition state is read from hardware.

Setup
On the left there are several setups in a column. Each of these setups directly corresponds with one library function that is explained in the
chapter before. Please check these chapters to see the different possible settings.

Remarks on the example
• The example is not optimized for display speed. Especially the data sorting and transforming of raw data to voltage levels takes some

time.
• The example was done to show the use of the card as a scope. However the programmable memory is not limited in the example. Please

keep in mind that one sample of data is converted to a 4 byte float value. It is not advised to use more memory than it is installed in the
PC system as this may crash LabVIEW or slow down the system extremely.

• The example uses status polling to have complete control on the system and to keep the example simple to understand. However it is of
course also possible to use one of the interrupt driver wait functions and change the example into a thread based program.
(c) Spectrum GmbH 21

M3i 2 Channel Analog Scope (Scope_M3i.vi)
The example diagram
The following diagram shows the main loop of the example. All other sequence steps before this mainloop are only needed for initialization
and for the initial setup of the user interface.

The bottom half handles the enabling/disabling of the different user interface components depending on the selected modes and also
changed the run mode depending on the buttons that have been pressed.

The upper part contains the main acquisition sequence showing in the picture the first step of the acquisition. This sequence is called whenever
the run mode is not in the stop state (not zero). The sequence contains the following steps:

Sequence 0
Setup of all installed input channels. The example handles up to 2 channels simultaneous. If less channels are installed the setup for the non-
installed channels is not written to the driver. Second, this sequence step scales the waveform display graphs to match the currently selected
input range and input offset. Therefore it uses the corresponding outputs of the „M3i AI Chan. Setup“ VI

Sequence 1 (shown above)
Does the rest of the setup. Mode, clock and trigger is written to the driver.

Sequence 2
Starts the card and waits inside a loop for the acquisition ready flag of the driver. The loop permanently checks for the current state and
displays the acquisition state in the status window. Further the loop checks whether force trigger or stop buttons are pressed and then executes
the corresponding command. The loop is ended if the acquisition has been finished, an error has occurred or stop/quit button has been
pressed.

Sequence 3
The last sequence step reads out the data if no error has occurred. It also scales the waveform graph to the currently selected memory size.
If an error is found the error message is displayed and the loop is stopped.
22 M3i.xxxx LabVIEW Driver

M3i FIFO Acquisition Example (Stream_M3i.vi)

(c) Spectrum GmbH 23

M3i FIFO Acquisition Example (Stream_M3i.vi)
This example shows a continuous acquisition using the FIFO mode. The ex-
ample does a complete setup for the card and starts with continuous data
streaming afterwards until it is stopped or the programmed loop counting
value is reached.

User Interface

Card Index
The card index tells which card of the system should be used for the scope
example. Card numbering starts at 0.

Setup
On the left there are several setups in a column. Each of these setups direct-
ly corresponds with one library function that is explained in the chapter be-
fore. Please check these chapters to see the different possible settings.

Buttons + Status
Start starts the card in FIFO acquisition using the current setup on the left.

Stop stops the current acquisition

Force forces a trigger if no trigger event is found by the hardware

Quit quits the example. Please keep in mind to use the quit button as this makes sure that the driver is correctly un-loaded
from memory and is accessible for other software.

Status display shows the current run mode as well as the current acquisition state. The acquisition state is read from hardware.

Waveform Graph
The four waveform graphs show the data that is acquired continuously. Therefore the graphs are initialized with a size 5 times the currently
programmed block size. This allows a more or less continuous display update.

Above these graphs there is a fill size display that shows the current fill size of the hardware FIFO buffer. If the system is fast enough this
example should be able to run with a few MHz including display without getting an overrun.

Remarks
The example was done to show how FIFO mode is running and to test the system using FIFO mode. It was never designed for maximum
speed. To get maximum speed one is requested to use the dwDataRead_raw functions instead of the sorting functions found in this example.
Also maximum speed can only be reached when not doing such complex displays as done here in this example.

Example diagram
This diagram excerpt shows
the main FIFO loop. It checks
for the current card status
and displays a status mes-
sage. 2nd it checks the cur-
rent data status, shows the
current fill size and checks
for overrun.

If the data status shows that
a new block of data is avail-
able the Read Float function
is called and data is dis-
played in the 4 waveform
charts

Error Codes
Error Codes
The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and
change the settings to run the program.

error name value (hex) value (dec.) error description
ERR_OK 0h 0 Execution OK, no error.
ERR_INIT 1h 1 An error occurred when initializing the given card. Either the card has already been opened by another process or an

hardware error occurred.
ERR_TYP 3h 3 Initialization only: The type of board is unknown. This is a critical error. Please check whether the board is correctly

plugged in the slot and whether you have the latest driver version.
ERR_FNCNOTSUPPORTED 4h 4 This function is not supported by the hardware version.
ERR_BRDREMAP 5h 5 The board index re map table in the registry is wrong. Either delete this table or check it carefully for double values.
ERR_KERNELVERSION 6h 6 The version of the kernel driver is not matching the version of the DLL. Please do a complete re-installation of the hard-

ware driver. This error normally only occurs if someone copies the driver library and the kernel driver manually.
ERR_HWDRVVERSION 7h 7 The hardware needs a newer driver version to run properly. Please install the driver that was delivered together with

the card.
ERR_ADRRANGE 8h 8 One of the address ranges is disabled (fatal error), can only occur under Linux.
ERR_INVALIDHANDLE 9h 9 The used handle is not valid.
ERR_BOARDNOTFOUND Ah 10 A card with the given name has not been found.
ERR_BOARDINUSE Bh 11 A card with given name is already in use by another application.
ERR_EXPHW64BITADR Ch 12 Express hardware version not able to handle 64 bit addressing -> update needed.
ERR_FWVERSION Dh 13 Firmware versions of synchronized cards or for this driver do not match -> update needed.
ERR_SYNCPROTOCOL Eh 14 Synchronization protocol versions of synchronized cards do not match -> update needed
ERR_LASTERR 10h 16 Old error waiting to be read. Please read the full error information before proceeding. The driver is locked until the

error information has been read.
ERR_BOARDINUSE 11h 17 Board is already used by another application. It is not possible to use one hardware from two different programs at the

same time.
ERR_ABORT 20h 32 Abort of wait function. This return value just tells that the function has been aborted from another thread. The driver

library is not locked if this error occurs.
ERR_BOARDLOCKED 30h 48 The card is already in access and therefore locked by another process. It is not possible to access one card through

multiple processes. Only one process can access a specific card at the time.
ERR_DEVICE_MAPPING 32h 50 The device is mapped to an invalid device. The device mapping can be accessed via the Control Center.
ERR_NETWORKSETUP 40h 64 The network setup of a digitizerNETBOX has failed.
ERR_NETWORKTRANSFER 41h 65 The network data transfer from/to a digitizerNETBOX has failed.
ERR_FWPOWERCYCLE 42h 66 Power cycle (PC off/on) is needed to update the card's firmware (a simple OS reboot is not sufficient !)
ERR_NETWORKTIMEOUT 43h 67 A network timeout has occurred.
ERR_BUFFERSIZE 44h 68 The buffer size is not sufficient (too small).
ERR_RESTRICTEDACCESS 45h 69 The access to the card has been intentionally restricted.
ERR_INVALIDPARAM 46h 70 An invalid parameter has been used for a certain function.
ERR_TEMPERATURE 47h 71 The temperature of at least one of the card’s sensors measures a temperature, that is too high for the hardware.

ERR_REG 100h 256 The register is not valid for this type of board.
ERR_VALUE 101h 257 The value for this register is not in a valid range. The allowed values and ranges are listed in the board specific docu-

mentation.
ERR_FEATURE 102h 258 Feature (option) is not installed on this board. It’s not possible to access this feature if it’s not installed.
ERR_SEQUENCE 103h 259 Command sequence is not allowed. Please check the manual carefully to see which command sequences are possible.
ERR_READABORT 104h 260 Data read is not allowed after aborting the data acquisition.
ERR_NOACCESS 105h 261 Access to this register is denied. This register is not accessible for users.
ERR_TIMEOUT 107h 263 A timeout occurred while waiting for an interrupt. This error does not lock the driver.
ERR_CALLTYPE 108h 264 The access to the register is only allowed with one 64 bit access but not with the multiplexed 32 bit (high and low dou-

ble word) version.
ERR_EXCEEDSINT32 109h 265 The return value is int32 but the software register exceeds the 32 bit integer range. Use double int32 or int64 accesses

instead, to get correct return values.
ERR_NOWRITEALLOWED 10Ah 266 The register that should be written is a read-only register. No write accesses are allowed.
ERR_SETUP 10Bh 267 The programmed setup for the card is not valid. The error register will show you which setting generates the error mes-

sage. This error is returned if the card is started or the setup is written.
ERR_CLOCKNOTLOCKED 10Ch 268 Synchronization to external clock failed: no signal connected or signal not stable. Please check external clock or try to

use a different sampling clock to make the PLL locking easier.
ERR_MEMINIT 10Dh 269 On-board memory initialization error. Power cycle the PC and try another PCIe slot (if possible). In case that the error

persists, please contact Spectrum support for further assistance.
ERR_POWERSUPPLY 10Eh 270 On-board power supply error. Power cycle the PC and try another PCIe slot (if possible). In case that the error persists,

please contact Spectrum support for further assistance.
ERR_ADCCOMMUNICATION 10Fh 271 Communication with ADC failed.P ower cycle the PC and try another PCIe slot (if possible). In case that the error per-

sists, please contact Spectrum support for further assistance.
ERR_CHANNEL 110h 272 The channel number may not be accessed on the board: Either it is not a valid channel number or the channel is not

accessible due to the current setup (e.g. Only channel 0 is accessible in interlace mode)
ERR_NOTIFYSIZE 111h 273 The notify size of the last spcm_dwDefTransfer call is not valid. The notify size must be a multiple of the page size of

4096. For data transfer it may also be a fraction of 4k in the range of 16, 32, 64, 128, 256, 512, 1k or 2k. For ABA
and timestamp the notify size can be 2k as a minimum.

ERR_RUNNING 120h 288 The board is still running, this function is not available now or this register is not accessible now.
ERR_ADJUST 130h 304 Automatic card calibration has reported an error. Please check the card inputs.
ERR_PRETRIGGERLEN 140h 320 The calculated pretrigger size (resulting from the user defined posttrigger values) exceeds the allowed limit.
ERR_DIRMISMATCH 141h 321 The direction of card and memory transfer mismatch. In normal operation mode it is not possible to transfer data from

PC memory to card if the card is an acquisition card nor it is possible to transfer data from card to PC memory if the
card is a generation card.

ERR_POSTEXCDSEGMENT 142h 322 The posttrigger value exceeds the programmed segment size in multiple recording/ABA mode. A delay of the multiple
recording segments is only possible by using the delay trigger!

ERR_SEGMENTINMEM 143h 323 Memsize is not a multiple of segment size when using Multiple Recording/Replay or ABA mode. The programmed seg-
ment size must match the programmed memory size.

ERR_MULTIPLEPW 144h 324 Multiple pulsewidth counters used but card only supports one at the time.
ERR_NOCHANNELPWOR 145h 325 The channel pulsewidth on this card can’t be used together with the OR conjunction. Please use the AND conjunction

of the channel trigger sources.
ERR_ANDORMASKOVRLAP 146h 326 Trigger AND mask and OR mask overlap in at least one channel. Each trigger source can only be used either in the

AND mask or in the OR mask, no source can be used for both.
24 M3i.xxxx LabVIEW Driver

Error Codes
ERR_ANDMASKEDGE 147h 327 One channel is activated for trigger detection in the AND mask but has been programmed to a trigger mode using an
edge trigger. The AND mask can only work with level trigger modes.

ERR_ORMASKLEVEL 148h 328 One channel is activated for trigger detection in the OR mask but has been programmed to a trigger mode using a
level trigger. The OR mask can only work together with edge trigger modes.

ERR_EDGEPERMOD 149h 329 This card is only capable to have one programmed trigger edge for each module that is installed. It is not possible to
mix different trigger edges on one module.

ERR_DOLEVELMINDIFF 14Ah 330 The minimum difference between low output level and high output level is not reached.
ERR_STARHUBENABLE 14Bh 331 The card holding the star-hub must be enabled when doing synchronization.
ERR_PATPWSMALLEDGE 14Ch 332 Combination of pattern with pulsewidth smaller and edge is not allowed.
ERR_PCICHECKSUM 203h 515 The check sum of the card information has failed. This could be a critical hardware failure. Restart the system and

check the connection of the card in the slot.
ERR_MEMALLOC 205h 517 Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.
ERR_EEPROMLOAD 206h 518 Timeout occurred while loading information from the on-board EEProm. This could be a critical hardware failure.

Please restart the system and check the PCI connector.
ERR_CARDNOSUPPORT 207h 519 The card that has been found in the system seems to be a valid Spectrum card of a type that is supported by the driver

but the driver did not find this special type internally. Please get the latest driver from
www.spectrum-instrumentation.com and install this one.

ERR_CONFIGACCESS 208h 520 Internal error occured during config writes or reads. Please contact Spectrum support for further assistance.
ERR_FIFOHWOVERRUN 301h 769 Hardware buffer overrun in FIFO mode. The complete on-board memory has been filled with data and data wasn’t

transferred fast enough to PC memory. If acquisition speed is smaller than the theoretical bus transfer speed please
check the application buffer and try to improve the handling of this one.

ERR_FIFOFINISHED 302h 770 FIFO transfer has been finished, programmed data length has been transferred completely.
ERR_TIMESTAMP_SYNC 310h 784 Synchronization to timestamp reference clock failed. Please check the connection and the signal levels of the reference

clock input.
ERR_STARHUB 320h 800 The auto routing function of the Star-Hub initialization has failed. Please check whether all cables are mounted cor-

rectly.
ERR_INTERNAL_ERROR FFFFh 65535 Internal hardware error detected. Please check for driver and firmware update of the card.

error name value (hex) value (dec.) error description
(c) Spectrum GmbH 25

	General Information
	Installation
	LabVIEW Driver Installation
	LabVIEW Driver Update

	General Information
	Demo mode
	Driver Structure
	Not supported functions

	Libraries
	Library spcm_drv_interface.llb
	Overview
	Library Functions
	Data transfer library functions

	Library spcm_card.llb
	Overview
	Standard library functions
	Commands
	AI specific library functions
	Example for setting up the AI input section
	Acquisition specific library functions
	Synchronization specific library functions
	Option BaseXIO specific library functions
	Multi Purpose I/O specific library functions

	Library spcm_tools.llb
	Overview
	Library Functions

	Examples
	Card Information (card_info.vi)
	M3i 2 Channel Analog Scope (Scope_M3i.vi)
	The User Interface
	Remarks on the example
	The example diagram

	M3i FIFO Acquisition Example (Stream_M3i.vi)
	User Interface
	Remarks
	Example diagram

	Error Codes

