4y

SPECTRUM

INSTRUMENTATION

M3i.41xx
M3i.41xx-exp

high-speed 14 bit transient recorder,
A/D converter board
for PCI-X, PCI and PCI Express bus

Hardware Manual
Software Driver Manual

English version May 7, 2020

SPECTRUM INSTRUMENTATION GMBH - AHRENSFELDER WEG 13-17 - 22927 GROSSHANSDORF - GERMANY
PHONE: +49 (0)4102-6956-0 - FAX: +49 (0)4102-6956-66 - EMAIL: info@spec.de - INTERNET: www.spectrum-instrumentation.com

(c) SPECTRUM INSTRUMENTATION GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY

SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH.

Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows Server are trademarks/registered trademarks of Microsoft Corporation.

LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.

Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc.

Keysight VEE, VEE Pro and VEE Onelab are trademarks/registered trademarks of Keysight Technologies, Inc.

FlexPro is a registered trademark of Weisang GmbH & Co. KG.

PCle, PCl Express, PCI-X and PCI-SIG are trademarks of PCI-SIG.

PICMG and CompactPCl are trademarks of the PCI Industrial Computation Manufacturers Group.

PXl is a trademark of the PXI Systems Alliance.

LXI is a registered trademark of the LXI Consortium.

IVl is a registered trademark of the IVl Foundation

Oracle and Java are registered trademarks of Oracle and/or its offiliates.

Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation.
AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
NVIDIA, CUDA, GeForce, Quadro and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation.

Introduction... 8
PG . e
OVBIVIBW ...ttt e oot e e ettt e e e e e ettt e e e e ettt e e e e e e e e et e ee e e e ettt e e e e ettt e e e ee ettt e eeeet b e aeeearaaas
General Informationccoeeiiii .
Different models of the M3i.41xx series ..
Additional options....

Star-Hub ...
BaseXIO (versatile digital I/O).........
The SPECITUM TYPE PlOE ...ttt ettt ettt ettt et e et e et e st et e e et e et e et e et et enns
HArAWAre N OrMOEON. ... oo e e
Block diagram
TECRNICAI DIAtA ... et
DyNamIc PArAmMETErs ..ot
O INFOIMGIIONt

SYSIEM REGUITEMENTS ...ttt ettt e ettt e e e e ettt et e e e ettt e e e e e e ettt eeeeeeeeaannee
Warnings........coooviiiiiiiii
ESD Precautionsc.cccccevciieennis
Cooling Precautions...........c........
Sources of Noisecccoeeeereiennnn.
Connector Handling Precautions
Installing the board in the system
Installing a single board Without GNY OPHONS.iiiiiii et ettt ettt
Installing a board with option BaseXIOcccccevienrann.
Installing multiple boards synchronized by star-hub option

SOftWAre Driver INSTAllAtON c.cececececececececececececececccccecccscccscscscscscscscsssescssscsescsssesesssesesesssesese 2

WiINAOWS ..o
Before installationccccoceninnn.
Running the driver Installer...............
After installation
Linux....ooooi,
Overview
Standard Driver Installation
Standard Driver Updatecc.eouiiiiiiiiiiiiecee e
Compilation of kernel driver sources (optional and local cards only)ccoooiiiiiiiiiiiiii e 28
Update of a self compiled kernel driver ..o
Installing the library only without a kernel (for remote devices)
CONITOI CONTET ...ttt ettt e b e h ettt h e b ettt et ettt et e nae e e eaeen

Softwqre 000 30
SOFWAIE OVEIVIEW ...ttt ettt ettt ettt et e h e et h ekt e et eh e ekt e ekt e st e e et eebe et e e et ettt e et e et en
€ard COMTOl COMTET ...ttt ettt ettt et

Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products
Wake On LAN of digitizerNETBOX/generatorNETBOX
Netbox Monitor
Device identification
Hardware information..................
FIrmMWare INFOrMOHON ...ttt ettt ettt ettt
SOftWare License INFOrMQIIONouiiiiiii ettt ettt ettt ettt e et ettt eeeas
Driver information
Installing and removing Demo cards
FEOTUIE UPGIOTE ... ettt ettt e ettt et o2t h ekt b e bt e st e et e bt e bt e et ekt e n bt nt e ae e bttt ettt naeen
Software License upgrade.............
Performing card calibration
Performing memory test...................
Transfer speed test........cccccenienrann.
Debug logging for support cases...
DeVICE MAPPING ...
FIFMWAIE UPGIOAE ...ttt ettt s et e bttt e et e st e bt e bt e bt et et e bt et e e
Accessing the hardware with SBench 6...
C/ Gt DIIVET INHOITACE .o ettt
HEAAET FIIES ..ttt ettt ettt oot e h bttt ettt b ettt
General Information on Windows 64 bit drivers..........
Microsoft Visual C++ 6.0, 2005 and newer 32 Bit
Microsoft Visual C++ 2005 and newer 64 Bit.............
C++ Builder 32 Bit ...coouveiiiiiiiiiiiiiccciecc
Linux Gnu C/C++ 32/64 Bit
C+ for NET ...,
Other Windows C/C++ compilers 32 Bit...................
Other Windows C/C++ compilers 64 Bit...................
DIFIVET FUNCHONS -ttt ettt h o1ttt et b e st e st E et e bt oo bt e h e e b e b e et e et e e st bt e bt et n bt ent e b e bt e enee
Delphi (Pascal) Programming Interface
Driver interfaceccccoevieneennenn
EXAMIPIES -ttt ettt h ettt h e H Rttt a e ekttt n e e et et bttt et et
NET programming IaNGUOGESo.uiiiiieiie ettt ettt et e et e et e e et e e et e e et e e ea st e en bt e eaa e e et e ettt e et e enneennaee e
Library ..ocoeveeiiiee
Declaration
Using CH#.oooviieeiiiieeii
Using Managed C++/ClI................
Using VB.NET ...,
USING oottt et et e e e e
Python Programming Interface and EXAMPIEsouiiiiiiiiiiiii ittt
Driver interface
oo Tt o LTSS ST BRSO
Java Programming Inferface and EXAMPIEScouiiiiiiiiiie ittt ettt
Driver interfaceccccooevvienieninnnnn
Examples........coovvviviiiiieiiiie
LabVIEW driver and examples
MATLAB driver GNd @XAMPIES ...ttt ettt ettt b ettt et e et eb ettt et

Progrqmming the Board 00 53
OVEIVIEW ...vvveeeiiiiieee e
Register tables
Programming examples
IHGITZOHON
INIHAlIZAHON Of REMOTE ProOTUCES ... e
Error handling........cccooviiiiniiiiiii
Gathering information from the card
(Ore T TSP PSSRSO
Hardware version..
Firmware versions..

Production date......
Last calibration date (analog cards only)
Serial number ...
Maximum possible SAMPlING FAIE ..ot
INSHAIEA MEMOTY ...ttt ettt ettt et h e e bttt et e ee et e bttt ettt et
Installed features and options...........
Miscellaneous Card Information
FUNCHON tyP@ OF the COIiiiiiii ettt ettt ettt ettt
Used type of driver

RESBI. .. e et e e et e e e e

Analog InpUI‘S.. 62

CRANNEL SEIECHON ...ttt ettt ettt e e b e e bt ekt e et e st e e e h ettt ettt en
Important note on channel selection

Setting up the inputsccoviiiiiienn.
Input Path
Input ranges
Read out of input features.................
Input termination.............ccccciiin.
TS TTL o T o) T o PSSP S UUSRTN
AC/DC OffSEt COMPENSAHON ...ttt ettt et ee et e ekt e e e st et e et ekt eebe e bt enbeesbeeseeeseeneeneeanee
Anti aliasing filter (Bandwidth limit)...
ENRONCEA STAMUS REGISIET ... ittt ettt et et e it ekt e ettt e et ettt e st e et e et e e et e e neeennee s
Automatic on-board calibration of the offset and gain SEMINGScc.oiiiiiiiiiiiici e 66

Acquisition modes 000 67
OVBIVIEW ... ettt e oo h e oot e ettt e e bt e e ettt et e ettt e
SEHUP OF the MOAE ...ttt ettt ettt e nb ekt h et b et eat ettt ae e bt et eateeaeas
Commands.................
Card Status
Acquisition cards status overview
Generation card status overview
Data Transfercccceverienicencne
Standard Single ACqUISIHON MOAEiiiii ittt ettt ettt et e et ettt
(Ore T 1o [PPSR
Memory, Pre- and Postirigger
e 1T o LTSS PSSO
FIFO Single acqUISIION MOiiuiiiiieiii ettt ettt ettt ettt st et e bt et e esbeeneeebeenne e anes
Card mode........coviiieniiiei,
Length and Pretrigger
Difference to standard single acquisition mode
Example FIFO acquisitioncoccevierieiienienienene
Limits of pre trigger, post frigger, memory size
BUFFEr RONAIING «. ettt bttt b et e bt et ettt ene e enee
[DeT (ool feTeTaT e oY s H PP UPPPUPPPPPPPPRPPIRE
Sample formatc.oocviiiiiiei e
Converting ADC samples to voltage values

Clock GenNEralion ..cccceeceseecsseccsecssecnssecssesssessssssssssssessssssssssssesssess 79
OVEIVIEW ...
The different clock modes
Clock MOTE REGISTET ...ttt ettt ettt ettt et et
Details on the different clock modes............
Standard internal sampling clock (PLL)
Using Quartz2 with PLL (optional, M4i cards only)
External clock (reference clock)ooouiiiiiii e

Trigger modes and appendant regiSterscccceeseeccsseecsseccsssessseessssecssssessssssssssssssssssssssscss 82
LT Y o D ool 7o) oY WP SRPR
Trigger Engine Overview
Multi Purpose 1/O Lines

Programming the BERGVIOUT ...ttt ettt et n
USING GSYNCRIONOUS /O ...ttt ettt ettt ettt ettt e ke e e e e et e et e e nae e nee s
Special behaviour of trigger output...
Special direct trigger output modes...
Trigger masks
Trigger OR mask ...
Trigger AND mask.
SOFWAIE HIGGET ..ttt ettt ettt e ettt ettt ettt et
FOrce- and ENGble frigQeroviiiiiii ettt n
Trigger delay
EXIErNGI [QNGIOG) HHIGGET . vtett ettt ettt ettt ettt s et a ettt b et n ettt et
THGQEN MOTE. ...ttt et a ettt ettt ettt et e ettt e ne e
Trigger Input Coupling
Trigger level .. oo
Detailed description of the external analog trigger modes
External (TTL) trigger using multi purpose I/O connectors
TTL Trigger Modecoooiiiiiiiiiiiiic e
Edge and level triggerscccoooiiviiiiiiiniieie.
Channel THGGereiviiiiieiiieeii e
Overview of the channel trigger registers...................
CRaNNEl HrGGET IEVEL. ... oottt ettt
Detailed description of the channel frigger MOdes...........ccuiiiiiiiii ettt

MOde MUII‘iPIe Recording 000 103

RECOTAING MOTES ...ttt ettt ettt e et e et e ekt e e st e e et e e et e e e ese e et e e e st e e et e e enseeensee e enns 103
SEANAAIA MO ...t ettt 103
FIFO MOde ..o 103
Limits of pre frigger, post frigger, memory size 104
Multiple Recording and Timestamps .. 104

Trigger Modesccocveviieniieneeee, 104
Trigger Counter 104

PrOGIaMMING EXAMPIES ..ottt ettt ettt ettt et e ettt o2t e e at e e a e e st e ens e e at e ettt e e st e et et e e e 105

TiMESTAMPS ceeueiencineirenntencceeccsecsecssensssessessesssecsssesssecssesssssssssssssssssssssssssssssssssssssessssessses 100
General information 106
Example for seting HMEeSIAMP MOGE:ouiiiiiiiiii ittt ettt ettt ettt 106
= T oY Tt L= PSPPSR PUUPSTR
Standard mode
StartReset mode
REFEIOEK MOTE. ...ttt
Reading out the timestamps
General......ccccooiiiiiiiieie,
Data Transfer using DMA
Data Transfer using Polling
Comparison of DMA and polling commands
DA FOMAL ...tttk ettt
Combination of Memory Segmentation Options with Timestamps
Multiple Recording and Timestamps
ABA MOde AN TIMESIAMPS ...ttt ettt ettt e ettt et e et e e et eena e et eea et e e et ettt e enn e e nnaeenteeen

ABA mode (dual Himebase) c.cceeccereccreccseccseccssencsecssessecsssesssesssessesssssssssssssssssssssssssssssescses 116

General information 116
Standard Mode 116
FIFO Mode ..o 117
Limits of pre trigger, post trigger, memory size 117
Example for sefting ABA mode:cccceevieiriiennnnnn.

Reading out ABA data
General........ccoocviiiiii
Data Transfer using DMA
Data Transfer using Polling
Comparison of DMA and polling commands...............oiiiiiiiiiiitiii ettt 121
ABA MOdE AN TIMESIAMPS ... vttt ettt ettt ettt ettt et a e eh et e bt ea bt ee e et e e bt e bt e bt enb e et e et e eteebeenbeaneea 121

Option BaseXlO...ceuceeeecorecssesseccssecssesssesssessssesssesssessssssssssssssssessssssssssssssssesssssssssssssssssssses | 23
INTOAUCHON <.ttt a e bt ettt b e h e bt ettt e h ettt 123
Different functions..........ccccoeveeiiiiinninne

Asynchronous Digital 1/0
Special Input Functions....................
Transfer Dataoovvvveiiiiiiiee,
Programming Example
Special Sampling Feature
Electricl SPECIfICaNONS. ... c..iiii ettt ettt et

option stqr-Hub (M3i and M4i only) 00 126
SEAFHUD TITOAUCHON ..ttt ettt ettt h ettt ettt ettt ettt ene e 126
Star-Hub trigger engine
Star-Hub clock engine

SOFWAIE INFEITACE ...ttt e ettt ettt e h e bt ettt et ettt ettt ettt
Star-Hub Initialization
Setup of Synchronization............... 128
Setup of Triggerccccevveneereincnn 128
Run the synchronized cards 129
SH-Direct: using the Star-Hub clock directly without synchronization 130
EPTOr HONAIING ..o ettt ettt ettt ettt ettt aeas 130
OPHioN REMOLE SEIVEF ..cceecreecerecssecnsecnssesssesssessseessscsssessssssssssssesssssssssssessssssssssssssssssssssssse 131
INETOAUCHON ...t h ettt h ettt e ettt ettt 131
Installing and starting the Remote Server .
WVIIAOWS .ttt ettt o2ttt ekttt h oot h ekt b oAb R bRt h £ bRt h et et e b e sttt e bt e bt et eneea
LINUX e
Detecting the digitizerNETBOX
Discovery Function...........ccciiiiiiiii
Finding the digitizerNETBOX/generatorNETBOX in the network 132
Troubleshootingviiveeiiiiic e 133
AACCESSING TEMOIE CONASitiiiiit ettt ettt ettt ettt ettt e et e et e e e et e e e et e e e et e e e st e e ess e e ess e e est e e st e e e eseeenteeesseesataeesbeeenbeeenseeeeeens 133

Appendix 00 1 34

T @feTe TSSOSO P P SUUPU PRSI 134
SPECHTUM KNOWIEAGE BASEeeeeiiieiie ettt ettt ettt ettt e et e et e st et et eenb e 135

Continuous memory for increased data transfer rate 136
Backgroundociioiiiiiii e 136
Setup on Linux systems 137
Setup on Windows systems 137
Usage of the buffer

Details on M3i cards /O lines
MU PUFPOSE 1/ LINES ...ttt ettt ettt ettt et e e e e e ekt e bt e st ea et e et e e st e e st e st eneeeneeeteeeneeneenbeeneea
Interfacing with clock input
Interfacing with clock output

Preface Introduction

Introduction

Preface

This manual provides detailed information on the hardware features of your Spectrum instrumentation board. This information includes tech-
nical data, specifications, block diagram and a connector description.

In addition, this guide takes you through the process of installing your board and also describes the installation of the delivered driver package
for each operating system.

Finally this manual provides you with the complete software information of the board and the related driver. The reader of this manual will
be able to integrate the board in any PC system with one of the supported bus and operating systems.

Please note that this manual provides no description for specific driver parts such as those for LabVIEW or MATLAB. These drivers manuals
are available on USB-Stick or on the Spectrum website.

For any new information on the board as well as new available options or memory upgrades please contact our website
www.spectrum-instrumentation.com. You will also find the current driver package with the latest bug fixes and new features on our site.

Please read this manual carefully before you install any hardware or software. Spectrum is not responsible
for any hardware failures resulting from incorrect usage.

Overview

M The PCl bus was first introduced in 1995. Nowadays it is the most common platform for PC based instrumentation boards. The very
wide range of installations world-wide, especially in the consumer market, makes it a platform of good value. lts successor is the

2004 introduced PCI Express standard. In today’s standard PC there are usually two to three slots of both standards available for
series | instrumentation boards. Special industrial PCs offer up to a maximum of 20 slots. The common PCl/PCI-X bus with data rates of up
to 133 MHz x 64 bit = 1 GByte/s per bus, is more and more replaced by the PCI Express standard with up to 4 GByte/s data transfer rate
per slot. The Spectrum M3i boards are available in two versions, for PCI/PCI-X as well as for PCI Express. The 100% software compatible
standards allow to combine both standards in one system with the same driver and software commands.

~+. Within this document the name M3i is used as a synonym for both versions, either PCI/PCIX or PCI Express. Only passages that
:,Q_i differ concerning the bus version of the M3i.xxxx and M3i.xxxx-exp cards are mentioned separately. Also all card drawings will
’ show the PCI/PCI-X version as example if no differences exist compared to the PCI Express version.

General Information

The M3i.41xx is best suitable for applications that need ultra high sample rates as well as a maximum possible resolution. These boards offer
a resolution 4 times higher than 12 bit boards.

On the M3i.41xx every channel has its own amplifier and A/D converter. Each input channel can be adapted to a wide variety of signal
sources. This is done by software selecting a matching input path, input range, input impedance, input coupling and anti-aliasing filter. The
user will easily find a matching solution from the six offered models. These versions are working with sample rates of 100 MS/s up to 400
MS/s and have one or two channels and can also be updated to a multi-channel system using the internal synchronization bus.

Data is written in the infernal up to 2 GSample large memory. This memory can also be used as a FIFO buffer. In FIFO mode data will be
transferred online into the PC RAM or to hard disk.

Application examples: Automatic test systems, Supersonics, CCD imaging systems, Vibration analysis, Radar, Sonar.

8 M3i.41xx / M3i.41xx-exp Manual

Introduction

Different models of the M3i.41xx series

Different models of the M3i.41xx series

The following overview shows the different available models of the M3i.41xx series. They differ in the number of available channels. You
can also see the model dependent location of the input connectors.

M3i.4110
M3i.4120
M3i.4140
M3i.4110-exp
M3i.4120-exp
M3i.4140-exp

M3i.4111
M3i.4121
M3i.4142
M3i.4111-exp
M3i.4121-exp
M3i.4142-exp

Channel 0 —— | O

XO m—— Q
—_— O

Trig =rpm——— O
Clock In Clock Qut—=— | ©

Channel 0 =—— | O

Channel 1 == O

X0 m——
Trig —X== -
Clock In Clock Out == | ©

(c) Spectrum GmbH 9

Additional options Introduction

Additional options

Star-Hub

The star hub piggy-back module al-

lows the synchronization of up to 8

M3i cards. It is possible to synchro-

nize cards of the same type with each

other as well as different types. -

Starhub Connectors (0..3)

Two different versions of the star-hub
module are available. A minor one
for synchronizing up to four boards of
the M3i series, without the need for
an additional system slot. The major
version (option SH8) allows the syn-
chronization of up to 8 cards with the
need for an additional slot.

Starhub Connectors (4..7)
(Option SH8 only)

The module acts as a star hub for
clock and trigger signals. Each board
is connected with a small cable of the
same length, even the master board.
That minimizes the clock skew be-
tween the different cards. The figure shows the piggy-back module mounted on the base board schematically without any cables to achieve
a better visibility. It also shows the locations of the available connectors for the two different versions of the star-hub option.

The carrier card acts as the clock master and the same or any other card can be the trigger master. All trigger modes that are available on
the master card are also available if the synchronization star-hub is used.

The cable connection of the boards is automatically recognized and checked by the driver when initializing the star-hub module. So no care
must be taken on how to cable the cards. The star-hub module itself is handled as an additional device just like any other card and the pro-
gramming consists of only a few additional commands.

BaseXIO (versatile digital 1/0)

The option BaseXIO is simple-to-use
enhancement fo the cards of the M3i
series. It is possible to control a wide
range of external instruments or

other equipment by using the eight

lines as asynchronous digital 1/0. ::::xx:g? |

The BaseXIO option is useful if an BaseXIO 2 |

external amplifier should be control- BaseXIO 3

led, any kind of signal source must

be programmed, if status .informaﬁ- BaseXIO 4

on from an external machine has to BaseXIO 5

be obtained or different test signals BaseXIO & } AN internal connector (7..6)
have to be routed to the board. BaseXIO 7 JMJM“UMUN il internal connector (5..0)

In addition to the /O features, these

lines are also for special functions.
One line can be used as an refe-
rence time signal (RefClock) for the
timestamp option.

The BaseXIO MMCX connectors are
mounted on-board. To gain easier access, these lines are connected to an extra bracket, that holds eight SMB male connectors. For special
purposes this option can also be ordered without the exira bracket and instead with internal cables.

10 M3i.41xx / M3i.41xx-exp Manual

Introduction The Spectrum type plate

The Spectrum type plate

series

0 o SIME
1208
O(w PEEE Y

in

b

|, M2i.3026 | SN 03123
em.: 1 GS

opt.: multi gate time sh5

R YT, Prod. week 08/06°%]
—» Module V 6.1 Extension V 1.0 <&

5%

7

The Spectrum type plate, which consists of the following components, can be found on all of our boards. Please check whether the printed
information is the same as the information on your delivery note. All this information can also be read out by software:

@ The board type, consisting of the two letters describing the bus (in this case M2i for the PCI-X bus) and the model number.

The size of the on-board installed memory in MSample or GSample. In this example there are 1 GS = 1024 MSample (2 GByte =
2048 MByte) installed.

The serial number of your Spectrum board. Every board has a unique serial number.

A list of the installed options. A complete list of all available options is shown in the order information. In this example the options
Multiple recording, Gated Sampling, Timestamp and Star-Hub 5 are installed.

The base card version, consisting of the hardware version (the part before the dot) and the firmware version (the part after the dot).

The version of the analog/digital front-end module. Consisting of the hardware version (the part before the dot) and the firmware
version (the part after the dot)

The date of production, consisting of the calendar week and the year.

© @®@ @ ® @ ®

The version of the extension module if one is installed. Consisting of the hardware version (the part before the dot) and the firmware
version (the part affer the dot). In our example we have the Star-Hub 5 extension module installed. Therefore the version of the ex-
tension module is filled on the type plate. If no extension module is installed this part is left open.

Please always supply us with the above information, especially the serial number in case of support request. That
allows us to answer your questions as soon as possible. Thank you.

(c) Spectrum GmbH 11

Introduction

Hardware information

Hardware information

Block diagram

Ccho
Ch1

1/0 X0

1/0 X1

1_ okol»
O . {500

Calibration /El_ 1 |Data
Source Multiplexer
Trigger
A 14/ | Detection
I/ P \
Gain
Channel 0
|Channel 1
10kQ
== -
Trig

Card Info
Calibration Data

T

Base Card Control
Memory Control
Busmaster DMA

Clock Out

Clock In

Sync-In »

wom | O, Window o
- Comparator
IS iy S i =0
e e S Sync
[Star-Hub ”OAI
8 x ' O%PMWAH Timestamp Ref .
7
BaseXIO . Async XIO 7

O
O

Y £

PLL

500

[Prog. Reference | —PLL |-

Trigger

O|

Option BaseXIO 1

Option Star-Hub

U

<
w
w
o
b
o
X
(1]
O
o
-~
x
O
o
-
(5]
o
<
e
5
o
v
c
>
n
¢)
c
o
=
v
0
¢ c
c
0
(¥
v
c
>
—>»> 0

M3i.41xx / M3i.41xx-exp Manual

12

Introduction

Hardware information

Technical Data

Analog Inputs

Resolution

Input Type

Programmable Input Offset

ADC Differential non linearity (DNL)
ADC Integral non linearity (INL)
Channel selection

Bandwidth filter

Input Path Types

Analog Input impedance

Input Ranges

Input Coupling

Offset error (full speed)

Gain error (full speed)

Over voltage protection

Over voltage protection

Max DC voltage if AC coupling active
Relative input stage delay

Crosstalk 1 MHz sine signal
Crosstalk 20 MHz sine signal
Crosstalk 1 MHz sine signal
Crosstalk 20 MHz sine signal

Frequency Response M3i.414x

Sampling Rate 400 MS/s
HF Path 50 Q, no filter
Buffered Path 1 MQ, no filter

125 21 30 33 36

ADC only

ADC only

software programmable
activate by software

software programmable
software programmable
software programmable
software programmable

after warm-up and calibration
after warm-up and calibration
range < =1V

range > +2V

input range =1 V
input range £1 V
input range =5 V
input range +5 V

0

dB

Buf 200 mVv Buf 500 mV/

14 bit

Single-ended

not available

< 1.5 LSB (input signal 70 MHz)
<3.0LSB (input signal 70 MHz)

1 or 2 channels (maximum is model dependent)
20 MHz bandwidth with 3rd order Butterworth filtering

50 Q (HF) Path

50Q

+500mV, £1V, 2.5V, x5V
AC/DC

<0.1%

<1.0%

2 Vrms

6 Vrms

30V

Bandwidth filter disabled: O ns
Bandwidth filter enabled: 14.7 ns

not available
not available
<-100 dB

<-100 dB

7@ 85 93 101 110 120 1A

MHz

Buf 1000 mV =----n-- HF 500 mv'

Buffered (high impedance) Path
1 MQ || 25 pF or 50 Q

+200 mV, £500 mV, £1V, 2V, 5V, £10V

AC/DC

<0.1%

<0.1%

£5V (1 MQ), 5 Vrms (50 Q)
£30 V (1 MQ), 5 Vrms (50 Q)
+30V

Bandwidth filter disabled: 3.8 ns
Bandwidth filter enabled: 18.5 ns

-100 dB
95 dB
77 dB
73 dB

IA

IA AN

156 170 186 203 2211 241 263 287 249

------- HF 1000 mV

(c) Spectrum GmbH

Hardware information Introduction

Frequency Response M3i.412x
Sampling Rate 250 MS/s

HF Path 50 Q, no filter

Buffered Path 1 MQ, no filter

20 22 24 26 29 31 34 37 40 44 48 52 &7 B2 6B T4 81 88 96 105 115 125 136 149 162 177 183 211 230 24¢

0,0 - —

20 %=
30 Xy

-
4.0 ~

dB
Il
e

50
6.0 N
7.0 LA
-8.0 y
M
90 \
-10.0 L

MHz

% ———— Buf 200 m\/ —————— Buf 500 mV/ Buf 1000 mV = =evsenen HF 800 ml/ ==semees: HF 1000 mV

Frequency Response M3i.411x
Sampling Rate 100 MS/s

HF Path 50 Q, no filter

Buffered Path 1 MQ, no filter

10010 M 12 13 14 16 17 19 20 22 24 26 29 31 34 37 41 45 43 53 58 63 69 75 82 89 97 106 116 126 138 149

000 Femmm e e R
1,00
-2,00
-3,00

-4.00

dB

5,00
-6,00
-7.00
-8,00
-9,00

-10,00

MHz

Buf 200 mV ————— Buf 500 mV Buf 1000 mV ===ee- HF 800 mV ===eese- HF 1000 mV

Trigger
Available trigger modes Channel Trigger, ExtO (Analog), Ext1 (TT), Software, Window, Re-Arm, Or/And, Delay
software programmable 10 bits
Rising edge, falling edge or both edges
0 to (8GSamples - 8) = 8589934584 Samples in steps of 8 samples
< 32 samples (+ programmed prefrigger)

software programmable
Trigger level resolution
Trigger edge software programmable
Trigger delay software programmable
Multi, Gate: re-arming time

Pretrigger at Multi, ABA, Gate, FIFO
Posttrigger software programmable

software programmable 8 up to [8192 Samples / number of active channels] in steps of 8

8 up to 4 GSamples in steps of 8(defining pretrigger in standard scope mode)
Memory depth software programmable 16 up to [installed memory / number of active channels] samples in steps of 8

Multiple Recording/ABA segment size software programmable 16 up to [installed memory / 2 / active channels] samples in steps of 16

Trigger output delay

Internal /External trigger accuracy

External trigger

External trigger impedance
External trigger coupling
Minimum trigger pulse width
External trigger bandwidth DC
External trigger bandwidth AC
External trigger type

External trigger level

after trigger input

software programmable
software programmable
(DC / AC)

50Q /1 MQ

50Q

software programmable

134 sampling clock cycles
1 sample

ExtO (Trg)

50Q /1 MQ || 25 pF

AC or DC

> 2 samples

DC to 200 MHz / 150 MHz
20 kHz to 200 MHz

Window comparator, £5 V

2 levels +5V in steps of 10 mV

Ext1 (XO0) + Ext2 (X1)
10kQt0 3.3V

fixed DC

> 2 samples

DC to 125 MHz

n.a.

TTL level

fixed: Low: <0.8 V, High: >2.0 V

14

M3i.41xx / M3i.41xx-exp Manual

Introduction

Hardware information

External trigger maximum voltage
External trigger output impedance
External trigger output levels
External trigger output type

External trigger output drive strength

Clock

Clock Modes
Internal clock accuracy

Internal clock setup granularity

Clock setup range gaps

External reference clock range

External reference clock setup granilarity
External clock input impedance

External clock input coupling

External clock input edge

External clock input to internal ADC clock delay
External clock input type

External clock input swing

External clock input max DC voltage
External clock input duty cycke requirement
External clock output type

External clock output coupling

ABA mode clock divider for slow clock

software programmable
clock not programmable
software programmable

software programmable

software programmable

5V rms (50 Q), £30V (1 MQY) 0.3 Vio +5.5V

input only 50Q

input only Low: 0.4 V, High: >2.4 V

input only 3.3 V LVTTL.TTL compatible for high impedance
input only Capable of driving 50 Q loads, +64 mA output

internal, external reference clock, sync

<+32 ppm

1 Hz (except the clock setup gaps shwon below)

70 MHz to 72 MHz, 140 MHz to 144 MHz, 281 MHz to 287 MHz
> 10 MHz and < 1 GHz (fix at runtime)

1 kHz

50 Q fixed

AC coupling

Rising edge

3.7 ns (8.2 ns if synchronization is used)

Single-ended, sine wave or square wave

0.3 V peak-peak up to 3.0 V peak-peak

+30 V (with max 3.0 V difference between low and high level)
40% to 60%

Single-ended, 3.3V LVPECL

AC coupling

8 up to [128k - 8] in steps of 8

(c) Spectrum GmbH 15

Hardware information Introduction
M3i.4110 M3i.4111 M3i.4120 M3i.4121 M3i.4140 M3i.4142
min sampling clock 9 MS/s 9 MS/s 9 MS/s 9 MS/s 9 MS/s 9 MS/s
max internal clock (1 channel active) 100 MS/s 100 MS/s 250 MS/s 250 MS/s 400 MS/s 400 MS/s
max internal clock (2 channels active) n.a. 100 MS/s n.a. 250 MS/s n.a. 250 MS/s
lower bandwidth limit (DC coupling) 0 Hz 0 HZ 0 Hz 0 Hz 0 Hz 0 Hz
lower bandwidth limit (AC coupled, 50 Ohm) <30 kHz <30 kHz <30 kHz <30 kHz <30 kHz <30 kHz
lower bandwidth limit (AC coupled, 1 MOhm) <2 Hz <2 Hz <2 Hz <2 Hz <2 Hz <2 Hz
-3 dB bandwidth (buffered path) 50 MHz 50 MHz 90 MHz 90 MHz 125 MHz 125 MHz
-3 dB bandwidth (50 ohm path) 50 MHz 50 MHz 125 MHz 125 MHz 200 MHz 200 MHz
-3 dB bandwidth (BW limit enabled) 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz

Multi Purpose 1/O lines (front-plate)

Number of multi purpose lines
Input: available signal types
Input: impedance

Input: maximum voltage level
Input: signal levels

Output: available signal types
Output: impedance

Output: signal levels

Output: type

Output: drive strength

BaseXIO Option
BaseXIO modes
BaseXIO direction
BaseXIO input
BaseXIO input impedance
BaseXIO input maximum voltage
BaseXIO output type
BaseXIO output levels
BaseXIO output drive strength

Connectors (Standard Card)

Analog Inputs

Trigger ExtO Input

Clock Input/Output
Multi Purpose X0 and X1
Option BaseXIO

software programmable

software programmable

software programmable

software programmable

Connectors (Option M3i.xxxx-SMA)

Analog Inputs
Trigger, Clock 1/0O, Multi Purpose XO
Option BaseXIO

signals specified at order time

Connectors (Option M3i.xxxx-SMAM)

Analog Inputs

Trigger ExtO Input

Clock Input/Output
Multi Purpose X0 and X1
Option BaseXIO

Environmental and Physical Details

Dimension (PCB only)

Width (Standard or star-hub 4)
Width (star-hub 8)

Width (with option BaseXIO)

two, named X0, X1

Trigger-In, Asynchronous Digital-n, Synchrounous Digitaln, Timestamp Reference Clock
10kQ1to 3.3V

0.3 Vito +5-5V

Low: 0.8 V, High: 2.0 V

Asynchronous Digital-Out, Trigger Output, Run, Arm

50Q

Low: <0.4 V, High: >2.4 V

3.3 V LVTTL, TTL compatible for high impedance loads

Capable of driving 50 Q loads, maximum strength +64 mA

Asynch digital 1/O, 2 additional trigger, timestamp reference clock, timestamp digital inputs
Each 4 lines can be programmed in direction

TTL compatible: Low <0.8 V, High>2.0 V

4.7 kOhm towards 3.3 V

0.5Vupto+5.5V

3.3 VIVILL

TTL compatible: Low <0.4 V, High >2.4 V

32 mA maximum current, no 50 Q loads

Cable-Type: Cab-3fxx-xx
Cable-Type: Cab-1m-xx-xx

3 mm SMB male (one for each single-ended input)
1 x MMCX female (one connector)

2 x MMCX female (two connectors)

2 x MMCX female (two connectors) Cable-Type: Cab-1m-xx-xx
8 x 3 mm SMB male on exira bracket, internally 8 x MMCX female

Cable-Type: Cab-1m-xx-xx

SMA female (one for each single-ended input) Cable-Type: Cab-3mA-xx-xx
2 x SMA female (two connectors) Cable-Type: Cab-3mA-xx-xx
8 x 3 mm SMB male on extra bracket, internally 8 x MMCX female

SMA female (one for each single-ended input)
1 x MMCX female (one connector)

2 x MMCX female (two connectors)

2 x MMCX female (two connectors) Cable-Type: Cab-1m-xx-xx
8 x 3 mm SMB male on extra bracket, internally 8 x MMCX female

Cable-Type: Cab-3mA-xx-xx
Cable-Type: Cab-1m-xx-xx
Cable-Type: Cab-1m-xx-xx

312 mm x 107 mm (full PCI length)

1 full size slot

additionally back of adjacent neighbour slots
additionally extra bracket on neighbour slot

Weight plain card 320¢g

Weight plain card + option SH4 380g

Weight plain card + option SH8 400g

Warm up time 10 minutes
Operating temperature 0°C to 50°C
Storage temperature -10°C to 70°C
Humidity 10% to 90%

16 M3i.41xx / M3i.41xx-exp Manual

Introduction Hardware information

PCI/PCI-X specific details

PCl / PCIX bus slot type 32 bit 33 MHz or 32 bit 66 MHz
PCI / PCIX bus slot compatibility 32/64 bit, 33-133 MHz, 3,3V and 5V I/O
Sustained streaming mode > 245 MB/s (in a PCIX slot clocked at 66 MHz or higher)

PCl Express specific details

PCle slot type x1 Generation 1

PCle slot compatibility (physical) x1, x4, x8, x16

PCle slot compatibility (electrical) x1, x2, x4, x8, x16 with Generation 1, Generation 2, Generation 3, Generation 4
Sustained streaming mode > 160 MB/s

Certification, Compliance, Warranty

EMC Immunity Compliant with CE Mark

EMC Emission Compliant with CE Mark

Product warranty 5 years starting with the day of delivery
Software and firmware updates Life-time, free of charge

Power Consumption

PClI / PCI-X PCI EXPRESS
33v 5V Total 3.3v 12v Total
M3i.41x0, 41x1 (256 MS memory) 29A 2.0A 196 W [0.4A 1.8A 229W
M3i.41x2 (256 MS memory) 29A 20A 19.6 W [0.4A 1.9A 241 W
M3i.41x2 (2 GSamples memory), max power 3.0A 3.0A 249 W | 0.4 A 2.6 A 32.5W
MTBF
MTBF 200000 hours

Dynamic Parameters

M3i.4142 and M3i.4140, 1 channel 400 MS/s

Input Path HF path, AC coupled, fixed 50 Ohm Buffered path, BW limit Buffered path, full BW

Test signal frequency 9 MHz 40 MHz | 70 MHz 9 MHz 9 MHz | 40 MHz | 70 MHz
Input Range +500mV =1V +2.5V +5V =1V +1V +200mV | +500mV | +1V +1V +1V +1V
RMS Noise (zero level) <3.3LSB <3.51SB <6.31SB

THD (typ) (dB -83.0 -83.0 -82.6 75.9 76.1 64.9 71.5 73.7 69.9 66.0 55.5 S51.7
SNR (typ) (dB) 66.8 67.3 67.4 65.6 65.6 65.4 66.1 66.4 67.1 66.5 62.3 61.9
SFDR (typ), excl. harm. (dB) 85.1 86.1 860 84.2 82.7 76.5 85.1 85.2 86.0 80.8 77.9 74.3
SFDR ({typ), incl. harm. (dB) 85.0 86.1 86.0 771 78.1 65.8 73.3 76.3 72.2 67.4 58.8 54.8
SINAD/THD+N (typ) (dB) 66.7 67.2 67.3 65.3 65.3 62.4 65.0 65.6 65.3 63.2 54.9 51.5
ENOB based on SINAD (bit) 10.8 10.9 10.9 10.6 10.6 10.1 10.5 10.6 10.6 10.2 8.8 8.3
ENOB based on SNR (bit) 10.8 10.9 10.9 10.6 10.6 10.6 10.7 10.7 10.9 10.8 10.1 10.0

M3i.4121 and M3i.4120, 1 or 2 channels 250 MS/s

Input Path HF path, AC coupled, fixed 50 Ohm Buffered path, BW limit Buffered path, full BW

Test signal frequency 9 MHz 40 MHz | 70 MHz 9 MHz 9 MHz | 40 MHz | 70 MHz
Input Range +500mV =1V +2.5V +5V =1V +1V +200mV | +500mV | +1V +1V +1V +1V
RMS Noise (zero level) <2.21SB <2.51SB <3.41SB

THD (typ) (dB -83.1 -82.6 -81.8 74.0 -82.8 73.9 72.3 74.8 -70.8 -66.4 -57.0 -53.4
SNR (typ) (dB) 67.9 68.5 68.4 67.6 67.7 67 .4 67.2 67.5 68.3 67.7 66.6 66.6
SFDR (typ), excl. harm. (dB) 88.4 89.0 89.1 83.7 83.6 74.5 87.7 88.0 88.8 81.5 80.7 79.8
SFDR (typ), incl. harm. (dB) 87.0 86.4 857 74.5 83.5 74.4 73.9 77.4 72.6 67.5 59.6 54.3
SINAD/THD+N (typ) (dB) 67.8 68.3 68.2 66.7 67.6 66.6 66.0 66.8 66.4 64.0 56.6 53.2
ENOB based on SINAD (bit) 11.0 11.1 11.0 10.8 10.9 10.8 10.7 10.8 10.7 10.3 9.1 8.6
ENOB based on SNR (bit) 11.0 1.1 1.1 10.9 11.0 10.9 10.9 10.9 1.1 11.0 10.8 10.8

M3i.4111 and M3i.4110, 1 or 2 ch Is 100 MS/s

Input Path HF path, AC coupled, fixed 50 Ohm Buffered path, BW limit Buffered path, full BW

Test signal frequency 9 MHz 40 MHz | 70 MHz 9 MHz 9 MHz | 40 MHz | 70 MHz
|nEUt Range 1—_500mV +1V :_2.5V 1—_5V +1V +1V +200mV | +500mV | +1V +1V +1V +1V
RMS Noise (zero level) <2.21SB <2.51SB <3.0LSB

THD (typ) (dB -80.0 78.6 77.5 76.9 n.a. n.a. -67.8 73.5 -69.5 66.5 n.a. n.a.
SNR (iyp) (dB) 67.6 77 674 67.6 na. na. 665 673 670 669 n.a. na.
SFDR (typ), excl. harm. (dB) 84.5 84.2 84.0 84.4 n.a. n.a. 84.3 84.4 84.3 84.7 n.a. n.a.
SFDR (typ), incl. harm. (dB) 83.6 82.0 82.8 80.6 n.a. n.a. 68.0 76.3 72.1 67.2 n.a. n.a.
SINAD/THD+N (typ) (dB) 67.3 67.3 66.9 66.9 n.a. n.a. 64.0 66.4 64.9 63.3 n.a. n.a.
ENOB based on SINAD (bit) 10.9 10.9 10.9 10.8 n.a. n.a. 10.3 10.7 10.5 10.2 n.a. n.a.
ENOB based on SNR (bit) 10.9 11.0 10.9 10.8 n.a. n.a. 10.7 10.9 10.9 10.8 n.a. n.a.

A pure sine wave with > 99% amplitude of input range is measured with 50 ohms termination. SNR and RMS noise parameters may differ depending on the quality of the used PC. SNR
= Signal to Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range, SINAD = Signal Noise and Distortion, ENOB = Effective Number of Bits. For a detailed
description please see application note 002.

(c) Spectrum GmbH 17

Hardware information Introduction

18 M3i.41xx / M3i.41xx-exp Manual

Introduction

Hardware information

Order Information

The card is delivered with 256 MSample on-board memory and supports standard acquisition (Scope), FIFO acquisition (streaming), Multiple
Recording, ABA mode and Timestamps. Operating system drivers for Windows/Linux 32 bit and 64 bit, examples for C/C++, LabVIEW
(Windows), MATLAB (Windows and Linux), IVI, .NET, Delphi, Java, Python and a Base license of the oscilloscope software SBench 6 are

included.

Adapter cables are not included. Please order separately!

PCI Express ‘PClel PCl Express | PCI/PCIX I Standard mem 1 channel 2 channels
PCI l PCI-X M3i.4110-exp M3i.4110 256 MSample 100 MS/s

M3i.4111-exp M3i4111 256 MSample 100 MS/s 100 MS/s

M3i.4120-exp M3i.4120 256 MSample 250 MS/s

M3i.4121-exp M3i.4121 256 MSample 250 MS/s 250 MS/s

M3i.4140-exp M3i.4140 256 MSample 400 MS/s

M3i.4142-exp M3i.4142 256 MSample 400 MS/s 250 MS/s

Memo Order no. Option

M3i.xxxx-512M$S Memory upgrade to 512 MSample (1 GB) total memory

M3ixxxx-1GS Memory upgrade to 1 GSample (2 GB) total memory

oPtions Order no. Option

M3i.xxxx-SH4 Synchronization Star-Hub for up to 4 cards, only 1 slot width

M3i.xxxx-SH8 Synchronization Star-Hub for up to 8 cards, 2 slots width

M3i.xxxx-bxio Option BaseXIO: 8 digital 1/O lines usable as asynchronous /O and timestamp ref<lock, additional
bracket with 8 SMB connectors

M3i.xoxx-SMA Option SMA connections for all analog inputs + two control signals (fixed at order time):

- SMA connection XA: Trigger-In or Trigger-Out/Multi Purpose XO
- SMA connection XB: Trigger-In or Clock In or Clock-Out

M3i.xxxx-SMAM Option SMA connections for all analog inputs + MMCX connections for all control signals (clock 1/O,
trigger 1/O, multipurpose X0, X1)

M3i-upgrade Upgrade for M3i.xxxx: later installation of option -M3i.xxxx-1GS, -bxio, -SH4, SH8 or SMA connec-
fors

Services Order no.
Recal Recalibration at Spectrum incl. calibration protocol
Standard Cables Order no.

for Connections Length | to BNC male to BNC female to SMA male to SMA female to SMB female

Standard inputs 80cm | Cab-3f9m-80 Cab-3f-9f.80 Cab-3f-3mA-80 Cab-3f-3fA-80 Cab-3f-3f-80

Standard inputs 200 cm | Cab-3F9m-200 Cab-3-9f-200 Cab-3f-3mA-200 Cab-3f-3fA-200 | Cab-3f-3f-200

Probes (short) 5cm Cab-3f9f.5

Trigger/Clock/Extra 80 cm Cab-1m-9m-80 Cab-1m-9f-80 Cab-1m-3mA-80 Cab-1m-3fA-80 Cab-1m-3f-80

Trigger/Clock/Extra 200 cm | Cab-1m-9m-200 | Cab-1m-9f200 Cab-1m-3mA-200 | Cab-1m-3fA-200 | Cab-1m-3f200

SMA Option 80cm | Cab-3mA-9m-80 | Cab-3mA-9f-80 Cab-3mA-3mA-80 Cab-3f-3mA-80

SMA Option 200 cm | Cab-3mA-9m-200 | Cab-3mA-9f-200 | Cab-3mA-3mA-200 Cab-3f-3mA-200

Information The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz and
0.5 dB/m at 250 MHz. For high speed signals we recommend the low loss cables series CHF together with the SMA con-
nector option M3i.xxxx-SMA oder M3i.xxxx-SMAM.

Low Loss Cables Order no.s Option

CHF-3mA-3mA-200 Low loss cables SMA male to SMA male 200 cm

CHF-3mA-9m-200 Low loss cables SMA male to BNC male 200 cm

Information The low loss adapter cables are based on MF141 cables and have an attenuation of 0.3 dB/m at 500 MHz and
0.5 dB/m at 1.5 GHz. They are recommended for signal frequencies of 200 MHz and above. Card SMA connectors are
needed. Make sure to order one of the options M3i.xxxx-SMA or M3i.xxxx-SMAM together with the card.

Amplifiers Order no. Bandwidth Connection Input Impedance Coupling Amplification

SPA.1841 @ 2 GHz SMA 50 Ohm AC x100 (40 dB)

SPA.1801 @ 2 GHz SMA 50 Ohm AC x10 (20 dB)

SPA.1601 @ 500 MHz BNC 50 Ohm DC x10 (20 dB)

SPA.1412 2 200 MHz BNC 1 MOhm AC/DC x10/x100 (20/40 dB)

SPA.1411 @ 200 MHz BNC 50 Ohm AC/DC x10/x100 (20/40 dB)

SPA.1232 (2 10 MHz BNC 1 MOhm AC/DC x100/x1000 (40/60 dB)

SPA.1231 10 MHz BNC 50 Ohm AC/DC x100/x1000 (40/60 dB)

Information External Amplifiers with one channel, BNC/SMA female connections on input and output, manually adjustable offset, man-
ually switchable settings. An external power supply for 100 to 240 VAC is included. Please be sure to order an adapter
cable matching the amplifier connector type and matching the connector type for your A/D card input.

Software SBench6 |Order no.

SBenché Base version included in delivery. Supports standard mode for one card.

SBenché-Pro Professional version for one card: FIFO mode, export/import, calculation functions

SBenché-Multi Option multiple cards: Needs SBenché-Pro. Handles multiple synchronized cards in one system.

Volume Licenses Please ask Spectrum for details.

Software Options | Order no.
SPc-RServer Remote Server Software Package - LAN remote access for M2i/M3i/M4i/M4x/M2p cards

(11': Just one of the options can be installed on a card at a time.
(2); Third party product with warranty differing from our export conditions. No volume rebate possible.

(c) Spectrum GmbH 19

System Requirements Hardware Installation

Hardware Installation

System Requirements

All Spectrum M2i/M3i.xxxx instrumentation cards are compliant to the PCl standard and require in general one free full length slot. This can
either be a standard 32 bit PCI legacy slot, a 32 bit or a 64 bit PCIX slot. Depending on the installed options additional free slots can be
necessary.

All Spectrum M2i/M3i.xxxx-exp instrumentation cards are compliant to the PCI Express 1.0 standard and require in general one free full
length PCI Express slot. This can either be a x1, x4, x8 or x16 slot. Some x16 PCle slots are for the use of graphic cards only and can not
be used for other cards. Depending on the installed options additional free slots can be necessary.

Warnings

ESD Precautions

The boards of the M2i/M3i.xxxx series contain electronic components that can be damaged by electrostatic discharge (ESD).

Before installing the board in your system or protective conductive packaging, discharge yourself by touching
& a grounded bare metal surface or approved anti-static mat before picking up this ESD sensitive product.

Cooling Precautions

The boards of the M2i/M3i.xxxx series operate with components having very high power consumption at high speeds. For this reason it is
absolutely required to cool this board sufficiently.

~io Forall M2i/M3i cards it is strongly recommended to install an additional cooling fan producing a stream of air across the boards
Z,Q‘: surface. In most cases professional PC-systems are already equipped with sufficient cooling power. In that case please make sure
that the air stream is not blocked.

Sources of noise

The analog acquisition and generator boards of the M2i/M3i.xxxx series should be placed far away from any noise producing source (like
e.g. the power supply). It should especially be avoided to place the board in the slot directly adjacent to another fast board (like the graphics
controller).

Connector Handling Precautions

The connectors used on this product are designed for high signal quality and good shielding. Due to the limited space on the front-panel they
have to be as small as possible fo fit the needed signal connections on the front panel. Therefore these connectors are vulunable to mechanical
damages when used not properly. Especially SMB and MMCX connctors may be broken when not operated correctly.

Always dismount the connections by operating the connector itself and not the cable. Always move the cable
& connector in a straight line from the board connector. Do not cant the connector when opening the connection.
A broken connector can only be replaced in factory and is not covered by warranty.

20 M3i.41xx / M3i.41xx-exp Manual

Hardware Installation Installing the board in the system

Installing the board in the system

Installing a single board without any options

Before installing the board you first need to unscrew and remove the dedicated blind-bracket usually mounted to cover unused slots of your
PC. Please keep the screw in reach to fasten your Spectrum card afterwards. All Spectrum cards require a full length PCI, PCI-X slot (either
32Bit or 64Bit) or PCI Express slot (either x1, x4, x8 or x16) with a track at the backside to guide the board by its retainer. Now insert the
board slowly into your computer. This is done best with one hand each at both fronts of the board.

While inserting the board take care not to tilt the retainer in the track. Please take especial care to not bend i

the card in any direction while inserting it in the system. A bending of the card may damage the PCB totally
and is not covered by the standard warranty.

Please be very carefully when inserting the board in the slot, as most of the mainboards are mounted with
spacers and therefore might be damaged if they are exposed to high pressure. A

After the board'’s insertion fasten the screw of the bracket carefully, without overdoing.

Installing the M2i/M3i.xxxx PCI/PCI-X card in a 32 bit PCI/PCI-X slot

<€— Retainer

@i
v
o
o
]
v
2]
X
w
N
-
z
4]
o
g

e~~~

[|

<€— Retainer

:

<€— PCI-X 64Bit Slot

@i

(c) Spectrum GmbH 21

22

Installing the board in the system

Hardware Installation

Installing the M2i/M3i.xxxx-exp PCI Express card in a PCle x1 slot

<€— Retainer

| E—
‘:‘
@i
—

<

<—— PCl Express x1 Slot

Installing the M2i/M3i.xxxx-exp PCl Express card in a PCle x4, x8 or x16 slot

<€— Retainer

@i

/‘,

@i

4— PCl Express x4, x8, x16 Slot

M3i.41xx / M3i.41xx-exp Manual

Hardware Installation Installing the board in the system

Installing a board with option BaseXIO

Before installing the board you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum board and the extra bracket afterwards. All Spectrum boards require a full length
PCl slot with a track at the backside to guide the board by its retainer. Now insert the board and the extra bracket slowly into your computer.
This is done best with one hand each at both fronts of the board.

While inserting the board take care not to tilt the retainer in the track. Please take especial care to not bend
the card in any direction while inserting it in the system. A bending of the card may damage the PCB totally A
and is not covered by the standard warranty.

Please be very carefully when inserting the board in the PCl slot, as most of the mainboards are mounted C

with spacers and therefore might be damaged they are exposed to high pressure.

After the board’s insertion fasten the screws of both brackets carefully, without overdoing. The figure shows an ex-
ample of a board with two installed modules.

e~~~
e~~~

<€— Retainer

—
—

OO0 OO

OO0 OO

@i
v
o
o
]
v
2]
x
wn
g

(c) Spectrum GmbH 23

Installing the board in the system Hardware Installation

Installing multiple boards synchronized by star-hub option

Hooking up the boards

Before mounting several synchronized boards for a multi channel system into the PC you can hook up the cards with their synchronization

cables first. If there is enough space in your computer’s case (e.g. a big tower case) you can also mount the boards first and hook them up
afterwards. Spectrum ships the card carrying the star-hub option together with the needed amount of synchronization cables. All of them are
matched to the same length, to achieve a zero clock delay between the cards.

Only use the included flat ribbon cables.

All of the cards, including the one that carries the star-hub piggy-back module, must be wired to the star-hub as the figure is showing as an
example for three synchronized boards.

It does not matter which of the available connectors on the star-hub module you use for which board. The software driver will detect the types
and order of the synchronized boards automatically. The figure shows the three cables mounted on the option M2i.xxxx-SH16 star-hub to
achieve a better visibility. The option M3i.xxxx-SH8 is handled similar to this picture. When using the M3i.xxxx-SH4 or M2i.xxxx-SH5 version,
only the connectors on the upper side of the star-hub piggy-back module are available (see figure for details on the star-hub connector loca-
tions).

As some of the synchronization cables are not secured against wrong plugging you should take Sync cable
care to have the pin 1 markers on the multiple connectors and the cable on the same side, as the
figure on the right is showing.
Pin 1
markers

Sync connector

onboard >

Mounting the wired boards

Before installing the cards you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum cards afterwards. All Spectrum boards require a full length PCl slot with a track
at the backside to guide the card by its retainer. Now insert the cards slowly into your computer. This is done best with one hand each at
both fronts of the board. Please keep in mind that the board carrying the star-hub piggy-back module requires the width of two slots, when
the option M3i.xxxx-SH8 or M2i.xxxx-SH16 version is used.

While inserting the board take care not to tilt the retainer in the track. Please take especial care to not bend
A the card in any direction while inserting it in the system. A bending of the card may damage the PCB totally
and is not covered by the standard warranty.

Please be very careful when inserting the cards in the slots, as most of the mainboards are mounted with
A spacers and therefore might be damaged if they are exposed to high pressure.

After inserting all cards fasten the screws of all brackets carefully, without overdoing. The figure shows an example of three cards with two
installed modules each.

Starhub Connectors (0..4)

Starhub Connectors (5..15)
(Option SH16 only)

<€— Retainer

-~
@i

24 M3i.41xx / M3i.41xx-exp Manual

Software Driver Installation Windows

Software Driver Installation

Before using the board, a driver must be installed that matches the operating system.

Since driver V3.33 (released on install-disk V3.48 in August 2017) the installation is done via an installer .
exectutable rather than manually via the Windows Device Manager. The steps for manually installing a card \Q
has since been moved to a separate application note ,,AN008 - Legacy Windows Driver Installation”. ’

Ny

This new installer is common on all currently supported Windows platforms (Windows 7, Windows 8 and Windows 10) both 32bit and
64bit. The driver from the USB-Stick supports all cards of the M2i/M3i, M4i/M4x and M2p series, meaning that you can use the same driver
for all cards of these families.

Windows

Before installation

A Devi
When you install a card for the very first time, Windows will dis- i

cover the new hardware and might try to search the Microsoft Ele Action View Help
Website for available matching driver modules. e | F H=E B

- : . . . & DEVI7-WIN1064
Prior fo running the Spectrum installer, the card will appear in the b~

[Computer
Windows device manager as a generalized card, shown here is o Dk
the device manager of a Windows 10 as an example. [Display adapters
) Human Interface Devices
® M2i and M3i cards will be shown as ,,DPIO module” = :(DEbATATTAP' controllers
=2 Keyboards

. . Mice and other pointing devices
* M4i, M4x and M2p cards will be shown as g N i

- : ; "
,PCl Data Acquisition and Signal Processing Controller W National Instruments SMBus Controllers

[Network adapters
~ BY Other devices
B PClI Data Acquisition and Signal Processing Controller
§ Ports (COM & LPT)
™ Print queues
1 Processors
B Software devices
| Sound, video and game controllers
& Storage controllers
K@ System devices
i Universal Serial Bus controllers

Running the driver Installer

Simply run the installer supplied on the USB-Stick (..Driver\win-
dows" folder or downloadable from www.spectrum-instrumenta-
tion.com

§5) SPCM Driver Installer Setup - *

Welcome to SPCM Driver Installer
Setup

Setup will guide you through the installation of SPCM Driver
Installer.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Install to start the installation.

(c) Spectrum GmbH 25

Windows

Software Driver Installation

After installation

After running the Spectrum driver installer, the card will appear in
the Windows device manager with its name matching the card se-
ries.

The card is now ready to be used.

ﬁl SPCM Driver Installer Setup ==

Installing
Please wait while SPCM Driver Installer is being installed.

Extract: spem_resources.dll

Qutput folder: C:\Users\spectrum'AppDataiLocal iTempspemwin 10\spem 2drve4 ~
Extract: spem2drvé4.inf

Extract: spcm2drve4.cat

Extract: spcm2drvé4.sys

Extract: spem_resources.dll

Qutput folder: C:\Users\spectrum'AppDataiLocal iTempspemwin 10\spem4drved
Extract: specm4drve.inf

Extract: spcm4drve4.cat

Extract: spcm4drve4.sys

Extract: spem_resources.dll

soft: Install System 3,02

Mext = Cancel

ﬁl SPCM Driver Installer Setup ==

Completing SPCM Driver Installer
Setup

SPCM Driver Installer has been installed on your computer.

Click Finish to dose Setup.

Cancel

% Device Manager
File Action View Help
e« D E=EIE

~ & DEVI7-WIN1064
3 Computer
- Disk drives
[Gd Display adapters
> Human Interface Devices

=@ IDE ATA/ATAPI controllers
Keyboards
8 Mice and other pointing devices

- [Monitors
y MNational Instruments SMBus Controllers
[Network adapters
i Ports (COM & LPT)

+ [Print queues
n Processors
B Software devices
| Sound, video and game controllers

v |3 Spectrum cards

€ M4i.660c-x8 / M. Bc-ed

S Storage controllers
§3 System devices

> i Universal Serial Bus controllers

26 M3i.41xx / M3i.41xx-exp Manual

Software Driver Installation Linux

Linux

Overview

The Spectrum M2i/M3i/M4i/M4x/M2p cards and digitizerNETBOX/generatorNETBOX products are delivered with Linux drivers suitable
for Linux installations based on kernel 2.6, 3.x, 4.x or 5.x, single processor (non-SMP) and SMP systems, 32 bit and 64 bit systems. As each
Linux distribution contains different kernel versions and different system setup it is in nearly every case necessary, to have a directly matching
kernel driver for card level products to run it on a specific system. For digitizerNETBOX/generatorNETBOX products the library is suffcient
and no kernel driver has to be installed.

Spectrum delivers pre-compiled kernel driver modules for a number of common distributions with the cards. You may try to use one of these
kernel modules for different distributions which have a similar kernel version. Unfortunately this won't work in most cases as most Linux system
refuse to load a driver which is not exactly matching. In this case it is possible to get the kernel driver sources from Spectrum. Please contact
your local sales representative to get more details on this procedure.

The Standard delivery contains the pre-compiled kernel driver modules for the most popular Linux distribu-
tions, like Suse, Debian, Fedora and Ubuntu. The list with all pre-compiled and readily supported distribu-
tions and their respective kernel version can be found under:
http://spectrum-instrumentation.com/en/supported-inux-distributions or via the shown QR code.

The Linux drivers have been tested with all above mentioned distributions by Spectrum. Each of these distri-
butions has been installed with the default setup using no kernel updates. A lot more different distributions
are used by customers with self compiled kernel driver modules.

Standard Driver Installation

The driver is delivered as installable kernel modules together with libraries to access the kernel driver. The installation script will help you with
the installation of the kernel module and the library.

This installation is only needed if you are operating real locally installed cards. For software emulated demo ..,
cards, remotely installed cards or for digitizerNETBOX/generatorNETBOX products it is only necessary to in- 3,9;
stall the libraries without a kernel as explained further below. ’

Login as root
It is necessary to have the root rights for installing a driver.

Call the install.sh <install path> script
This script will install the kernel module and some helper scripts to a given directory. If you do not specify a directory it will use your home
directory as destination. It is possible fo move the installed driver files later to any other directory.

The script will give you a list of matching kernel modules. Therefore it checks for the system width (32 bit or 64 bit) and the processor (single
or smp). The script will only show matching kernel modules. Select the kernel module matching your system. The script will then do the follow-
ing steps:

¢ copy the selected kernel module to the install directory (spcm.o or spem.ko)
e copy the helper scripts to the install directory (spcm_start.sh and spc_end.sh)
e copy and rename the matching library to /usr/lib (/usr/lib/libspem_linux.so)

Udev support
Once the driver is loaded it automatically generates the device nodes under /dev. The cards are automatically named to /dev/specmO,

/dev/spcm1,...
You may use all the standard naming and rules that are available with udev.

Start the driver

Starting the driver can be done with the spcm_start.sh script that has been placed in the install directory. If udev is installed the script will only
load the driver. If no udev is installed the start script will load the driver and make the required device nodes /dev/spcm0... for accessing
the drivers. Please keep in mind that you need root rights to load the kernel module and to make the device nodes!

Using the dedicated start script makes sure that the device nodes are matching your system setup even if new hardware and drivers have
been added in between. Background: when loading the device driver it gets assigned a ,major” number that is used to access this driver.
All device nodes point fo this major number instead of the driver name. The major numbers are assigned first come first served. This means
that installing new hardware may result in different major numbers on the next system start.

(c) Spectrum GmbH 27

Linux Software Driver Installation

Get first driver info

After the driver has been loaded successfully some information about the installed boards can be found in the /proc/specm_cards file. Some
basic information from the on-board EEProm is listed for every card.

cat /proc/spcm_cards

Stop the driver
You may want to unload the driver and clean up all device nodes. This can be done using the spcm_end.sh script that has also been placed
in the install directory

Standard Driver Update

A driver update is done with the same commands as shown above. Please make sure that the driver has been stopped before updating it.
To stop the driver you may use the spcm_end.sh script.

Compilation of kernel driver sources (optional and local cards only)

The driver sources are only available for existing customers on special request and against a signed NDA. The driver sources are not part of
the standard delivery. The driver source package contains only the sources of the kernel module, not the sources of the library.

Please do the following steps for compilation and installation of the kernel driver module:

Login as root

It is necessary to have the root rights for installing a driver.

Call the compile script make spem_linux_kerneldrv.sh

This script will examine the type of system you use and compile the kernel with the correct settings. If using a kernel 2.4 the makefile expects
two symbolic links in your system:

e /usr/src/linux pointing fo the correct kernel source directory
o /usr/src/linux/.config pointing to the currently used kernel configuration

The compile script will then automatically call the install script and install the just compiled kernel module in your home directory. The rest of
the installation procedure is similar as explained above.

Update of a self compiled kernel driver

If the kernel driver has changed, one simply has to perform the same steps as shown above and recompile the kernel driver module. However
the kernel driver module isn’t changed very often.

Normally an update only needs new libraries. To update the libraries only you can either download the full Linux driver
(spem_linux_drv_v123b4567) and only use the libraries out of this or one downloads the library package which is much smaller and doesn't

contain the pre-compiled kernel driver module (spem_linux_lib_v123b4567).

The update is done with a dedicated script which only updates the library file. This script is present in both driver archives:

sh install libonly.sh

Installing the library only without a kernel (for remote devices)

The kernel driver module only contains the basic hardware functions that are necessary to access locally installed card level products. The
main part of the driver is located inside a dynamically loadable library that is delivered with the driver. This library is available in 3 different
versions:

¢ spcm_linux_32bit_stdc++6.50 - supporting libstdc++.50.6 on 32 bit systems
e spcm_linux_64bit_stdc++6.s0 - supporting libstdc++.50.6 on é4 bit systems

The matching version is installed automatically in the /usr/lib directory by the kernel driver install script for card level products. The library
is renamed for easy access to libspem_linux.so.

For digitizerNETBOX/generatorNETBOX products and also for evaluating or using only the software simulated demo cards the library is in-
stalled with a separate install script:

sh install libonly.sh

28 M3i.41xx / M3i.41xx-exp Manual

Software Driver Installation Linux

To access the driver library one must include the library in the compilation:

gcc -o test_prg -lspcm_linux test.cpp

To start programming the cards under Linux please use the standard C/C++ examples which are all running under Linux and Windows.

Control Center

The Spectrum Control Center is also available for Linux and needs to be installed sepo- TR TR nr T rmmm
rately. The features of the Control Center are described in a later chapter in deeper de-| ... | ouiceuusming | support | about versons .
tail. The Control Center has been tested under all Linux distributions for which Spectrum | (... s ™ bememd
e
delivers pre-compiled kernel modules. The following packages need to be installed to run| |+ cemere
~ DN2.465-08 sn 01234 Add Democard
the Control Center: ‘
HW Version 7
FW Version 40
Y . Production Date Week 1 of 2013
X Server > Installed Netbox Featur... 00000004
® expat custom 0 Hpians
- [u
° freefype ;:::j:e TCPIP[11::192.168.169.20: insto:...
° fontconfig on-board Memory 1024 MByte
. max Sampling Rate 3.0 MS/s
° ||bpng))) . Quarz 1 24,000 MHz
¢ libspecm_linux (the Spectrum linux driver library) Quarz2 notnstlled
Calibration
Production Date Week 42 of 2012
> Installed Card Featu... 0000818b Calibration
Installed Extended ... none(0)
Version Base Card 91.24 Tastsand Moftoring
Modules 2
Channels 8 Transfer Speed Test
> ExtTrig 0 Features 00000017 Memory Test
> ExtClock 0 Features 00000017
2>~ Timestamp Features 00011707 Identification
. b s
Installation 3 Mok Information
. > - Softw: Li
Use the supplied packages in either *.deb or *.rpm format found in the driver section of 1 s ottion Netbox / Remate Server
the USB-Stick by double clicking the package file root rights from a X-Windows window. " 19216816320 Netbos Discavery
VISA TCPIP[1]::192.168.169.20::inst0:
Add Netbox manually
The Control Center is installed under KDE, Gnome or Unity in the system/system fools
section. It may be located directly in this menu or under a ,More Programs” menu. The
final location depends on the used Linux distribution. The program itself is installed as
/usr/bin/spcmcontrol and may be started directly from here. Quit

Manual Installation
To manually install the Control Center, first extract the files from the rpm matching your distribution:

rpm2cpio spcmcontrol-{Version}.rpm > ~/spcmcontrol-{Version}.cpio
cd ~/
cpio -id < spcmcontrol-{Version}.cpio

You get the directory structure and the files contained in the rpm package. Copy the binary specmcontrol to /usr/bin. Copy the .desktop file
to /usr/share/applications. Run Idconfig to update your systems library cache. Finally you can run spcmcontrol.

Troubleshooting

If you get a message like the following after starting spcmcontrol:

spcm_control: error while loading shared libraries: libz.so.l: cannot open shared object file: No such file
or directory

Run Idd spcm_control in the directory where spcm_control resides to see the dependencies of the program. The output may look like this:

libXext.so.6 => /usr/X11R6/1ib/libXext.so.6 (0x4019e000)
1ibX11l.s0.6 => /usr/X11R6/1ib/1ibX11l.s0.6 (0x401ad000)
libz.so.l => not found

libdl.so.2 => /lib/libdl.so.2 (0x402ba000
libpthread.so.0 => /lib/tls/libpthread.so.0 (0x402be000)
libstdc++.s0.6 => /usr/lib/libstdc++.s0.6 (0x402d0000)

As seen in the output, one of the libraries isn’t found inside the library cache of the system. Be sure that this library has been properly installed.
You may then run Idconfig. If this still doesn’t help please add the library path to /etc/Id.so.conf and run Idconfig again.

If the libspem_linux.so is quoted as missing please make sure that you have installed the card driver properly before. If any other library is
stated as missing please install the matching package of your distribution.

(c) Spectrum GmbH 29

Software Overview Software

Software

This chapter gives you an overview about the structure of the drivers and the software, where to find and how to use the examples. It shows
in detail, how the drivers are included using different programming languages and deals with the differences when calling the driver functions
from them.

This manual only shows the use of the standard driver APL. For further information on programming drivers

for third-party software like LabVIEW, MATLAB or IVl an additional manual is required that is available on
USB-Stick or by download on the internet.

Software Overview

3rd Party Measurement SW

Visual|] C++ . NET based Gnu LabVIEW|MATLAB]| IVI |LabWindows
C++ |Builder | Python | Delphi C#, J#, VB.NET| c/c++ Driver | Driver |Driver| cwi

VoY oY vy v vy vy oy v Y

Common Library (DLL) with a common interface on all supported platforms

Windows 32 Bit Windows 64 Bit
Kernel Driver Kernel Driver

v v

Text based Languages

SBench 6
Java

Linux
Kernel Driver

v

Network Interface

v

NETBOX By i
: =% Windows 8 =™ \Windows10 v i Fedora @
NETBOX A o - Juse Odebian Tedora

Windows 7
Windows 32 Bit

Remote Devices Windows 64 Bit Linux 32/64 Bit

The Spectrum drivers offer you a common and fast APl for using all of the board hardware features. This APl is the same on all supported
operating systems. Based on this APl one can write own programs using any programming language that can access the driver API. This
manual describes in detail the driver API, providing you with the necessary information to write your own programs.

The drivers for third-party products like LabVIEW or MATLAB are also based on this API. The special functionality of these drivers is not subject
of this document and is described with separate manuals available on the USB-Stick or on the website.

Card Control Center

A special card control center is available on USB-Stick and from the internet for all

[

5 Spectrum Control Center 141 Setup

Spectrum M2i/M3i/M4i/M4x/M2p cards and for all digitizerNETBOX or
generatorNETBOX products. Windows users find the Control Center installer on the
USB-Stick under ,Instal\win\spcmcontrol_install.exe”.

Welcome to the Spectrum Control
Center 1.41 Setup Wizard

ll This wizard will guide you through the installation of
% Spectrum Contral Center 1,41,

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
j relevant system files without having to reboat your
computer.

Linux users find the versions for the different stdc++ libraries under /In-

stall/linux/spcm_control_center/ as RPM packages. I

When using a digitizerNETBOX/generatorNETBOX the Card Control Center install- i

ers for Windows and Linux are also directly available from the integrated webserver.

The Control Center under Windows and Linux is available as an executive program.
Under Windows it is also linked as a system control and can be accessed directly
from the Windows control panel. Under Linux it is also available from the KDE Sys- L
tem Settings, the Gnome or Unity Control Center. The different functions of the Spectrum card control center are explained in detail in the
following passages.

»o. To install the Spectrum Control Center you will need to be logged in with administrator rights for your oper-
3,@; ating system. On all Windows versions, starting with Windows Vista, installations with enabled UAC will ask
’ you to start the installer with administrative rights (run as administrator).

30 M3i.41xx / M3i.41xx-exp Manual

Software

Card Control Center

Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products

The Discovery function helps you to find and identify the Spectrum LXI
instruments like digitizerNETBOX/generatorNETBOX available to
your computer on the network. The Discovery function will also locate
Spectrum card products handled by an installed Spectrum Remote
Server somewhere on the network. The function is not needed if you
only have locally installed cards.

Please note that only remote products are found that are currently not
used by another program. Therefore in a bigger network the number
of Spectrum products found may vary depending on the current usage
of the products.

Execute the Discovery function by pressing the ,Discovery” button.
There is no progress window shown. After the discovery function has
been executed the remotely found Spectrum products are listed under
the node Remote as separate card level products. Inhere you find all
hardware information as shown in the next topic and also the needed
VISA resource string to access the remote card.

Please note that these information is also stored on your system and
allows Spectrum software like SBench 6 to access the cards directly
once found with the Discovery function.

After closing the control center and re-opening it the previously found
remote products are shown with the prefix cached, only showing the

Spectrum Control Center V1.74 (Lib V3.33) (Loglevel 1) [DEV11-WINT64] =
Cord | Device Mapping | Support | About / Versions |
Details Information Demo cards
e
WMi22358 sn D00D1 kd Democerd
4 Remote
4 DN2465-08 sn 01234
HW Version 7
FW Version 0

Preduction Date

Installed Netbox Features

Custem

4 Remote M2i4652-Exp

handle name
on-board Memory
max Sempling Rate
Quarz1
Quarz2
Production Date
Instelled Card Features

Version Base Card
Modlules
Channels
Ext Trig 0 Features
Ext Clock 0 Features
Timestamp Features
Firmware versions
Module Information
Software License
4 Physical Location
P
VISA

Installed Extended Card...

Week 1 of 2013
00000004

0

sn 00665
TCPIP[0]:192.168.169. 20:instd:INSTR
1024 MByte
300 MS/s
24,000 MHz

net installed
Week 42 of 2012
00008186

none (0)

a1.24

2

g

00000017
00000017
00011707

192168.169.20
TCPIP[0]::192.168.169.20::inst0:INSTR

Calibration

Calibration

Tests and Moritoring

Transfer Speed Test
Memory Test
Identification

Netbox / Remote Server

Netbox Discovery
Add Netbox manually

card type and the serial number. This is the stored information that allows other Spectrum products to access previously found cards. Using
the ,Update cached cards” button will try to re-open these cards and gather information of it. Afterwards the remote cards may disappear if
they're in use from somewhere else or the complete information of the remote products is shown again.

Enter IP Address of digitizerNETBOX/generatorNETBOX manually

If for some reason an automatic discovery is not suitable, such as the case where the remote
device is located in a different subnet, it can also be manually acessed by its type and IP ad-

dress.

Wake On LAN of digitizerNETBOX/generatorNETBOX

Cached digitizerNETBOX/generatorNETBOX products that are currently in standby mode can
be woken up by using the ,Wake remote device” entry from the context menu.

The Control Center will broadcast a standard Wake On LAN ,Magic Packet”, that is sent to the

device's MAC address.

It is also possible to use any other Wake On LAN software to wake a digitizerNETBOX by send-
ing such a ,Magic Packet” to the MAC address, which must be then entered manually.

It is also possible to wake a digitizerNETBOX/generatorNETBOX from your own application
software by using the SPC_NETBOX_WAKEONLAN register. To wake a
digitizerNETBOX/generatorNETBOX with the MAC address ,00:03:2d:20:48", the following

command can be issued:

spcm_dwSetParam_i64 (NULL, SPC_NETBOX WAKEONLAN,

0x00032d2048ec) ;

Tests and Monitoring

[Transfer speed Test |

Netbox type
on2). (203 v|-[o2 ~

1P address

Add Netbox manually | 7|23

Memory Test
Identification
Moniitor

Netbox / Remote Server

Netbox Discovery
Add Neﬂmt manually

Quit

Spectrum Contrel Center V1.74 (Lib ¥3.33) (Loglevel 1) [DEVIL-!

Cord | Device Mapping | Support | About/ versions |

Details
4 Local
W4i2234-58
4 Remote
4 192.168168.20
Cached M2i4™ "

Information

sn 00001

Add demo card
Transfer Speed Test

Netbox Discovery
Open Web Interface
Start Netbox Monitor
Wake remote device
Map remete device
Update cached card

Delete cached card

Refresh

(c) Spectrum GmbH

31

Card Control Center Software

Netbox Monitor

The Netbox Monitor permanently monitors whether the digitizerNETBOX/generatorNETBOX is still available through LAN. This tool is helpful
if the digitizerNETBOX is located somewhere in the company LAN or located remotely or directly mounted inside another device. Starting
the Netbox Monitor can be done in two different ways:

e Starting manually from the Spectrum Control Center using the context menu as shown above

e Starting from command line. The Netbox Monitor program is automatically installed together with the Spectrum Control Center and is
located in the selected install folder. Using the command line tool one can place a simple script into the autostart folder to have the Net-
box Monitor running automatically after system boot. The command line tool needs the IP address of the

digitizerNETBOX/generatorNETBOX to monitor:

NetboxMonitor 192.168.169.22

The Netbox Monitor is shown as a small window with the type of digitizerNETBOX/generatorNETBOX in the title and the IP ad- i
dress under which it is accessed in the window itself. The Netbox Monitor runs completely independent of any other software and
can be used in parallel to any application software. The background of the IP address is used to display the current status of the

device. Pressing the Escape key or alt + F4 (Windows) terminates the Netbox Monitor permanently.

After starting the Netbox Monitor it is also displayed as a tray icon under Windows. The tray icon itself shows the status .
of the digitizerNETBOX/generatorNETBOX as a color. Please note that the tray icon may be hidden as a Windows Shon
default and need to be set to visible using the Windows tray setup. o
Open Web interface
Left clicking on the tray icon will hide/show the small Netbox Monitor status window. Right clicking on the tray icon as ta
shown in the picture on the right will open up a context menu. In here one can again select to hide/show the Netbox
Monitor status window, one can directly open the web interface from here or quit the program (including the tray icon)
completely.

V| ShowStatusMessages |
{
[

The checkbox ,Show Status Message” controls whether the tray icon should emerge a status message on status change. If enabled (which is
default) one is notified with a status message if for example the LAN connection to the digitizerNETBOX/generatorNETBOX is lost.

The status colors:

Green: digitizerNETBOX/generatorNETBOX available and accessible over LAN

Cyan: digitizerNETBOX/generatorNETBOX is used from my computer

Yellow: digitizerNETBOX/generatorNETBOX is used from a different computer

Red: LAN connection failed, digitizerNETBOX/generatorNETBOX is no longer accessible

Device identification

Pressing the Identification button helps to identify a certain device in either a remote location, such as inside

a 19" rack where the back of the device with the type plate is not easily accessible, or a local device installed @/ Netoox D ==l
in a certain slot. Pressing the button starts flashing a visible LED on the device, until the dialog is closed, for: @ e binies
¢ On a digitizerNETBOX or generatorNETBOX: the LAN LED light on the front plate of the device

e On local or remote M4i, M4x or M2p card: the indicator LED on the card’s bracket

This feature is not available for M2i/M3i cards, either local or remote, other than inside a digitizerNETBOX or generatorNETBOX.

32 M3i.41xx / M3i.41xx-exp Manual

Software

Card Control Center

Hardware information

Through the control center you can easily get the main information
about all the installed Spectrum hardware. For each installed card
there is a separate tree of information available. The picture shows the
information for one installed card by example. This given information
contains:

e Basic information as the type of card, the production date and its
serial number, as well as the installed memory, the hardware revi-
sion of the base card, the number of available channels and
installed acquisition modules.

¢ Information about the maximum sampling clock and the available
quartz clock sources.

¢ The installed features/options in a sub-ree. The shown card is
equipped for example with the option Multiple Recording, Gated
Sampling, Timestamp and ABA-mode.

e Detailed Information concerning the installed acquisition modules.
In case of the shown analog acquisition card the information con-
sists of the module’s hardware revision, of the converter resolution
and the last calibration date as well as detailed information on the
available analog input ranges, offset compensation capabilities
and additional features of the inputs.

Spectrum Control Center V1.74 (Lib V3.33) (Loglevel 1) [DEV11-WINT64] =
Card | DeviceMapping | Suppart | About/Versians |
Details Information Demo cards
4 Local
4 (V41223458 sn 00001
handle name fdev/spemd Edit Democard
on-board Memary 4096 MByte .
max Sampling Rate 125000 MS/s Delete Democard
Quarz1 not installed
Quarz2 net installed Updates
Production Date Week 24 of 2017
+ Installed Card Features 0000008f
> Custom Modification 00000000
Installed Extended Card Fea... none (0)
Version Base Card 9.28
Meodules 0
Channels 0 Calibration
» Ext Trig 0 Features 0000011
> Ext Trig 1 Features 00000116
+ Ext Clock 0 Features 00000019
> Timestamp Features 00091707 Tests and Maritoring
+ Firmware versions
4 Mo Information
Version Module A 40
Resolution 8 Bit
Calibration Date (Facto... Week 0 of 2000
Analog Input Paths 1
4 Tnput Ranges s
Range0 -200 mV to 200 mV
Rangel -500 mV to 500 mV Netbox / Remote Server
Range 2 ~1000 mV to 1000 mY
Range3 -2500 mV to 2500 mV
.+ Programmable Dffsets
+ Analog Input Features
> Software License Jpdate cached card
gt Delete cadhed card
4 Remote
4 10216816920
Cached M2i.4652-Exp sn 00665

Quit

Firmware information

Demo cards

Add Democard
Edit Democard
Delete Democard
Updates
Eirmware Upgrade

Install SW License

Install Feature

Calibration

Calibration

Transfer Speed Test
Memory Test

Identification

7
3
=
H
]
2
=
g
S
g
S
3

Monitor
Metbox [Remote Server
Netbox Discovery

Add Metbox manually

Update cached card

Delete cached card

Spectrum Control Center V1.74 (Lib V3.33) (Loglevel 1) [DEVI1-WIN764]
Another sub-ree is informing about the cards firmware ver- e [P [
sion. As all Spectrum cards consist of several programmable = —
. . . etails nformation
components, there is one firmware version per component. + Local
4 M4i.2234-8 5 00001
. handle name Jdev/spemi
Nearly all of the components .flrmwore can b§ updot.ed by Srme it
software. The only exception is the configuration device, max Sampling Rate 125000 WS/
B H Quarz1 not installed
which only can receive a factory update. 2 e
Production Date Week 24 of 2017
The procedure on how to update the firmware of your Spec- g MstalicclCard Fentures i
. . K » Custom Madification 00000000
trum card with the help of the card control center is described Installed Extended Card Fea... none (0)
in a dedicated section later on. Version Base Card 9.28
Modules a
Channels a
The procedure on how to update the firmware of your ’ xy‘gggewes gggggig
. g . . > rig 1 Features
digitizerNETBOX/generatorNETBOX with the help of the in- SRR P
tegrated Webserver is described in a dedicated chapter later » Timestamp Features 00091707
4 |Firmware versions
on. Main Control Standard ~ 1.28
Main Control Golden 228
Currently used 1.28 (Standard)
Power 1.08
> Module Information
» Software License
» Physical Location
> Remote
[Quit

(c) Spectrum GmbH

33

Card Control Center Software

Driver information

. . . .
Software License information Bhici i P
handle name /dev/spcm0
This sub-ree is informing about installed possible software Ii- e ok
max Sampling Rate 80.00 MS/s Del
censes. Quarzl not installed
Quarz 2 not installed Updates
Production Date Week 17 of 2018 -
As a default all cards come with the demo professional li- . Instolled Cord Festures ~ 0000008F
cense of SBenché, that is limited to 30 starts of the software S e
. . Installed Extended Card Fea... none (0)
with all professional features unlocked. Version Base Card 21
PCB Base Card 11
Medules 1 Calibration
The number of demo starts left can be seen here. " 4 :
> Ext Trig 0 Features 00000117
> Bt Clock 0 Features 00000217
> Timestamp Features 00091707 Tests and Monitoring
> Multi Purpose I/O
irmware versions
> Muodule Information
4 |Software License
Demo Start(s) 30
> Physical Location

Spectrum Control Center V1.74 (Lib V3.33) (Loglevel 1) [DEVI1-WINT64]

The Spectrum card control center also offers a way to
gather information on the installed and used Spectrum
driver.

‘ Card I Device Mapping | Support ‘ About [Versions |

The information on the driver is available through a

dedicated tab, as the picture is showing in the example. S P E C T R U M

The provided information informs about the used type, INSTRUMENTATION
distinguishing between Windows or Linux driver and the

32 bit or 64 bit fype. Spectrum Control Center

{c) Spectrum GmbH, 2006 - 2016

. Version 1.74 build 13723
It also gives direct information about the version of the

installed Spectrum kernel driver, separately for M2i/ M3i
cards and M4i/M4x/M2p cards and the version of the
library (which is the *.dll file under Windows).

Spcm Driver Version
Library Version Version 3,33 Build 13869

The information given here can also be found under e A ot v

Windows using the device manager form the Kernel Version M4 Version 1,01 Buid 12200
control panel. For details in driver details within the con- Type Windows WOWG#
trol panel please stick to the section on driver installation

in your hardware manual.
[check on startup

Installing and removing Demo cards

r@ Add a Spectrum demo card l ? G
With the help of the card control center one can install demo cards —
in the system. A demo card is simulated by the Spectrum driver in- Lo Coxdh eelechon
cluding data production for acquisition cards. As the demo card is [M2psca = | [5930¢ + | [M2p. 5962504 - 4x125 M= AD 168it |
simulated on the lowest driver level all software can be tested in-
cluding SBench, own applications and drivers for third-party prod- Card Detale

ucts like LabVIEW. The driver supports up to 64 demo cards at the
same time. The simulated memory as well as the simulated software sy

options can be defined when adding a demo card to the system. prm—
Eeatres

Please keep in mind that these demo cards are only meant to test Features
software and to show certain abilities of the software. They do not
simulate the complete behavior of a card, especially not any timing
concerning frigger, recording length or FIFO mode notification. The
demo card will calculate data every time directly affer been called
and give it to the user application without any more delay. As the
calculation routine isn't speed optimized, generating demo data

may take more time than acquiring real data and transferring them

Multiple Recording Timestamp Star-Hub 6 Cards

[] star-Hub 16 Cards

0V Amplifier M

[7] Digital 1/0 (sME) [7] Digital 1/0 (FX2)

w

ystem

em Star

[7] remote Server

to fhe hOSf PC Block Statistics Boxcar Averaging |
|nsto||e.d demo ca_rds are listed to_geiher with the_re.ol hardware in Mo oo OB S
the main information tree as described above. Existing demo cards : il

0 = Default = 500,00 MHz

can be deleted by clicking the related button. The demo card de-
tails can be edited by using the edit button. It is for example possi-
ble to virtually install additional feature to one card or to change Add Card Cancel

the type to test with a different number of channels.

34 M3i.41xx / M3i.41xx-exp Manual

Software

Card Control Center

For installing demo cards on a system without real hardware simply run the Control Center installer. If the
installer is not detecting the necessary driver files normally residing on a system with real hardware, it will Q

simply install the Spem_driver.

Feature upgrade

All optional features of the M2i/M3i/M4i/M4x/M2p cards that do not require

any hardware modifications can be installed on fielded cards. After Spectrum has
received the order, the customer will get a personalized upgrade code. Just start
the card control center, click on ,install feature” and enter that given code. After a
short moment the feature will be installed and ready to use. No restart of the host

system is required.

N

Feature Update for M3i.4142 sn 08025

X

Please enter the feature update code as it's written in the update licence

oK] [Cancel

For details on the available options and prices please contact your local Spectrum

distributor.

Software License upgrade

The software license for SBench 6 Professional is installed on the hardware. If order-
ing a software license for a card that has already been delivered you will get an up-
grade code to install that software license. The upgrade code will only match for that
particular card with the serial number given in the license. To install the software Ii-
cense please click the ,Install SW License” button and type in the code exactly as

given in the license.

Performing card calibration

The card control center also provides an easy way to access the
automatic card calibration routines of the Spectrum A/D convert-
er cards. Depending on the used card family this can affect offset
calibration only or also might include gain calibration. Please re-
fer to the dedicated chapter in your hardware manual for details.

Performing memory test

The complete on-board memory of the Spectrum M2i/M3i/M4i/M4x/M2p
cards can be tested by the memory test included with the card control center.

When starting the test, randomized data is generated and written to the on-
board memory. After a complete write cycle all the data is read back and com-

pared with the generated pattern.

Depending on the amount of installed on-board memory, and your computer’s

performance this operation might take a while.

Transfer speed test

The control center allows to measure the bus transfer
speed of an installed Spectrum card. Therefore different
setup is run multiple times and the overall bus transfer
speed is measured. To get reliable results it is necessary
that you disable debug logging as shown below. Itis also
highly recommended that no other software or time-con-
suming background threads are running on that system.
The speed test program runs the following two fests:

® Repetitive Memory Transfers: single DMA data trans-
fers are repeated and measured. This fest simulates
the measuring of pulse repetition frequency when
doing multiple single-shots. The test is done using dif-
ferent block sizes. One can estimate the transfer in

SW License Update for M3i.4142 sn 08025

X

Please enter the license update code as it's written in the update licence

593afecef3

oK] I Cancel

Calibration M3i.4142 sn 08025

Calibration running ...

L

Cancel [

tart Loop

Please press the start button to start the automatic offset and gain calibration

-IR = 200mV CH = 0x0003 5R = 250,000 MS/s Setup 2 - Gain Calibration
-IR = 200mV CH =0x0003 SR = 250,000 M5fs Setup 2 - Offset Calibration

v
Memory Test M3i4142 sn 08025 X
Press the Start button to start the Memary Test of this card
Testing 256 MByte of memory -
Random Start Pattern: 0x165467b4
Writing test data to card...
Reading test data from card...

Speed Test M3i.4142 sn 08025

D [|

Press the Start button to start the Speed Test of this card

card can only be tested for FIFO mode matching the card direction.
For performance reasons buffer size = 4 * Notifysize.
Motifysize: 1024 kByte Read 110.7 MBfs

Continuous memory used

Motifysize: 2048 kByte Read 110.7 MB/s

Concel | | m—

Continuous memory used

Start Loop

interface with full speed. The resulting speed depends on the selected notification size as a small notify | »
size generates very many interrupts and status reads that disturbs the continuous data transfer, The

65% Quit

relation to the transferred data size on multiple single-shots.
¢ FIFO mode streaming: this test measures the streaming speed in FIFO mode. The test can only use the same direction of transfer the card
has been designed for (card to PC=read for all DAQ cards, PC to card=write for all generator cards and both directions for I/O cards).
The streaming speed is tested without using the front-end to measure the maximum bus speed that can be reached.
The Speed in FIFO mode depends on the selected notify size which is explained later in this manual in greater detail.

(c) Spectrum GmbH

35

Card Control Center Software

The results are given in MB/s meaning MByte per second. To estimate whether a desired acquisition speed is possible to reach one has to
calculate the transfer speed in bytes. There are a few things that have to be put into the calculation:

12, 14 and 16 bit analog cards need two bytes for each sample.

16 channel digital cards need 2 bytes per sample while 32 channel digital cards need 4 bytes and 64 channel digital cards need 8
bytes.

The sum of analog channels must be used to calculate the total transfer rate.

The figures in the Speed Test Utility are given as MBytes, meaning 1024 * 1024 Bytes, 1 MByte = 1048576 Bytes

As an example running a card with 2 14 bit analog channels with 28 MHz produces a transfer rate of [2 channels * 2 Bytes/Sample *
28000000] = 112000000 Bytes/second. Taking the above figures measured on a standard 33 MHz PCl slot the system is just capable of
reaching this transfer speed: 108.0 MB/s = 108 * 1024 * 1024 = 113246208 Bytes/second.

Unfortunately it is not possible to measure transfer speed on a system without having a Spectrum card installed.

Debug logging for support cases

For answering your support questions as fast as possible, the

Spectrum Control Center V1,74 (Lib V3.33) (Loglevel 1) [DEVI1-WINTG4]

setup of the card, driver and firmware version and other in- | card | DeviceMapping | Support | About/Versions |
formation is very helpful. Debug Logaing
Therefore the card control center provides an easy way to togleve (ianslEnem
gather all that information automatically. LogPath CiiUsersthjoern}
[Append Logging to file File Name spcmdry_debug. et E
Different debug log levels are available through the graphi-
cal interface. By default the log level is set to ,no logging” for Kernel Registry Settings
maximum performcmce. Continuous Memory Allocation Per Card (MB) 0

The customer can select different log levels and the path of
the generated ASCII text file. One can also decide to delete the previous log file first before creating a new one automatically or to append
different logs to one single log file.

For maximum performance of your hardware, please make sure that the debug logging is set to ,no log-
ging” for normal operation. Please keep in mind that a detailed logging in append mode can quickly gener-
ate huge log files.

Device mapping

Within the ,Device mapping” tab of the Spectrum Control Center, one can en-

able the re-mapping of Spectrum devices, be it either local cards, remote instru- ST BT S (D28 sz 2 AR i
ments such as a digitizerNETBOX or generatorNETBOX or even cards in a Device Mapping (actve) | Suppert. ||_about] Versions |
remote PC and accessed via the Spectrum remote server option. [nsbied
Local Devices:
In the left column the re-mapped device name is visible that is given to the device spemi|sperml / WHiS622- SN 656

in the right column with its original un-mapped device string. sl ronD /MBS

In this example the two local cards ,spcm0” and ,,spcm1“ are re-mapped to
.spcm1” and ,spcmO” respectively, so that their names are simply swapped.

The remote digitizerNETBOX device is mapped fo spcm?2.

Remote Devices:

spcm2 TCPIP[0]:192.168.169.39::inst0:INSTR / M2i4652-Exp SN 1
The application software can then use the re-mapped name for simplicity instead
of the quite long VISA string.

Changing the order of devices within one group [either local cards or remote
devices) can simply be accomplished by draging&dropping the cards to their
desired position in the same table.

Add Remote Devices ... Remo

[Quit

36 M3i.41xx / M3i.41xx-exp Manual

Software Accessing the hardware with SBench 6

Firmware upgrade

Firmware UpgradeM3i.4142 sn 08025 (2 [t
One of the major features of the card control center is the ability to update
the card’s firmware by an easy-to-use software. The latest firmware revi- FrESe R e TR T e s
sions can be found in the download section of our homepage under Current Status:

www.spectrum-instrumentation.com.
Firmware version Status:

A new firmware version is provided there as an installer, that copies the Control: [current 1.14-00] [mew 1.14-00] [Up to date]
latest firmware to your system. All files are located in a dedicated subfold-
er ,FirmwareUpdate” that will be created inside the Spectrum installation
folder. Under Windows this folder by default has been created in the stan-
dard program installation directory.

Module A: [current 1,11-00] [new 1.12-00] [Update needed]

Press Start button to do the update ...

Please do the following steps when wanting to update the firmware of Firmware update started...
your M2i/M3i/M4i/M4x/M2p card:

The firmware update may need a couple of minutes. Please do not abort the
update and do not switch the PC off while the update is running. If the update

® Download the latest software driver for your operoting system pro- fails the firmware of the card may be corrupted and the card may not run any
R e > : e I
wded on fhe Spectrum homepoge. longer! It is not possible to cancel or quit the running update.
e Install the new driver as described in the driver install section of your Writing Module A ...

hardware manual or install manual. All manuals can also be found on
the Spectrum homepage in the literature download section.
Download and run the latest Spectrum Control Center installer.
Download the installer for the new firmware version.

Start the installer and follow the instructions given there.

Start the card control center, select the ,card” tab, select the card from
the listbox and press the ,firmware update” button on the right side. ~

Start Loop Cancel - 53% Quit

% 4

The dialog then will inform you about the currently installed firmware ver-
sion for the different devices on the card and the new versions that are
available. All devices that will be affected with the update are marked as ,update needed”. Simply start the update or cancel the operation
now, as a running update cannot be aborted.

.. Please keep in mind that you have to start the update for each card installed in your system separately.
/Q Select one card after the other from the listbox and press the ,firmware update” button. The firmware in-
’ staller on the other hand only needs to be started once prior to the update.

Do not abort or shut down the computer while the firmware update is in progress. After a successful update
& please shut down your PC completely. The re-powering is required to finally activate the new firmware ver-
sion of your Spectrum card.

Accessing the hardware with SBench 6

Docsoniyie sy sz After the installation of the cards and the drivers it can be useful to first test the
EEOEIEE][] - i e s .| card function with a ready fo run software before starting with programming. If

- accessing a digitizerNETBOX/generatorNETBOX a full SBench 6 Professional
license is installed on the system and can be used without any limitations. For
plug-in card level products a base version of SBench 6 is delivered with the card
on USB-Stick also including a 30 starts Professional demo version for plain card
products. If you already have bought a card prior to the first SBench 6 release
please contact your local dealer to get a SBench 6 Professional demo version.
All digitizerNETBOX/generatorNETBOX products come with a pre-installed full
SBench 6 Professional.

[SPECTRUM-UaKZ7N/SB5_Appication

eandard s (Rocord) =

vesie posrg
1615 z=6is]2 Samples

o
a archt B oime
o A u
o archs o

SBench 6 supports all current acquisition and generation cards and
digitizerNETBOX/generatorNETBOX products from Spectrum. Depending on
the used product and the software setup, one can use SBench as a digital stor-
age oscilloscope, a spectrum analyzer, a signal generator, a pattern generator,
a logic analyzer or simply as a data recording front end. Different export and
import formats allow the use of SBench 6 together with a variety of other pro-
grams.

Info

] (=] [[0 4 B () =) PR 9 [0

20
9) =7.327m0
(He) = 546451 He

4

On the USB-Stick you'll find an install version of SBench 6 in the directory ,/Install/SBenché”.

The current version of SBench 6 is available free of charge directly from the Spectrum website: www.spectrum-instrumentation.com. Please
go to the download section and get the latest version there.

SBench 6 has been designed to run under Windows 7, Windows 8 and Windows 10 as well as Linux using KDE, Gnome or Unity Desktop.

(c) Spectrum GmbH 37

C/C++ Driver Interface Software

C/C++ Driver Interface

C/C++ is the main programming language for which the drivers have been designed for. Therefore the interface to C/C++ is the best match.
All the small examples of the manual showing different parts of the hardware programming are done with C. As the libraries offer a standard
interface it is easy to access the libraries also with other programming languages like Delphi, Basic, Python or Java . Please read the following
chapters for additional information on this.

Header files

The basic task before using the driver is to include the header files that are delivered on USB-Stick together with the board. The header files
are found in the directory /Driver/c_header. Please don’t change them in any way because they are updated with each new driver version
to include the new registers and new functionality.

dlityp.h Includes the platform specific definitions for data types and function declarations. All data types are based on these definitions. The use of this type definition
file allows the use of examples and programs on different platforms without changes to the program source. The header file supports Microsoft Visual C++, Bor-
land C++ Builder and GNU C/C++ directly. When using other compilers it might be necessary to make a copy of this file and change the data types accord-
ing to this compiler.

regs.h Defines all registers and commands which are used in the Spectrum driver for the different boards. The registers a board uses are described in the board spe-
cific part of the documentation. This header file is common for all cards. Therefore this file also contains a huge number of registers used on other card types
than the one described in this manual. Please stick to the manual to see which registers are valid for your type of card.

spem_drv.h Defines the functions of the used SpcM driver. All definitions are taken from the file dlltyp.h. The functions themselves are described below.

spcerr.h Contains all error codes used with the Spectrum driver. All error codes that can be given back by any of the driver functions are also described here briefly. The
error codes and their meaning are described in detail in the appendix of this manual.

Example for including the header files:

/] === driver includes -----

#include "dlltyp.h" // 1lst include
#include "regs.h" // 2nd include
#include "spcerr.h" // 3rd include
#include "spcm drv.h" // 4th include

Please always keep the order of including the four Spectrum header files. Otherwise some or all of the func-
A tions do not work properly or compiling your program will be impossible!

General Information on Windows 64 bit drivers

| After installation of the Spectrum é4 bit driver there are two general ways to access the hardware and to de-
velop applications. If you're going to develop a real 64 bit application it is necessary to access the 64 bit
driver dll (spcm_win64.dll) as only this driver dll is supporting the full 64 bit address range.

|325”Auplrnlon| |6ABnApolm:mn

[a28itDrverb | [64Bit Diver o |

But it is still possible to run 32 bit applications or to develop 32 bit applications even under Windows 64 bit.
AT Therefore the 32 bit driver dll (spcm_win32.dll) is also installed in the system. The Spectrum SBench5 software
is for example running under Windows 64 bit using this driver. The 32 bit dll of course only offers the 32 bit
address range and is therefore limited to access only 4 GByte of memory. Beneath both drivers the 64 bit ker-
[Hardware | nel driver is running.

Mixing of 64 bit application with 32 bit dll or vice versa is not possible.

Microsoft Visual C++ 6.0, 2005 and newer 32 Bit

Include Driver

The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win32_msvepp.lib that is delivered together
with the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. Please include the library file in your
Visual C++ project as shown in the examples. All functions described below are now available in your program.

Examples

Examples can be found on USB-Stick in the path /examples/c_cpp. This directory includes a number of different examples that can be used
with any card of the same type (e.g. A/D acquisition cards, D/A acquisition cards). You may use these examples as a base for own pro-
gramming and modify them as you like. The example directories contain a running workspace file for Microsoft Visual C++ 6.0 (*.dsw) as
well as project files for Microsoft Visual Studio 2005 and newer (*.vcproj) that can be directly loaded or imported and compiled.

There are also some more board type independent examples in separate subdirectory. These examples show different aspects of the cards
like programming options or synchronization and can be combined with one of the board type specific examples.

As the examples are build for a card class there are some checking routines and differentiation between cards families. Differentiation aspects
can be number of channels, data width, maximum speed or other details. It is recommended to change the examples matching your card
type to obtain maximum performance. Please be informed that the examples are made for easy understanding and simple showing of one
aspect of programming. Most of the examples are not optimized for maximum throughput or repetition rates.

Microsoft Visual C++ 2005 and newer 64 Bit

Depending on your version of the Visual Studio suite it may be necessary to install some additional 64 bit components (SDK) on your system.
Please follow the instructions found on the MSDN for further information.

38 M3i.41xx / M3i.41xx-exp Manual

Software C/C++ Driver Interface

Include Driver

The driver files can be directly included in Microsoft C++ by simply using the library file spcm_winé4_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. All functions described below are
now available in your program.

C++ Builder 32 Bit

Include Driver

The driver files can be easily included in C++ Builder by simply using the library file spcm_win32_bcppb.lib that is delivered together with
the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. Please include the library file in your C++
Builder project as shown in the examples. All functions described below are now available in your program.

Examples
The C++ Builder examples share the sources with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. In each example directory are project files for Visual C++ as well as C++ Builder.

Linux Gnu C/C++ 32/64 Bit

Include Driver

The interface of the linux drivers does not differ from the windows interface. Please include the spem_linux.lib library in your makefile to have
access to all driver functions. A makefile may look like this:

COMPILER = gcc
EXECUTABLE = test_prg
LIBS = -lspcm_linux
OBJECTS = test.o\
test2.o0

all: $(EXECUTABLE)

$ (EXECUTABLE) : $ (OBJECTS)
$ (COMPILER) $ (CFLAGS) -o $(EXECUTABLE) $(LIBS) $(OBJECTS)

%.0: %.cpp
$ (COMPILER) $(CFLAGS) -o $*.0 -c $*.cpp

Examples
The Gnu C/C++ examples share the source with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. Each example directory contains a makefile for the Gnu C/C++ examples.

C++ for .NET

Please see the next chapter for more details on the .NET inclusion.

Other Windows C/C++ compilers 32 Bit

Include Driver

To access the driver, the driver functions must be loaded from the 32 bit driver DLL. Most compilers offer special tools to generate a matching
library (e.g. Borland offers the implib tool that generates a matching library out of the windows driver DLL). If such a tool is available it is
recommended to use it. Otherwise the driver functions need to be loaded from the dll using standard Windows functions. There is one exam-
ple in the example directory /examples/c_cpp/dll_loading that shows the process.

Example of function loading:

hDLL = LoadLibrary ("spcm win32.d11"); // Load the 32 bit version of the Spcm driver
pfn_spcm_hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, "_spcm_hOpen@4”);
pfn_spcm vClose = (SPCM _VCLOSE*) GetProcAddress (hDLL, "_spcm vClose@4");

Other Windows C/C++ compilers 64 Bit

Include Driver

To access the driver, the driver functions must be loaded from the 64 bit the driver DLL. Most compilers offer special tools to generate a match-
ing library (e.g. Borland offers the implib tool that generates a matching library out of the windows driver DLL). If such a tool is available it
is recommended to use it. Otherwise the driver functions need to be loaded from the dll using standard Windows functions. There is one
example in the example directory /examples/c_cpp/dll_loading that shows the process for 32 bit environments. The only line that needs to
be modified is the one loading the DLL:

(c) Spectrum GmbH 39

Driver functions Software

Example of function loading:

hDLL = LoadLibrary ("spcm win64.d11"); // Modified: Load the 64 bit version of the Spcm driver here
pfn _spcm hOpen = (SPCM HOPEN*) GetProcAddress (hDLL, "spcm hOpen");
pfn_spcm vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "spcm_vClose");

Driver functions

The driver contains seven main functions to access the hardware.

Own types used by our drivers

To simplify the use of the header files and our examples with different platforms and compilers and to avoid any implicit type conversions we
decided to use our own type declarations. This allows us to use platform independent and universal examples and driver interfaces. If you
do not stick to these declarations please be sure to use the same data type width. However it is strongly recommended that you use our defined
type declarations to avoid any hard to find errors in your programs. If you're using the driver in an environment that is not natively supported
by our examples and drivers please be sure to use a type declaration that represents a similar data width

Declaration Type Declaration Type

int8 8 bit signed infeger (range from -128 to +127) uint8 8 bit unsigned integer (range from O to 255)

int16 16 bit signed integer (range from -32768 to 32767) uint16 16 bit unsigned integer (range from 0 to 65535)

int32 32 bit signed integer (range from -2147483648 to 2147483647) uint32 32 bit unsigned integer (range from O to 4294967295)
inté4 64 bit signed integer (full range) uinté4 64 bit unsigned integer (full range)

drv_handle handle to driver, implementation depends on operating system platform

Notation of variables and functions

In our header files and examples we use a common and reliable form of notation for variables and functions. Each name also contains the
type as a prefix. This notation form makes it easy to see implicit type conversions and minimizes programming errors that result from using
incorrect types. Feel free to use this notation form for your programs also-

Declaration Notation Declaration Notation

int8 byName (byte) uint8 cName (character)

int16 nName uint16 wName (word)

int32 IName (long) uint32 dwName (double word)

int64 IIName (long long) uint64 qwName (quad word)

int32* pIName (pointer fo long) char szName (string with zero termination)

Function spcm hOpen

This function initializes and opens an installed card supporting the new SpcM driver interface, which at the time of printing, are all cards of
the M2i/M3i/M4i/M4x/M2p series and the related digitizerNETBOX/generatorNETBOX devices. The function returns a handle that has to
be used for driver access. If the card can’t be found or the loading of the driver generated an error the function returns a NULL. When calling
this function all card specific installation parameters are read out from the hardware and stored within the driver. It is only possible to open
one device by one software as concurrent hardware access may be very critical to system stability. As a result when trying to open the same
device twice an error will be raised and the function returns NULL.

Function spcm_hOpen (const char* szDeviceName):

drv_handle _stdcall spcm_hOpen (// tries to open the device and returns handle or error code
const char* szDeviceName) ; // name of the device to be opened

Under Linux the device name in the function call needs to be a valid device name. Please change the string according to the location of the
device if you don’t use the standard Linux device names. The driver is installed as default under /dev/spcmO, /dev/spcm1 and so on. The
kernel driver numbers the devices starting with 0.

Under Windows the only part of the device name that is used is the tailing number. The rest of the device name is ignored. Therefore to keep
the examples simple we use the Linux notation in all our examples. The tailing number gives the index of the device to open. The Windows

kernel driver numbers all devices that it finds on boot time starting with 0.

Example for local installed cards

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("/dev/spcmO"); // string to the driver to open
if (!'hDrv)

printf (“open of driver failed\n”);

Example for digitizerNETBOX/generatorNETBOX and remote installed cards

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm _hOpen ("TCPIP::192.168.169.14::INSTO::INSTR");
if (!'hDrv)

printf (“open of driver failed\n”);

40 M3i.41xx / M3i.41xx-exp Manual

Software Driver functions

If the function returns a NULL it is possible to read out the error description of the failed open function by simply passing this NULL to the error
function. The error function is described in one of the next topics.

Function spcm_vClose

This function closes the driver and releases all allocated resources. After closing the driver handle it is not possible to access this driver any
more. Be sure to close the driver if you don’t need it any more to allow other programs to get access to this device.

Function spem_vClose:

void stdcall spcm vClose (// closes the device
drv_handle hDevice) ; // handle to an already opened device

Example:

spcm_vClose (hDrv);

Function spcm dwSetParam

All hardware settings are based on software registers that can be set by one of the functions spcm_dwSetParam. These functions set a register
to a defined value or execute a command. The board must first be initialized by the spcm_hOpen function. The parameter IRegister must have
a valid software register constant as defined in regs.h. The available software registers for the driver are listed in the board specific part of
the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what is
zero.

Function spcm_deeiPorqm

uint32 _stdcall spcm dwSetParam i32 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be modified
int32 1value) ; // the value to be set

uint32 _stdcall spcm dwSetParam i64m (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be modified
int32 1valueHigh, // upper 32 bit of the value. Containing the sign bit !
uint32 dwValueLow) ; // lower 32 bit of the value.

uint32 _stdcall spcm dwSetParam i64 (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be modified
int64 1lvalue) ; // the value to be set

Example:
if (spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, 16384) != ERR_OK)

printf (“Error when setting memory size\n”);

This example sets the memory size to 16 kSamples (16384). If an error occurred the example will show a short error message

Function spcm dwGetParam

All hardware settings are based on software registers that can be read by one of the functions spcm_dwGetParam. These functions read an
internal register or status information. The board must first be initialized by the spcm_hOpen function. The parameter IRegister must have a
valid software register constant as defined in the regs.h file. The available software registers for the driver are listed in the board specific part
of the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what
is zero.

Function spcm_dwGetParam

uint32 _stdcall spcm dwGetParam i32 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be read out
int32* plvalue) ; // pointer for the return value
uint32 stdcall spcm dwGetParam i64m (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be read out
int32* plValueHigh, // pointer for the upper part of the return value
uint32* pdwValueLow) ; // pointer for the lower part of the return value
uint32 stdcall spcm dwGetParam i64 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 lRegister, // software register to be read out
int64* pllvalue) ; // pointer for the return value

(c) Spectrum GmbH 41

Driver functions Software

Example:

int32 1lSerialNumber;
spcm_dwGetParam i32 (hDrv,
printf (“Your card has serial number:

SPC_PCISERIALNO, &lSerialNumber);
%05d\n”, 1lSerialNumber) ;

The example reads out the serial number of the installed card and prints it. As the serial number is available under all circumstances there is
no error checking when calling this function.

Different call types of spcm_dwSetParam and spcm_dwGetParam: i32, i64, i64m

The three functions only differ in the type of the parameters that are used to call them. As some of the registers can exceed the 32 bit integer
range (like memory size or post trigger) it is recommended to use the _i64 function to access these registers. However as there are some
programs or compilers that don't support 64 bit integer variables there are two functions that are limited to 32 bit integer variables. In case
that you do not access registers that exceed 32 bit integer please use the _i32 function. In case that you access a register which exceeds 64
bit value please use the _i64m calling convention. Inhere the 64 bit value is split into a low double word part and a high double word part.
Please be sure fo fill both parts with valid information.

If accessing 64 bit registers with 32 bit functions the behavior differs depending on the real value that is currently located in the register.
Please have a look at this table to see the different reactions depending on the size of the register:

Internal register read/write Function type Behavior

32 bit register read spem_dwGetParam_i32 value is returned as 32 bit integer in plValue

32 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer in pllValue

32 bit register read spcm_dwGetParam_ié4m value is returned as 64 bit integer, the lower part in plValuelow, the upper part in plValueHigh. The upper part can
be ignored as it's only a sign extension

32 bit register write spcm_dwSetParam_i32 32 bit value can be directly written

32 bit register write spcm_dwSetParam_i64 64 bit value can be directly written, please be sure not to exceed the valid register value range

32 bit register write spcm_dwSetParam_i64m 32 bit value is written as lIValuelow, the value [IValueHigh needs to contain the sign extension of this value. In case
of lIValuelow being a value >= 0 IIValueHigh can be 0, in case of lIValuelow being a value < O, lIValueHigh has to
be -1.

64 bit register read spcm_dwGetParam_i32 If the internal register has a value that is inside the 32 bit integer range (-2G up to (2G - 1)) the value is returned
normally. If the internal register exceeds this size an error code ERR_EXCEEDSINT32 is returned. As an example:
reading back the installed memory will work as long as this memory is < 2 GByte. If the installed memory is >= 2
GByte the function will return an error.

64 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer value in pllValue independent of the value of the internal register.

64 bit register read spem_dwGetParam_ié4m the internal value is split into a low and a high part. As long as the internal value is within the 32 bit range, the low
part plValuelow contains the 32 bit value and the upper part plValueHigh can be ignored. If the internal value
exceeds the 32 bit range it is absolutely necessary to take both value parts into account.

64 bit register write spcm_dwSetParam_i32 the value to be written is limited to 32 bit range. If a value higher than the 32 bit range should be written, one of
the other function types need to used.

64 bit register write spcm_dwSetParam_i64 the value has to be split into two parts. Be sure to fill the upper part [ValueHigh with the correct sign extension even
if you only write a 32 bit value as the driver every time interprets both parts of the function call.

64 bit register write spcm_dwSetParam_ié4m the value can be written directly independent of the size.

Function spcm dwGetContBuf

This function reads out the internal continuous memory buffer in bytes, in case one has been allocated. If no buffer has been allocated the

function returns a size of zero and a NULL pointer. You may use this buffer for data transfers. As the buffer is continuously allocated in memory
the data transfer will speed up by up to 15% - 25%, depending on your specific kind of card. Please see further details in the appendix of
this manual.

uint32 _stdcall spcm_dwGetContBuf i64 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF XXXX
void** ppvDataBuffer, // address of available data buffer
uint64* pgwContBufLen) ; // length of available continuous buffer

uint32 _stdcall spcm dwGetContBuf i64m (// Return value is an error code

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_ XXXX
void** ppvDataBuffer, // address of available data buffer

uint32* pdwContBufLenH, // high part of length of available continuous buffer

uint32* pdwContBufLenL) ; // low part of length of available continuous buffer

These functions have been added in driver version 1.36. The functions are not available in older driver ver-
sions.

These functions also only have effect on locally installed cards and are neither useful nor usable with any
digitizerNETBOX or generatorNETBOX products, because no local kernel driver is involved in such a setup.
For remote devices these functions will return a NULL pointer for the buffer and 0 Bytes in length.

A\
A\

Function spcm dwDefTransfer

The spcm_dwDefTransfer function defines a buffer for a following data transfer. This function only defines the buffer, there is no data transfer
performed when calling this function. Instead the data transfer is started with separate register commands that are documented in a later
chapter. At this position there is also a detailed description of the function parameters.

Please make sure that all parameters of this function match. It is especially necessary that the buffer address is a valid address pointing to

42 M3i.41xx / M3i.41xx-exp Manual

Software Driver functions

memory buffer that has at least the size that is defined in the function call. Please be informed that calling this function with non valid param-
eters may crash your system as these values are base for following DMA transfers.

The use of this function is described in greater detail in a later chapter.

Function spcm_dwDefTransfer

uint32 stdcall spcm dwDefTransfer i64m(// Defines the transfer buffer by 2 x 32 bit unsigned integer

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to define as listed above under SPCM_BUF_XXXX
uint32 dwDirection, // the transfer direction as defined above

uint32 dwNotifySize, // no. of bytes after which an event is sent (0O=end of transfer)
void* pvDataBuffer, // pointer to the data buffer

uint32 dwBrdOffsH, // high part of offset in board memory

uint32 dwBrdOffsL, // low part of offset in board memory

uint32 dwTransferLenH, // high part of transfer buffer length

uint32 dwTransferLenLl) ; // low part of transfer buffer length

uint32 stdcall spcm dwDefTransfer i64 (// Defines the transfer buffer by using 64 bit unsigned integer values

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to define as listed above under SPCM_BUF_XXXX
uint32 dwDirection, // the transfer direction as defined above

uint32 dwNotifySize, // no. of bytes after which an event is sent (0=end of transfer)
void* pvDataBuffer, // pointer to the data buffer

uint64 qwBrdOffs, // offset for transfer in board memory

uint64 qwTransferlLen) ; // buffer length

This function is available in two different formats as the spcm_dwGetParam and spem_dwSetParam functions are. The background is the
same. As long as you're using a compiler that supports 64 bit integer values please use the _i64 function. Any other platform needs to use
the _ié4m function and split offset and length in two 32 bit words.

Example:
intl6* pnBuffer = (intl6*) pvAllocMemPageAligned (16384);
if (spcm dwDefTransfer i64 (hDrv, SPCM BUF DATA, SPCM DIR CARDTOPC, 0, (void*) pnBuffer, 0, 16384) != ERR OK)

printf (“DefTransfer failed\n”);

The example defines a data buffer of 8 kSamples of 16 bit integer values = 16 kByte (16384 byte) for a transfer from card to PC memory.
As notify size is set to O we only want to get an event when the transfer has finished.

Function spcm dwinvalidateBuf

The invalidate buffer function is used to tell the driver that the buffer that has been set with spcm_dwDefTransfer call is no longer valid. It is
necessary fo use the same buffer type as the driver handles different buffers at the same time. Call this function if you want to delete the buffer
memory after calling the spcm_dwDefTransfer function. If the buffer already has been transferred after calling specm_dwDefTransfer it is not
necessary to call this function. When calling spcm_dwDefTransfer any further defined buffer is automatically invalidated.

Function spcm_dwlnvalidateBuf

uint32 stdcall spcm dwInvalidateBuf (// invalidate the transfer buffer
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType) ; // type of the buffer to invalidate as

// listed above under SPCM BUF XXXX

Function spcm_dwGetErrorinfo
The function returns complete error information on the last error that has occurred. The error handling itself is explained in a later chapter in
greater detail. When calling this function please be sure to have a text buffer allocated that has at least ERRORTEXTLEN length. The error text
function returns a complete description of the error including the register/value combination that has raised the error and a short description
of the error details. In addition it is possible to get back the error generating register/value for own error handling. If not needed the buffers
for register/value can be left to NULL.

but as a valid event. Therefore the GetErrorinfo function won’t return the timeout event even if it had occurred
in between. You can only recognize the ERR_TIMEOUT as a direct return value of the wait function that was
called.

Note that the timeout event (ERR_TIMEOUT) is not counted as an error internally as it is not locking the driver j

Function spcm_dwGetErrorinfo

uint32 _stdcall spcm dwGetErrorInfo i32 (

drv_handle hDevice, // handle to an already opened device

uint32* pdwErrorReg, // address of the error register (can be zero if not of interest)
int32* plErrorValue, // address of the error value (can be zero if not of interest)
char pszErrorTextBuffer [ERRORTEXTLEN]); // text buffer for text error

(c) Spectrum GmbH 43

Driver functions

Software

Example:

char szErrorBuf [ERRORTEXTLEN] ;
if (spcm _dwSetParam i64 (hDrv, SPC_MEMSIZE, -1))
{
spcm_deetErrorInfo_i32 (hDrv, NULL, NULL, szErrorBuf);
printf (“Set of memsize failed with error message: %$s\n”, szErrorBuf);

}

44

M3i.41xx / M3i.41xx-exp Manual

Software Delphi (Pascal) Programming Interface

Delphi (Pascal) Programming Interface

Driver interface

The driver interface is located in the sub-directory d_header and contains the following files. The files need to be included in the delphi project
and have fo be put into the ,uses” section of the source files that will access the driver. Please do not edit any of these files as they're regularly
updated if new functions or registers have been included.

file spcm win32.pas
The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library
are similar to the above explained standard driver functions:

[/ —===-= device handling functions -----
function spcm hOpen (strName: pchar): int32; stdcall; external 'spcm win32.dll' name ' spcm hOpen@4';
procedure spcm_vClose (hDevice: int32); stdcall; external 'spcm win32.dll' name '_spcm vClose@4';

function spcm dwGetErrorInfo i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwGetErrorInfo 132Q@16'

Jl ===== register access functions -----
function spcm_dwSetParam_i32 (hDevice, lRegister, lValue: int32): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwSetParam i32@12°';

function spcm_dwSetParam_i64 (hDevice, lRegister: int32; 1llValue: int64): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwSetParam 1i64Q@16°';

function spcm_dwGetParam_i32 (hDevice, lRegister: int32; var plValue: int32): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwGetParam i32@12°';

function spcm_dwGetParam_i64 (hDevice, lRegister: int32; var pllValue: int64): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwGetParam i64@12°';

[l ===== data handling -----
function spcm_dwDefTransfer 164 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer;
11BrdOffs, llTransferLen: int64): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwDefTransfer_ i64@36';
function spcm dwInvalidateBuf (hDevice, 1Buffer: int32): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwlInvalidateBuf@8';

The file also defines types used inside the driver and the examples. The types have similar names as used under C/C++ to keep the examples
more simple to understand and allow a better comparison.

file SpcRegs.pas

The SpcRegs.pas file defines all constants that are used for the driver. The constant names are the same names as used under the C/C++
examples. All constants names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better visibility of the programs:

const SPC_M2CMD = 100; { write a command }

const M2CMD_CARD_RESET = $00000001; { hardware reset }

const M2CMD_CARD_WRITESETUP = $00000002; { write setup only }

const M2CMD_CARD_START = $00000004; { start of card (including writesetup) }
{ enable trigger engine }

const M2CMD_CARD_ENABLETRIGGER = $00000008;

file SpcErr.pas

The SpeErr.pas file contains all error codes that may be returned by the driver.

Including the driver files

To use the driver function and all the defined constants it is necessary to include the files into the project as

shown in the picture on the right. The project overview is taken from one of the examples delivered on USB- LSESSEIEE I & £
Stick. Besides including the driver files in the project it is also necessary to include them in the uses section £l x

of the source files where functions or constants should be used: REY e || e

Drateien |

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls,

SpCm_scope.exe

@ SpcEn.paz

= 5] SPCM_$COpe_main

! B spom_scope_main pas
= formbdain

@ spom_windZ. pas

@ SpcRegs.pas

SpcRegs, SpcErr, spcm win32;

(c) Spectrum GmbH 45

Delphi (Pascal) Programming Interface Software

Examples

Examples for Delphi can be found on USB-Stick in the directory /examples/delphi. The directory contains the above mentioned delphi header
files and a couple of universal examples, each of them working with a certain type of card. Please feel free to use these examples as a base
for your programs and to modify them in any kind.

spcm_scope

The example implements a very simple scope program that makes single acquisitions on button pressing. A fixed setup is done inside the
example. The spcm_scope example can be used with any analog data acquisition card from Spectrum. It covers cards with 1 byte per sample
(8 bit resolution) as well as cards with 2 bytes per sample (12, 14 and 16 bit resolution)

The program shows the following steps:

e Initialization of a card and reading of card information like type, function and serial number
¢ Doing a simple card setup

e Performing the acquisition and waiting for the end interrupt

¢ Reading of data, re-scaling it and displaying waveform on screen

46 M3i.41xx / M3i.41xx-exp Manual

Software .NET programming languages

.NET programming languages

Libra

For using the driver with a .NET based language Spectrum delivers a special library that encapsulates the driver in a .NET object. By adding
this object to the project it is possible to access all driver functions and constants from within your .NET environment.

There is one small console based example for each supported .NET language that shows how to include the driver and how to access the
cards. Please combine this example with the different standard examples to get the different card functionality.

Declaration

The driver access methods and also all the type, register and error declarations are combined in the object Spcm and are located in one of
the two DLLs either SpcmDrv32.NET.dIl or SpecmDrv64.NET.dIl delivered with the .NET examples.

~.. For simplicity, either file is simply called ,SpcmDrv.NET.dIl” in the following passages and the actual file
3,@; name must be replaced with either the 32bit or 64bit version according to your application.

Spectrum also delivers the source code of the DLLs as a C# project. These sources are located in the directory SpcmDrv.NET.

namespace Spcm

{
public class Drv

{
[DllImport ("spcm win32.d11l") Jpublic static extern IntPtr spcm_hOpen (string szDeviceName) ;
[DllImport ("spcm win32.d11")]Jpublic static extern void spcm vClose (IntPtr hDevice);

public class CardType
{

public const int TYP_M212020 = unchecked ((int)0x00032020) ;
public const int TYP_M2I2021 = unchecked ((int)0x00032021);
public const int TYP M2T12025 = unchecked ((int)0x00032025) ;

public class Regs
{

public const int SPC_M2CMD = unchecked ((int)100);

public const int M2CMD_CARD_RESET = unchecked ((int)0x00000001) ;

public const int M2CMD_CARD WRITESETUP = unchecked ((int)0x00000002) ;
Using C#

The SpcmDrv.NET.dIl needs to be included within the Solution Explorer in the References section. Please use right mouse and select
+AddReference”. After this all functions and constants of the driver object are available.

Please see the example in the directory CSharp as a start:

1y ===== open card -----
hDevice = Drv.spcm hOpen ("/dev/spcmO") ;
if ((int)hDevice == 0)

{
Console.WriteLine ("Error: Could not open card\n");
return 1;

/] —==== get card type -----
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCITYP, out 1lCardType);
dwErrorCode = Drv.spcm dwGetParam 132 (hDevice, Regs.SPC_PCISERIALNR, out lSerialNumber);

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

7 ===== open remote card -----
hDevice = Drv.spcm hOpen ("TCPIP::192.168.169.14::INSTO0::INSTR");

(c) Spectrum GmbH 47

.NET programming languages Software

Using Managed C++/CLI

The SpcmDrv.NET.dIl needs to be included within the project options. Please select ,Project” - ,Properties” - ,References” and finally
+Add new Reference”. After this all functions and constants of the driver object are available.

Please see the example in the directory CppCIR as a start:

J ===== open card -----

hDevice = Drv::spcm_hOpen ("/dev/spcm0") ;

if ((int)hDevice == 0)
{
Console::WriteLine ("Error: Could not open card\n");
return 1;

7 ===== get card type -----
dwErrorCode = Drv::spcm dwGetParam i32 (hDevice, Regs::SPC_PCITYP, lCardType);
dwErrorCode = Drv::spcm_deetParam_i32(hDevice, Regs: :SPC_PCISERIALNR, 1SerialNumber) ;

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

[/ —===-= open remote card -----
hDevice = Drv::spcm_hOpen ("TCPIP::192.168.169.14::INSTO: :INSTR") ;

Using VB.NET
The SpcmDrv.NET.dIl needs to be included within the project options. Please select ,Project” - ,Properties” - ,References” and finally
+Add new Reference”. After this all functions and constants of the driver object are available.

Please see the example in the directory VB.NET as a start:

U ooooo cpEm EAaEel =====
hDevice = Drv.spcm_hOpen ("/dev/spcm0")

If (hDevice = 0) Then
Console.WriteLine ("Error: Could not open card\n")
Else

I oo get card type -----
dwError = Drv.spcm _dwGetParam i32 (hDevice, Regs.SPC_PCITYP, 1lCardType)
dwError = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCISERIALNR, lSerialNumber)

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

V cooos open remote card -----
hDevice = Drv.spcm_hOpen ("TCPIP::192.168.169.14::INSTO::INSTR")

Using J#
The SpcmDrv.NET.dIl needs to be included within the Solution Explorer in the References section. Please use right mouse and select ,AddRef-
erence”. After this all functions and constants of the driver object are available.

Please see the example in the directory JSharp as a start:

7 ===== open card -----
hDevice = Drv.spcm_hOpen ("/dev/spcm0") ;

if (hDevice.ToInt32() == 0)
System.out.println("Error: Could not open card\n");
else
{
/] —==== get card type -----
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCITYP, 1CardType);
dwErrorCode = Drv.spcm dwGetParam 132 (hDevice, Regs.SPC_PCISERIALNR, lSerialNumber);

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

' open remote card -----
hDevice = Drv.spcm hOpen ("TCPIP::192.168.169.14::INSTO::INSTR")

48 M3i.41xx / M3i.41xx-exp Manual

Software Python Programming Interface and Examples

Python Programming Interface and Examples

Driver interface

The driver interface contains the following files. The files need to be included in the python project. Please do not edit any of these files as
they are regularily updated if new functions or registers have been included. To use pyspcm you need either python 2 (2.4, 2.6 or 2.7) or

python 3 (3.x) and ctype, which is included in python 2.6 and newer and need:s to be installed separately for Python 2.4.

file pyspem.py

The file contains the interface to the driver library and defines some needed constants. All functions of the python library are similar to the

above explained standard driver functions and use ctypes as input and return parameters:

f coooo Windows -----
spcmDll = windll.LoadLibrary ("c:\\windows\\system32\\spcm win32.d11")

load spcm_hOpen

spcm_hOpen = getattr (spcmDll, " spcm hOpen@4")
spcm_hOpen.argtype = [c_char_p]
spcm_hOpen.restype = drv_handle

load spcm vClose

spcm_vClose = getattr (spcmDll, "_spcm vClose@4")
spcm vClose.argtype = [drv_handle]
spcm_vClose.restype = None

load spcm dwGetErrorInfo

spcm_dwGetErrorInfo_i32 = getattr (spcmDll, " spcm _dwGetErrorInfo_i32Q@16")
spcm_dwGetErrorInfo i32.argtype = [drv_handle, ptr32, ptr32, c_char p]
spcm_dwGetErrorInfo i32.restype = uint32

load spcm_dwGetParam 132

spcm_dwGetParam i32 = getattr (spcmDll, " spcm dwGetParam i32Q12")
spcm_dwGetParam i32.argtype = [drv_handle, int32, ptr32]
spcm_dwGetParam i32.restype = uint32

load spcm_dwGetParam i64

spcm_dwGetParam i64 = getattr (spcmDll, " spcm dwGetParam 1i64Q@12")
spcm_dwGetParam i64.argtype = [drv_handle, int32, ptr64]
spcm_dwGetParam i64.restype = uint32

load spcm dwSetParam i32

spcm_dwSetParam i32 = getattr (spcmDll, " spcm_dwSetParam_i32@12")
spcm_dwSetParam_i32.argtype = [drv_handle, int32, int32]
spcm_dwSetParam i32.restype = uint32

load spcm dwSetParam i64

spcm_dwSetParam i64 = getattr (spcmDll, " spcm dwSetParam i64Q@16"
spcm_dwSetParam i64.argtype = [drv_handle, int32, int64]
spcm_dwSetParam_i64.restype = uint32

load spcm_dwSetParam i64m

spcm_dwSetParam_i64m = getattr (spcmDll, " spcm dwSetParam i64m@16")
spcm_dwSetParam i64m.argtype = [drv_handle, int32, int32, int32]
spcm_dwSetParam i64m.restype = uint32

load spcm dwDefTransfer i64

spcm_dwDefTransfer i64 = getattr (spcmDll, "_spcm_dwDefTransfer 164Q@36"

spcm_dwDefTransfer i164.argtype = [drv_handle, uint32, uint32, uint32, c_void p, uinté4, uinté4]
spcm_dwDefTransfer i164.restype = uint32

spcm_dwInvalidateBuf = getattr (spcmDll, " spcm dwInvalidateBuf@8")
spcm_dwInvalidateBuf.argtype = [drv_handle, uint32]
spcm_dwInvalidateBuf.restype = uint32

HEEESSS Linux -----
use cdll because all driver access functions use cdecl calling convention under linux
spcmD11l = cdll.LoadLibrary ("libspcm linux.so")

the loading of the driver access functions is similar to windows:
load spcm_hOpen

spcm_hOpen = getattr (spcmDll, "spcm hOpen")

spcm_hOpen.argtype = [c_char p]

spcm_hOpen.restype = drv_handle

#

(c) Spectrum GmbH

49

Python Programming Interface and Examples Software

file regs.py

The regs.py file defines all constants that are used for the driver. The constant names are the same names compared to the C/C++ examples.
All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is recommended
to only use these constant names for better readability of the programs:

SPC_M2CMD = 1001 # write a command

M2CMD_CARD_RESET = 0x000000011 # hardware reset
M2CMD_CARD_WRITESETUP = 0x000000021 # write setup only

M2CMD_CARD_START = 0x000000041 # start of card (including writesetup)
M2CMD_CARD_ENABLETRIGGER = 0x000000081 # enable trigger engine

file spcerr.py

The spcerr.py file contains all error codes that may be returned by the driver.

Examples

Examples for Python can be found on USB-Stick in the directory /examples/python. The directory contains the above mentioned header files
and some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs
and to modify them in any kind.

When allocating the buffer for DMA transfers, use the following function to get a mutable character buffer:
A ctypes.create_string_buffer(init_or_size[, size])

50 M3i.41xx / M3i.41xx-exp Manual

Software Java Programming Inferface and Examples

Java Programming Interface and Examples

Driver interface

The driver interface contains the following Java files (classes). The files need to be included in your Java project. Please do not edit any of
these files as they are regularily updated if new functions or registers have been included. The driver interface uses the Java Native Access

(INA) library.
This library is licensed under the LGPL (https://www.gnu.org/licenses/Igpl-3.0.en.html) and has also to be included to your Java project.

To download the latest jna.jar package and to get more information about the JNA project please check the projects GitHub page under:
https://github.com/java-native-access/jna

The following files can be found in the ,SpcmDrv* folder of your Java examples install path.

SpcmDrv32.java / SpemDrvé4.java

The files contain the interface to the driver library and defines some needed constants. All functions of the driver interface are similar to the
above explained standard driver functions. Use the SpcmDrv32.java for 32 bit and the SpecmDrv64.java for 64 bit projects:

public interface SpcmWiné64 extends StdCalllibrary {
SpcmWin64 INSTANCE = (SpcmWiné64)Native.loadLibrary (("spcm win64"), SpcmWiné4.class);

int spcm_hOpen (String sDeviceName) ;
void spcm _vClose (int hDevice);
int spcm dwSetParam i64 (int hDevice, int lRegister, long llValue);
int spcm_dwGetParam i64 (int hDevice, int lRegister, LongByReference pllValue);
int spcm_dwDefTransfer i64 (int hDevice, int 1BufType, int 1Direction, int 1NotifySize,
Pointer pDataBuffer, long 11BrdOffs, long llTransferLen);
int spcm dwlInvalidateBuf (int hDevice, int 1BufType);
int spcm_dwGetErrorInfo_i32 (int hDevice, IntByReference plErrorReg,
IntByReference plErrorValue, Pointer sErrorTextBuffer);

}

SpcmRegs.java

The SpcmRegs class defines all constants that are used for the driver. The constants names are the same names compared to the C/C++
examples. All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better readability of the programs:

public static final int SPC_M2CMD = 100;

public static final int M2CMD_CARD_RESET = 0x00000001;

public static final int M2CMD CARD WRITESETUP = 0x00000002;
public static final int M2CMD_CARD_START = 0x00000004;

public static final int M2CMD_CARD_ENABLETRIGGER = 0x00000008;

SpcmErrors.java

The SpcmErrors class contains all error codes that may be returned by the driver.

Examples

Examples for Java can be found on USB-Stick in the directory /examples/java. The directory contains the above mentioned header files and
some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs and
to modify them in any kind.

(c) Spectrum GmbH 51

LabVIEW driver and examples Software

LabVIEW driver and examples e ——— . -

A full set of drivers and examples is available for LabVIEW for Windows. Lab- ==

VIEW for Linux is currently not supported. The LabVIEW drivers have their own ﬂf“ = = |
manual. The LabVIEW drivers, examples and the manual are found on the USB- -m‘___—l- e
Stick that has been included in the delivery. The latest version is also available Schaha o

on our webpage www.spectrum-instrumentation.com Doame

Please follow the description in the LabVIEW manual for installation and useage

of the LabVIEW drivers for this card.

MATLAB driver and examples | S |

A full set of drivers and examples is available for Mathworks MATLAB for Windows (32 bit
and 64 bit versions) and also for MATLAB for Linux (64 bit version). There is no additional
toolbox needed to run the MATLAB examples and drivers.

1
[MATIAB 32 Bi: spem_hOpen.mexw32 .. | | [MATIAB 64 Bii- spcm_hOpen mexw64, |

spcm_datasort_win64.dll

I

The MATLAB drivers have their own manual. The MATLAB drivers, examples and the manual

are found on the USB-Stick that has been included in the delivery. The latest version is also

1
1
1
1
. . . - 1 T i
available on our webpage www.spectrum-instrumentation.com [Windows Driver DL spem_wind2:dl | | [Windows Driver DLLspem. win6.di |
1
1
— . . . Windows 32 Bi ! Windows 64 Bi
Please follow the description in the MATLAB manual for installation and useage of the !
MATLAB drivers for this card. !
i
| £7 Windows 7 8 Windows 8 2% Windows10 |
Windows 32 Bit | Windows 64 Bit

52 M3i.41xx / M3i.41xx-exp Manual

Programming the Board Overview

Programming the Board

Overview

The following chapters show you in detail how to program the different aspects of the board. For every topic there’s a small example. For
the examples we focused on Visual C++. However as shown in the last chapter the differences in programming the board under different
programming languages are marginal. This manual describes the programming of the whole hardware family. Some of the topics are similar
for all board versions. But some differ a little bit from type to type. Please check the given tables for these topics and examine carefully which
settings are valid for your special kind of board.

Register tables

The programming of the boards is totally software register based. All software registers are described in the following form:

The name of the software regis- | | The decimal value of the software register. | [Describes whether Short description of the function-
ter as found in the regs.h file. Also found in the regs.h file. This value must | | the register can be ality of the register. A more de-
Could directly be used by be used with all programs or compilers that [| read (r) and/or writ-| | tailed description is found
C/C++, Delphi and Basic com- | [cannot use the header file directly. ten (w). above or below the register ta-
* bles.
Register Value Direction Description
SPC_M2CMD 100 w Command register of the board.
M2CMD_CARD_START 4h Starts the board with the current register settings.
M2CMD_CARD_STOP 40h Stops the board manually.
Any constants that can be used to | | The decimal or hexadecimal value of the Short description of
program the register directly are constant, also found in the regs.h file. Hexa-| | the use of this con-
shown inserted beneath the register | | decimal values are indicated with an ,h” at stant.
table. the end. This value must be used with all
programs or compilers that cannot use the
header file directly.

If no constants are given below the register table, the dedicated register is used as a switch. All such registers
are activated if written with a “1“ and deactivated if written with a “0”. A

Programming examples

In this manual a lot of programming examples are used to give you an impression on how the actual mentioned registers can be set within
your own program. All of the examples are located in a separated colored box to indicate the example and to make it easier to differ it from
the describing text.

All of the examples mentioned throughout the manual are written in C/C++ and can be used with any C/C++ compiler for Windows or Linux.

Complete C/C++ Example

#include “../c _header/dlltyp.h”
#include “../c_header/regs.h”
#include “../c_header/spcm_drv.h”

#include <stdio.h>

int main ()

{

drv_handle hDrv; // the handle of the device

int32 1lCardType:; // a place to store card information
hDrv = spcm_hOpen ("/dev/spcmO"); // Opens the board and gets a handle

if (!hDrv) // check whether we can access the card

return -1;

spcm_dwGetParam i32 (hDrv, SPC_PCITYP, &lCardType): // simple command, read out of card type
printf (“Found card M2i/M3i/M4i/M4x/M2p.%04x in the system\n”, 1CardType & TYP_VERSIONMASK) ;
spcm_vClose (hDrv);

return 0;

}

(c) Spectrum GmbH 53

Initialization Programming the Board

Initialization

Before using the card it is necessary to open the kernel device to access the hardware. It is only possible to use every device exclusively using
the handle that is obtained when opening the device. Opening the same device twice will only generate an error code. After ending the
driver use the device has to be closed again to allow later re-opening. Open and close of driver is done using the spcm_hOpen and
spcm_vClose function as described in the “Driver Functions” chapter before.

Open/Close Example

drv_handle hDrv; // the handle of the device
hDrv = spcm_hOpen ("/dev/spcm0"); // Opens the board and gets a handle
if (!hDrv) // check whether we can access the card

{
printf “Open failed\n”);
return -1;

}
. do any work with the driver

spcm_vClose (hDrv);
return 0;

Initialization of Remote Products

The only step that is different when accessing remotely controlled cards or digitizerNETBOXes is the initialization of the driver. Instead of the
local handle one has to open the VISA string that is returned by the discovery function. Alternatively it is also possible to access the card
directly without discovery function if the IP address of the device is known.

drv_handle hDrv; // the handle of the device
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTR"); // Opens the remote board and gets a handle
if (!hDrv) // check whether we can access the card

{
printf “Open of remote card failed\n”);
return -1;

}

Multiple cards are opened by indexing the remote card number:

hDrv = spcm hOpen ("TCPIP::192.168.169.14::INSTR"); // Opens the remote board #0
// or alternatively
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTO0::INSTR"); // Opens the remote board #0
// all other boards require an index:
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTL1::INSTR"); // Opens the remote board #1
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST2::INSTR"); // Opens the remote board #2

Error handling

If one action caused an error in the driver this error and the register and value where it occurs will be saved.

The driver is then locked until the error is read out using the error function spcm_dwGetErrorinfo_i32. Any
& calls to other functions will just return the error code ERR_LASTERR showing that there is an error to be read
out.
This error locking functionality will prevent the generation of unseen false commands and settings that may lead to totally unexpected behav-
jor. For sure there are only errors locked that result on false commands or settings. Any error code that is generated to report a condition to
the user won't lock the driver. As example the error code ERR_TIMEOUT showing that the a timeout in a wait function has occurred won't
lock the driver and the user can simply react to this error code without reading the complete error function.

As a benefit from this error locking it is not necessary to check the error return of each function call but just checking the error function once
at the end of all calls to see where an error occurred. The enhanced error function returns a complete error description that will lead to the
call that produces the error.

54 M3i.41xx / M3i.41xx-exp Manual

Programming the Board Gathering information from the card

Example for error checking at end using the error text from the driver:

char szErrorText [ERRORTEXTLEN] ;
spcm_dwSetParam 164 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam 164 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam 164 (hDrv, SPC POSTTRIGGER, 1024); // correct command
if (spcm_dwGetErrorInfo_i32 (hDrv, NULL, NULL, szErrorText) != ERR_OK) // check for an error
{
printf (szErrorText); // print the error text
spcm_vClose (hDrv); // close the driver
exit (0); // and leave the program
}

This short program then would generate a printout as:

Error ocurred at register SPC MEMSIZE with value -345: value not allowed

All error codes are described in detail in the appendix. Please refer to this error description and the descrip-
tion of the software register to examine the cause for the error message.

Any of the parameters of the spcm_dwGetErrorinfo_i32 function can be used to obtain detailed information on the error. If one is not interested
in parts of this information it is possible to just pass a NULL (zero) to this variable like shown in the example. If one is not inferested in the
error text but wants to install its own error handler it may be interesting to just read out the error generating register and value.

Example for error checking with own (simple) error handler:

uint32 dwErrorReg;
int32 1lErrorValue;
uint32 dwErrorCode;

spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm dwSetParam i64 (hDrv, SPC MEMSIZE, -345); // faulty command
spcm_dwSetParam_ 164 (hDrv, SPC_POSTTRIGGER, 1024); // correct command
dwErrorCode = spcm_dwGetErrorInfo_i32 (hDrv, &dwErrorReg, &lErrorValue, NULL);

if (dwErrorCode) // check for an error

{

printf (“Errorcode: %d in register %d at value %d\n”, lErrorCode, dwErrorReg, lErrorValue);
spcm_vClose (hDrv); // close the driver
exit (0); // and leave the program

}

Gathering information from the card

When opening the card the driver library internally reads out a lot of information from the on-board eeprom. The driver also offers additional
information on hardware details. All of this information can be read out and used for programming and documentation. This chapter will
show all general information that is offered by the driver. There is also some more information on certain parts of the card, like clock machine
or trigger machine, that is described in detail in the documentation of that part of the card.

All information can be read out using one of the spcm_dwGetParam functions. Please stick to the “Driver Functions” chapter for more details
on this function.

Card type

The card type information returns the specific card type that is found under this device. When using multiple cards in one system it is highly
recommended to read out this register first to examine the ordering of cards. Please don’t rely on the card ordering as this is based on the
BIOS, the bus connections and the operating system.

Register Value Direction Description
SPC_PCITYP 2000 read Type of board as listed in the table below.

One of the following values is returned, when reading this register. Each card has its own card type constant defined in regs.h. Please note
that when reading the card information as a hex value, the lower word shows the digits of the card name while the upper word is a indication
for the used bus type.

(c) Spectrum GmbH 55

Gathering information from the card Programming the Board

Card type Card type Value Value Card type Card type Value Value
as defined in hexadecimal decimal as defined in h lecimal decimal
regs.h regs.h

M3i.4110 TYP_M314110 54110h 344336 M3i.4121 TYP_M314121 54121h 344353

M3i4111 TYP_M314111 54111h 344337 M3i.4140 TYP_M314140 54140h 344384

M3i.4120 TYP_M314120 54120h 344352 M3i.4142 TYP_M314142 54142h 344386

M3i.4110-exp TYP_M314110EXP | 64110h 409872 M3i.4121-exp TYP_M3I14121EXP | 64121h 409889

M3i.4111-exp TYP_M3I4111EXP | 64111h 409873 M3i.4140-exp TYP_M314140EXP | 64140h 409920

M3i.4120-exp TYP_M314120EXP | 64120h 409888 M3i.4142-exp TYP_M3I4142EXP | 64142h 409922

Hardware version

Since all of the boards from Spectrum are modular boards, they consist of one base board and one or two piggy-back front-end modules and
eventually of an extension module like the star-hub. Each of these three kinds of hardware has its own version register. Normally you do not
need this information but if you have a support question, please provide the revision together with it.

Register Value Direction Description

SPC_PCIVERSION 2010 read Base card version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

SPC_PCIMODULEVERSION 2012 read Module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

If your board has a additional piggy-back extension module mounted you can get the hardware version with the following register.

Register Value Direction Description

SPC_PCIEXTVERSION 2011 read Extension module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show
the firmware version.

Firmware versions

All the cards from Spectrum typically contain multiple programmable devices such as FPGAs, CPLDs and the like. Each of these have their
own dedicated firmware version. This version information is readable for each device through the various version registers. Normally you do
not need this information but if you have a support question, please provide us with this information. Please note that number of devices and
hence the readable firmware information is card series dependent:

Register Value Direction Description Available for
M2i | M3i | Mdi | M4x | M2p
SPCM_FW_CTRL 210000 read Main control FPGA version: the upper 16 bit show the firmware type, the X X X X X

lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

SPCM_FW_CTRL_GOLDEN 210001 read Main control FPGA golden version: the upper 16 bit show the firmware — — X X X
type, the lower 16 bit show the firmware version. For the golden (recov-
ery) firmware, the type has always a value of 2.

SPCM_FW_CLOCK 210010 read Clock distribution version: the upper 16 bit show the firmware type, the X - — — —
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

SPCM_FW_CONFIG 210020 read Configuration controller version: the upper 16 bit show the firmware type, X X - - -
the lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

SPCM_FW_MODULEA 210030 read Frontend module A version: the upper 16 bit show the firmware type, the X X X X X
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

SPCM_FW_MODULEB 210031 read Frontend module B version: the upper 16 bit show the firmware type, the X - - - X
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

The version is zero if no second front-end module is installed on the card.

SPCM_FW_MODEXTRA 210050 read Extension module (Star-Hub) version: the upper 16 bit show the firmware X X X — X
type, the lower 16 bit show the firmware version. For the standard
release firmware, the type has always a value of 1.

The version is zero if no sextension module is installed on the card.

SPCM_FW_POWER 210060 read Power controller version: the upper 16 bit show the firmware type, the - — X X X
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

56 M3i.41xx / M3i.41xx-exp Manual

Programming the Board Gathering information from the card

Cards that do provide a golden recovery image for the main control FPGA, the currently booted firmware can additionally read out:

Register Value Direction Description
M2i | M3i | Mdi | Max | M2p

SPCM_FW_CTRL_ACTIVE 210002 read Cards that do provide a golden (recovery) fiwmware additionally have a — - X X X
register to read out the version information of the currently loaded firm-
ware version string, do determine if it is standard or golden.

The hexadecimal 32bit format is: TVWVUUUUh

T: the currently booted type (1: standard, 2: golden)
V: the version
U: unused, in production versions always zero

Production date

This register informs you about the production date, which is returned as one 32 bit long word. The lower word is holding the information
about the year, while the upper word informs about the week of the year.

Register Value Direction Description
SPC_PCIDATE 2020 read Production date: week in bits 31 to 16, year in bits 15 to O

The following example shows how to read out a date and how to interpret the value:

spcm_dwGetParam i32 (hDrv, SPC_PCIDATE, &1ProdDate) ;
printf ("Production: week &d of year &d\n“, (lProdDate >> 16) & Oxffff, 1lProdDate & Oxffff);

Last calibration date (analog cards only)

This register informs you about the date of the last factory calibration. When receiving a new card this date is similar to the delivery date
when the production calibration is done. When returning the card to calibration this information is updated. This date is not updated when
just doing an on-board calibration by the user. The date is returned as one 32 bit long word. The lower word is holding the information about
the year, while the upper word informs about the week of the year.

Register Value Direction Description
SPC_CALIBDATE 2025 read Last calibration date: week in bit 31 to 16, year in bit 15 to 0

Serial number

This register holds the information about the serial number of the board. This number is unique and should always be sent together with a
support question. Normally you use this information together with the register SPC_PCITYP to verify that multiple measurements are done with
the exact same board.

Register Value Direction Description
SPC_PCISERIALNO 2030 read Serial number of the board

Maximum possible sampling rate

This register gives you the maximum possible sampling rate the board can run. The information provided here does not consider any restric-
tions in the maximum speed caused by special channel settings. For detailed information about the correlation between the maximum sam-
pling rate and the number of activated channels please refer to the according chapter.

Register Value Direction Description
SPC_PCISAMPLERATE 2100 read Maximum sampling rate in Hz as a 64 bit integer value

Installed memory

This register returns the size of the installed on-board memory in bytes as a 64 bit integer value. If you want to know the amount of samples
you can store, you must regard the size of one sample of your card. All 8 bit A/D and D/A cards use only one byte per sample, while all

other A/D and D/A cards with 12, 14 and 16 bit resolution use two bytes to store one sample. All digital cards need one byte to store 8

data bits.

Register Value Direction Description

SPC_PCIMEMSIZE 2110 read _i32 Installed memory in bytes as a 32 bit integer value. Maximum return value will 1 GByte. If more mem-
ory is installed this function will return the error code ERR_EXCEEDINT32.

SPC_PCIMEMSIZE 2110 read _i64 Installed memory in bytes as a 64 bit integer value

(c) Spectrum GmbH 57

Gathering information from the card Programming the Board

The following example is written for a ,two bytes” per sample card (12, 14 or 16 bit board), on any 8 bit card memory in MSamples is
similar o memory in MBytes.

spcm_dwGetParam i64 (hDrv, SPC_PCIMEMSIZE, &11InstMemsize) ;
printf ("Memory on card: %$d MBytes\n", (int32) (llInstMemsize /1024/1024));
printf (" : %d MSamples\n", (int32) (llInstMemsize /1024/1024/2));

Installed features and options

The SPC_PCIFEATURES register informs you about the features, that are installed on the board. If you want to know about one option being
installed or not, you need to read out the 32 bit value and mask the interesting bit. In the table below you will find every feature that may be
installed on a M2i/M3i/M4i/M4x/M2p card. Please refer to the ordering information to see which of these features are available for your
card series.

Register Value Direction Description
SPC_PCIFEATURES 2120 read PCl feature register. Holds the installed features and options as a bitfield. The read value must be
masked out with one of the masks below to get information about one certain feature.
SPCM_FEAT_MUILTI Th Is set if the feature Multiple Recording / Multiple Replay is available.
SPCM_FEAT_GATE 2h Is set if the feature Gated Sampling / Gated Replay is available.
SPCM_FEAT_DIGITAL 4h Is set if the feature Digital Inputs / Digital Outputs is available.
SPCM_FEAT_TIMESTAMP 8h Is set if the feature Timestamp is available.
SPCM_FEAT_STARHUB6_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 6 cards (M2p).
SPCM_FEAT_STARHUB8_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 8 cards (M4i).
SPCM_FEAT_STARHUB4 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 4 cards (M3i).
SPCM_FEAT_STARHUBS 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 5 cards (M2i).
SPCM_FEAT_STARHUB16_EXTM 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2p).
SPCM_FEAT_STARHUB8 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 8 cards (M3i).
SPCM_FEAT_STARHUB16 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2i).
SPCM_FEAT_ABA 80h Is set if the feature ABA mode is available.
SPCM_FEAT_BASEXIO 100h Is set if the extra BaseXIO option is installed. The lines can be used for asynchronous digital I/O, extra trigger or
timestamp reference signal input.
SPCM_FEAT_AMPLIFIER_T10V 200h Arbitrary Waveform Generators only: card has additional set of calibration values for amplifier card.
SPCM_FEAT_STARHUBSYSMASTER 400h Is set in the card that carries a System Star-Hub Master card to connect multiple systems (M2i).
SPCM_FEAT_DIFFMODE 800h M?2i.30xx series only: card has option diff installed for combining two SE channels to one differential channel.
SPCM_FEAT_SEQUENCE 1000h Only available for output cards or 1/O cards: Replay sequence mode available.
SPCM_FEAT_AMPMODULE_10V 2000h Is set on the card that has a special amplifier module for mounted (M2i.60xx/61xx only).
SPCM_FEAT_STARHUBSYSSLAVE 4000h Is set in the card that carries a System Star-Hub Slave module to connect with System Star-Hub master systems (M2i).
SPCM_FEAT_NETBOX 8000h The card is physically mounted within a digitizerNETBOX or generatorNETBOX.
SPCM_FEAT_REMOTESERVER 10000h Support for the Spectrum Remote Server option is installed on this card.
SPCM_FEAT_SCAPP 20000h Support for the SCAPP option allowing CUDA RDMA access to supported graphics cards for GPU calculations
(M4i and M2p)
SPCM_FEAT_DIG16_SMB 40000h M2p: Set if option M2p.xxxx-DigSMB is installed, adding16 additional digital 1/Os via SMB connectors.
SPCM_FEAT_DIG16_FX2 80000h M2p: Set if option M2p.xxxx-DigFX2 is installed, adding16 additional digital 1/Os via FX2 multipin connectors.
SPCM_FEAT_DIGITALBWFILTER 100000h A digital (boxcar) bandwidth filter is available that can be globally enabled/disabled for all channels.
SPCM_FEAT_CUSTOMMOD_MASK | FOOO0000h | The upper 4 bit of the feature register is used to mark special custom modifications. This is only used if the card has
been specially customized. Please refer to the extra documentation for the meaning of the custom modifications.
(M2i/M3i). For M4i, M4x and M2p cards see ,Custom modifications” chapter instead.

The following example demonstrates how to read out the information about one feature.

spcm_deetParam_i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
if (lFeatures & SPCM_FEAT DIGITAL)
printf ("Option digital inputs/outputs is installed on your card");

The following example demonstrates how to read out the custom modification code.

spcm_dwGetParam i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
1CustomMod = (lFeatures >> 28) & O0xF;
if (lCustomMod != 0)

printf ("Custom modification no. %d is installed.", 1lCustomMod) ;

Installed extended Options and Features
Some cards (such as M4i/M4x/M2p cards) can have advanced features and options installed. This can be read out with with the following
register:

Register Value Direction Description

SPC_PCIEXTFEATURES 2121 read PCl extended feature register. Holds the installed extended features and options as a bitfield. The
read value must be masked out with one of the masks below to get information about one certain fea-
ture.

58 M3i.41xx / M3i.41xx-exp Manual

Programming the Board

Gathering information from the card

SPCM_FEAT_EXTFW_SEGSTAT 1h

Is set if the firmware option ,Block Statistics” is installed on the board, which allows certain statistics to be on-board
calculated for data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_SEGAVERAGE | 2h

Is set if the firmware option ,Block Average” is installed on the board, which allows on-board hardware averaging of
data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_BOXCAR 4h

Is set if the firmware mode ,Boxcar Average” is supported in the installed firmware version.

Miscellaneous Card Information

Some more detailed card information, that might be useful for the application to know, can be read out with the following registers:

Register Value Direction Description

SPC_MIINST_MODULES 1100 read Number of the installed front-end modules on the card.

SPC_MIINST_CHPERMODULE 1110 read Number of channels installed on one frontend module.

SPC_MIINST_BYTESPERSAMPLE 1120 read Number of bytes used in memory by one sample.

SPC_MIINST_BITSPERSAMPLE 1125 read Resolution of the samples in bits.

SPC_MIINST_MAXADCVALUE 1126 read Decimal code of the full scale value.

SPC_MIINST_MINEXTCLOCK 1145 read Minimum external clock that can be fed in for direct external clock (if available for card model).
SPC_MIINST_MAXEXTCLOCK 1146 read Maximum external clock that can be fed in for direct external clock (if available for card model).
SPC_MIINST_MINEXTREFCLOCK 1148 read Minimum external clock that can be fed in as a reference clock.
SPC_MIINST_MAXEXTREFCLOCK 1149 read Maximum external clock that can be fed in as a reference clock.

SPC_MIINST_ISDEMOCARD 1175 read Returns a value other than zero, if the card is a demo card.

Function type of the card

This register register returns the basic type of the card:

Register Value Direction Description
SPC_FNCTYPE 2001 read Gives information about what type of card it is.
SPCM_TYPE_AI 1h Analog input card (analog acquisition; the M2i.4028 and M2i.4038 also return this value)
SPCM_TYPE_AO 2h Analog output card (arbitrary waveform generators)
SPCM_TYPE_DI 4h Digital input card (logic analyzer card)
SPCM_TYPE_DO 8h Digital output card (pattern generators)
SPCM_TYPE_DIO 10h Digital 1/O (input/output) card, where the direction is software selectable.

Used type of driver

This register holds the information about the driver that is actually used to access the board. Although the driver interface doesn’t differ be-
tween Windows and Linux systems it may be of interest for a universal program to know on which platform it is working.

Register Value Direction Description

SPC_GETDRVTYPE 1220 read Gives information about what type of driver is actually used
DRVTYP_LINUX32 1 Linux 32bit driver is used
DRVTYP_WDM32 4 Windows WDM 32bit driver is used (XP/Vista/Windows 7/Windows 8/Windows 10).
DRVTYP_WDMé4 5 Windows WDM 64bit driver is used by 64bit application (XP64/Vista/Windows 7/Windows 8/Windows 10).
DRVTYP_WOWé64) Windows WDM 64bit driver is used by 32bit application (XP64/Vista/Windows 7/Windows 8/ Windows 10).
DRVTYP_LINUX64 7 Linux é4bit driver is used

Driver version

This register holds information about the currently installed driver library. As the drivers are permanently improved and maintained and new
features are added user programs that rely on a new feature are requested to check the driver version whether this feature is installed.

Register

Value

Direction Description

SPC_GETDRVVERSION

1200

read Gives information about the driver library version

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Driver Major Version

Driver Minor Version

Driver Build

8 Bit wide: bit 24 to bit 31

8 Bit wide, bit 16 to bit 23

16 Bit wide, bit O to bit 15

Kernel Driver version

This register informs about the actually used kernel driver. Windows users can also get this information from the device manager. Please refer
to the , Driver Installation” chapter. On Linux systems this information is also shown in the kernel message log at driver start time.

Register

Value

Direction Description

SPC_GETKERNELVERSION

1210

read Gives information about the kernel driver version.

(c) Spectrum GmbH 59

Gathering information from the card Programming the Board

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Driver Major Version Driver Minor Version Driver Build
8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit O to bit 15

The following example demonstrates how to read out the kernel and library version and how to print them.

spcm_dwGetParam i32 (hDrv, SPC_GETDRVVERSION, &1lLibVersion) ;

spcm_dwGetParam i32 (hDrv, SPC_GETKERNELVERSION, &lKernelVersion);

printf ("Kernel V $d.%d build %d\n”, 1KernelVersion >> 24, (lKernelVersion >> 16) & Oxff, 1lKernelVersion & Oxffff);
printf ("Library V %d.%d build %d\n”,lLibVersion >> 24, (lLibVersion >> 16) & Oxff, lLibVersion & Oxffff);

This small program will generate an output like this:

Kernel V 1.11 build 817
Library V 1.1 build 854

60 M3i.41xx / M3i.41xx-exp Manual

Programming the Board

Reset

Reset

Every Spectrum card can be reset by software. Concerning the hardware, this reset is the same as the power-on reset when starting the host
computer. In addition to the power-on reset, the reset command also brings all internal driver settings to a defined default state. A software
reset is automatically performed, when the driver is first loaded after starting the host system.

It is recommended, that every custom written program performs a software reset first, to be sure that the
driver is in a defined state independent from possible previous setting.

Performing a board reset can be easily done by the related board command mentioned in the following table.

Register Value Direction Description
SPC_M2CMD 100 w Command register of the board.
M2CMD_CARD_RESET Th A software and hardware reset is done for the board. All seftings are set to the default values. The data in the board’s

on-board memory will be no longer valid. Any output signals like trigger or clock output will be disabled.

(c) Spectrum GmbH 61

Channel Selection Analog Inputs

Analog Inputs

Channel Selection

One key setting that influences all other possible settings is the channel enable register. A unique feature of the Spectrum cards is the possibility
to program the number of channels you want to use. All on-board memory can then be used by these activated channels.

This description shows you the channel enable register for the complete card family. However, your specific board may have less channels
depending on the card type that you have purchased and therefore does not allow you to set the maximum number of channels shown here.

Register Value Direction Description

SPC_CHENABLE 11000 read/write Sets the channel enable information for the next board run.
CHANNELO 1 Activates channel O
CHANNEL1 2 Activates channel 1

The channel enable register is set as a bitmap. That means one bit of the value corresponds to one channel to be activated. To activate more
than one channel the values have to be combined by a bitwise OR.

Example showing how to activate 2 channels:

spcm_dwSetParam 132 (hDrv, SPC_CHENABLE, CHANNELO | CHANNEL1) ;

The following table shows all allowed settings for the channel enable register.

Channels to activate
ChO Chl Values to program Value as hex Value as decimal
— —
X CHANNELO 1h 1
X CHANNEL1 2h 2
X X CHANNELO | CHANNEL1 3h 3

Any channel activation mask that is not shown here is not valid. If programming another channel activation
A the driver will return with an error.

To help user programs it is also possible to read out the number of activated channels that correspond to the currently programmed bitmap.

Register Value Direction Description
SPC_CHCOUNT 11001 read Reads back the number of currently activated channels.

Reading out the channel enable information can be done directly after setting it or later like this:

spcm_dwSetParam i32 (hDrv, SPC_CHENABLE, CHANNELO | CHANNEL1);
spcm_dwGetParam i32 (hDrv, SPC_CHENABLE, &lActivatedChannels);
spcm_deetParam_i32 (hDrv, SPC_CHCOUNT, &lChCount);

printf ("Activated channels bitmask is: 0x%08x\n", lActivatedChannels);
printf ("Number of activated channels with this bitmask: %d\n", 1ChCount) ;

Assuming that the two channels are available on your card the program will have the following output:

Activated channels bitmask is: 0x00000003
Number of activated channels with this bitmask: 2

Important note on channel selection

As some of the manuals passages are used in more than one hardware manual most of the registers and

channel settings throughout this handbook are described for the maximum number of possible channels that

are available on one card of the current series. There can be less channels on your actual type of board or
bus-system. Please refer to the technical data section to get the actual number of available channels.

62 M3i.41xx / M3i.41xx-exp Manual

Analog Inputs

Setting up the inputs

Setting up the inputs

This analog acquisition board uses separate input stages and converters on each
channel. This gives you the possibility to set up the desired and concerning your
application best suiting input range also separately for each channel. All input
stage related seftings can easily be set by the corresponding input registers. The
table below shows the available input stage registers and possible standard values
for your type of board. As there are also modified versions available with different
input ranges it is recommended fo read out the currently available input ranges as
shown later in this chapter.

Input Path

Each input stage consists of different input paths each with different available set-
tings and features. Please refer to the technical data section to get details on the
differences of the input paths.

Offering different input paths gives the choice to adopt the cards input stage to

the specific application in the best technical way by either using a high frequency
50 ohm path to have full bandwidth and best dynamic performance or by using
a buffered path with all features but limited bandwidth and dynamic performance.

Channel 0

Calibration

-

o T
| 48

(]

Buffered Path

é

Gain
1

50 Ohm Path

Bandwidth Limit

Channel 1

Calibration
——anorati

(Carey

|

Buffered Path

2

I%
1

50 Ohm Path

Channel 0

andwidth Limit

Channel 1

All following settings are related to the selected input path. To read available features like input ranges or termination seftings it is first nec-

essary to set the input path for which the features are to be read.

Register Value Direction Description

SPC_READAIPATHCOUNT 3120 read Returns the number of available analog input paths

SPC_READAIPATH 3121 read/write Selects the input path which is used to read out the features. Please note that this seftings does not
change the current path selection.

The following registers show the available input path seftings

Register Value Direction Description
SPC_PATHO 30090 read/write Selects the analog input path for channel O (default path is path O)
SPC_PATH1 30190 read/write Selects the analog input path for channel 1 (default path is path 0)
0 Input Path O: Buffered inputs
1 Input Path 1: HF input with fixed 50 ohm termination

Input ranges

This analog acquisition board has several different input ranges for each channel.
This gives you the possibility to set up the desired and concerning your application
best suiting input range also separately for each channel. The input ranges can
easily be set by the corresponding input registers. The table below shows the avail-
able input registers and possible standard ranges for your type of board. As there
are also modified versions available with different input ranges it is recommended
to read out the currently available input ranges as shown later in this chapter.

Please note that the available ranges need to be read out separately for each input

Channel 0

Calibration

-

(]

Gain
0
Buffere

Path

Gain
1

50 Ohm

Path

Bandwidth Limit

Channel 1

path. Please set the register SPC_READAIPATH as shown above to select the input path for which the settings should be read. The available

Input rages are read out using the following registers.

Register Value Direction Description

SPC_READAIPATH 3121 read/write Selects the input path which is used to read out the features.

SPC_READIRCOUNT 3000 read Returns the number of available input ranges for the input path selected by SPC_READAIPATH
SPC_READRANGEMINO 4000 read Reads the lower border of input range O in mV

SPC_READRANGEMINT 4001 read Reads the lower border of input range 1 in mV

SPC_READRANGEMAXO 4100 read Reads the upper border of input range 0 in mV

SPC_READRANGEMAX1 4101 read Reads the upper border of input range 1 in mV

(c) Spectrum GmbH 63

Sefting up the inputs

Analog Inputs

The following example reads out the number of available input ranges and reads and prints the minimum and maximum value of all input

ranges.

spcm_dwGetParan i32 (hDrv,

for (1Path = 0;
{
spcm_dwSetParan i32
spcm_dwGetParam 132
for (1 = 0;

{

printf
}

(hDrv,
(hDrv,
i < 1NumberOfRanges;

spcm_dwGetParam 132
spcm_dwGetParam i32
(,Path %d Range %d:

SPC_READAIPATHCOUNT,

1lPath < 1NumOfPaths; 1Path++)

(hDrv, SPC_READRANGEMINO + i,
(hDrv, SPC_READRANGEMAXO + i,
%$d mV to %d mv\n“,

SPC_READAIPATH,
SPC_READIRCOUNT,
it++)

&1NumOfPaths) ;

1Path)
&1NumberOfRanges) ;

&1lMinimumInputRage) ;
&1MaximumInputRange) ;

lPath, i, 1lMinimumInputRange, lMaximumInputRange) ;

The input range is selected individually for each channel. Please note that the correct input path needs to be set

Register Value Direction Description
SPC_AMPO 30010 read/write Defines the input range of channelO.
SPC_AMP1 30110 read/write Defines the input range of channell.

Standard Input ranges of path O (Buffered):

200 + 200 mV calibrated input range for the appropriate channel.
500 + 500 mV calibrated input range for the appropriate channel.
1000 + 1V calibrated input range for the appropriate channel.
2000 + 2V calibrated input range for the appropriate channel.
5000 + 5V calibrated input range for the appropriate channel.
10000 + 10 V calibrated input range for the appropriate channel.

Standard Input ranges of path 1 (HF, 50 ohm terminated):

500 + 500 mV calibrated input range for the appropriate channel.
1000 + 1V calibrated input range for the appropriate channel.
2500 + 2.5V calibrated input range for the appropriate channel.
5000 + 5 V calibrated input range for the appropriate channel.

Read out of input features

Each input path (if multiple paths are available on the card) has different features that can be read out to make the software more general.
If you only operate one single card type in your software it is not necessary to read out these features.

Please note that the input features are read out for the currently selected read Al path done by register SPC_READAIPATH. Please also note
that the following table shows all input features settings that are available throughout all Spectrum acquisition cards. Some of these features
are not installed on your specific hardware. The column(s) for the input paths show which settings are available for which input path (if multiple
paths are available on the card) on a standard card:

Register Value Direction Description
SPC_READAIPATH 3121 read/write Selects the input path which is used to read out the features. Please note that this settings does not
change the current path selection.
SPC_READAIFEATURES 3101 read Ee}urns a bit map with the available features of that input path. The possible return values are listed
elow.
Value Path O | Path 1 | Description

SPCM_AI_TERM 00000001h | x fixed Programmable input termination available
SPCM_AI_SE 00000002h | fixed fixed Input is single-ended. If available together with SPC_AI_DIFF: input type is software selectable
SPCM_AI_DIFF 00000004h Input is differential. If available together with SPC_AI_SE: input type is software selectable
SPCM_AI_OFFSPERCENT 00000008h | x X Input offset programmable in per cent of input range
SPCM_AI_OFFSMV 00000010h Input offset programmable in mV
SPCM_AI_OVERRANGEDETECT 00000020h Programmable overrange detection available
SPCM_AI_DCCOUPLING 00000040h | x x Input is DC coupled. If available together with AC coupling: coupling is software selectable
SPCM_AI_ACCOUPLING 00000080h | x x Input is AC coupled. If available together with DC coupling: coupling is software selectable
SPCM_AI_LOWPASS 00000100h | x X Input has a selectable low pass filter (bandwidth limit)
SPCM_AI_ACDC_OFFS_COMP 00000200h Input has a selectable offset compensation for HF-Path with AC/DC coupling/source missmatch.
SPCM_AI_AUTOCALOFFS 00001000h | x X Input offset can be auto calibrated on the card
SPCM_AI_AUTOCALGAIN 00002000h | x Input gain can be auto calibrated on the card
SPCM_AI_AUTOCALOFFSNOIN | 00004000h Input offset can auto calibrated on the card if inputs are left open
SPCM_AI_INDIVPULSEWIDTH 00010000h Trigger pulsewidth is individually per channel programmable

64

M3i.41xx / M3i.41xx-exp Manual

Analog Inputs

Setting up the inputs

The following example shows a setup of path and input range of a two channel card.

Please note that this is a general example and the number of input channels may not match your card channels.

spcm_dwSetParam 132 (hDrv, SPC_PATHO , 0); // Set up channel0
spcm_dwSetParam i32 (hDrv, SPC_AMPO , 1000); // Set up channelO
spcm_dwSetParam_i32 (hDrv, SPC_PATH1 , 1); // Set up channell
spcm_dwSetParam 132 (hDrv, SPC AMP1 , 500); // Set up channell

to
to
to
to

input path 0
the range of + 1.0 V
input path 1
the range of £+ 0.5 V

(HF,

(buffered)

50 ohm terminated)

Input termination

The Spectrum analog acquisition cards of the M3i series offer an input path with
fixed 50 ohm termination (HF path, 50 ohm path) as well as a second input path
with all features to be programmed by the user (buffered path). If the HF path with
fixed 50 ohm termination is activated this register will have no functionality.

The buffered input path can be terminated separately with 50 Ohm by software
programming. If you do so, please make sure that your signal source is able to
deliver the higher output currents. If no termination is used, the inputs have an im-
pedance of 1 Megaohm. The following table shows the corresponding register to
set the input termination.

Channel 0

Calibration

Buffered Path

Gain
1

50 Ohm Path

Bandwidth Limit

Channel 1

Register Value Direction Description
SPC_500HMO 30030 read/write A 1" sets the 50 ohm termination for channelQ. A ,0” sets the termination tol MOhm.
SPC_500HMI1 30130 read/write A 1" sets the 50 ohm termination for channell. A ,0” sets the termination to1l MOhm.

Input coupling

All inputs can be set separately switched to AC or DC coupling. Please refer to
the technical data section to see the signal frequency range that is available for

the different settings.

Using the AC coupling will eliminate all DC and low frequency parts of the input
signal and allows best quality measurings in the frequency domain even if the DC
level of the signal varies over the time.

The following table shows the corresponding register to set the input coupling.

@@qﬁ] °

Gain
1

Channel 0

Calibration

-

(]

Buffered Path

é

50 Ohm Path

Bandwidth Limit

Channel 1

Register Value Direction Description
SPC_ACDCO 30020 read/write A 1" sets the AC coupling for channelO. A ,0” sets the DC coupling (default is DC)
SPC_ACDC1 30120 read/write A 1" sets the AC coupling for channell. A ,0” sets the DC coupling (default is DC)

AC/DC offset compensation

When using the HF-Path of the input channel, an offset voltage will be visible in case DC coupling is selected for the channel and the signal
source is externally AC coupled. This offset can be compensated for by setiing the compensation registers:

Register Value Direction Description
SPC_ACDC_OFFS_COMPENSATIONO 30021 read/write A 1" enables the compensation. A ,0” disables the compensation (default).
SPC_ACDC_OFFS_COMPENSATION1 30121 read/write A 1" enables the compensation. A ,0” disables the compensation (default).

Anti aliasing filter (Bandwidth limit)

Allinputs have a separate selectable anti aliasing filter (bandwidth limit) that will

cut of any aliasing effectes and that will reduce signal noise.

Please note that this bandwidth limit filter will also cut of any distortion or high
frequency spurious signals parts that are within the frequency spectrum of the

input.

Please refer to the technical data section to see the cut off frequency and the type
of filter used. The following table shows the corresponding register to activate

the bandwidth limit.

©<

\,'_'l—/._. 0
Tk

Channel 0

Calibration

-

Buffered Path

Gain
1

é

50 Ohm Path

-5

Bandwidth Limit

Channel 1

(c) Spectrum GmbH

65

Sefting up the inputs Analog Inputs

Register Value Direction Description
SPC_FILTERO 30080 read/write A 1" selects the bandwidth limit for channel 0. A ,0” set the channel to full bandwidth (default is full)
SPC_FILTER1 30180 read/write A 1" selects the bandwidth limit for channel 1. A ,0” set the channel to full bandwidth (default is full

Enhanced Status Register

The enhanced status register shows detected channel overrange events during the last acquisition. It can only be read out after the acquisition
has stopped. If the input signal on the channel exceeds the programmed input range even for just one time the overrange register is set in
hardware.

Register Value Direction Description

SPC_ENHANCEDSTATUS 20900 read Reads out the enhanced status information of the card.
SPC_ENHSTAT_OVERRANGEO 0000000Th | Bitis set if an overrange event has occurred on channel 0.
SPC_ENHSTAT_OVERRANGE1 00000002h | Bit is set if an overrange event has occurred on channel 1.

Automatic on-board calibration of the offset and gain settings

All of the channels are calibrated in factory before the board is shipped. These values are stored in the on-board EEProm under the default
settings. If you have asymmetrical signals, you can adjust the offset easily with the corresponding registers of the inputs as shown before.

To start the automatic offset adjustment, simply write the register, mentioned in the following table.

Before you start an automatic offset adjustment make sure, that no signal is connected to any input. Leave
all the input connectors open and then start the adjustment. All the internal settings of the driver are changed,
while the automatic offset compensation is in progress.

Register Value Direction Description
SPC_ADJ_AUTOAD) 50020 write Performs the automatic offset compensation in the driver either for all input ranges or only the actual.
I ADJ_ALL 0 Automatic offset adjustment for all input ranges.

As all settings are temporarily stored in the driver, the automatic adjustment will only affect these values. After exiting your program, all cal-
ibration information will be lost. To give you a possibility fo save your own settings, most Spectrum card have at least one set of user settings

that can be saved within the on-board EEPROM. The default settings of the offset and gain values are then read-only and cannot be written

to the EEPROM by the user. If the card has no user settings the default settings may be overwritten.

You can easily either save adjustment settings to the EEPROM with SPC_ADJ_SAVE or recall them with SPC_ADJ_LOAD. These two registers
are shown in the table below. The values for these EEPROM access registers are the sets that can be stored within the EEPROM. The amount
of sets available for storing user offset seftings depends on the type of board you use. The table below shows all the EEPROM sets, that are
available for your board.

Register Value Direction Description
SPC_ADJ_LOAD 50000 write Loads the specified set of settings from the EEPROM. The default settings are automatically loaded,
when the driver is started.
read Reads out, what kind of settings have been loaded last.
SPC_ADJ_SAVE 50010 write Stores the current settings to the specified set in the EEPROM.
read Reads out, what kind of settings have been saved last.
I ADJ_DEFAULT 0 Default settings, no user settings available

If you want to make an offset and gain adjustment on all the channels and store the data to the ADJ_DEFAULT set of the EEPROM you can
do this the way, the following example shows.

spcm_dwSetParam_i32 (hDrv, SPC_ADJ AUTOADJ, ADJ_ALL); // Activate offset/gain adjustment on all channels
spcm_dwSetParam_i32 (hDrv, SPC_ADJ_SAVE 0 ADJ_DEFAULT) ; // and store values to DEFAULT set in the EEPROM

66 M3i.41xx / M3i.41xx-exp Manual

Acquisition modes Overview

Acquisition modes

Your card is able to run in different modes. Depending on the selected mode there are different registers that each define an aspect of this
mode. The single modes are explained in this chapter. Any further modes that are only available if an option is installed on the card is doc-
umented in a later chapter.

Overview

This chapter gives you a general overview on the related registers for the different modes. The use of these registers throughout the different
modes is described in the following chapters.

Setup of the mode

The mode register is organized as a bitmap. Each mode corresponds to one bit of this bitmap. When defining the mode to use, please be
sure just fo set one of the bits. All other settings will return an error code.

The main difference between all standard and all FIFO modes is that the standard modes are limited to on-board memory and therefore can
run with full sampling rate. The FIFO modes are designed to transfer data continuously over the bus to PC memory or to hard disk and can
therefore run much longer. The FIFO modes are limited by the maximum bus transfer speed the PC can use. The FIFO mode uses the complete
installed on-board memory as a FIFO buffer.

However as you'll see throughout the detailed documentation of the modes the standard and the FIFO mode are similar in programming and
behavior and there are only a very few differences between them.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
SPC_AVAILCARDMODES 9501 read Returns a bitmap with all available modes on your card. The modes are listed below.

Acquisition modes

Mode Value | Available | Description
for series
SPC_REC_STD_SINGLE Th M2i/M3i Data acquisition to on-board memory for one single trigger event.
SPC_REC_STD_MULTI 2h M2i/M3i Data acquisition to on-board memory for multiple trigger events. Each recorded segment has the same size. This

mode is described in greater detail in a special chapter about the Multiple Recording option.

SPC_REC_STD_ABA 8h M2i/M3i Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with pro-
grammed sampling rate the inputs are sampled continuously with a slower sampling speed. The mode is described in
a special chapter about ABA mode option.

SPC_REC_FIFO_SINGLE 10h M2i/M3i Continuous data acquisition for one single trigger event. The on-board memory is used completely as FIFO buffer.
SPC_REC_FIFO_MULTI 20h M2i/M3i Continuous data acquisition for multiple trigger events.
SPC_REC_FIFO_ABA 80h M2i/M3i Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sam-
pling clock.
Commands

The data acquisition/data replay is controlled by the command register. The command register controls the state of the card in general and
also the state of the different data transfers. Data transfers are explained in an extra chapter later on.

The commands are split up into two types of commands: execution commands that fulfill a job and wait commands that will wait for the
occurrence of an interrupt. Again the commands register is organized as a bitmap allowing you to set several commands together with one
call. As not all of the command combinations make sense (like the combination of reset and start at the same time) the driver will check the
given command and return an error code ERR_SEQUENCE if one of the given commands is not allowed in the current state.

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer.

(c) Spectrum GmbH 67

Commands Acquisition modes

Card execution commands

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above.

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started, only some of the settings might
be changed while the card is running, such as e.g. output level and offset for D/A replay cards.

M2CMD_CARD_ENABLETRIGGER | 8h The trigger detection is enabled. This command can be either sent together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER | 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

Card wait commands

These commands do not return until either the defined state has been reached which is signaled by an interrupt from the card or the timeout
counter has expired. If the state has been reached the command returns with an ERR_OK. If a timeout occurs the command returns with
ERR_TIMEQUT. If the card has been stopped from a second thread with a stop or reset command, the wait function returns with ERR_ABORT.

M2CMD_CARD_WAITPREFULL 1000h Acquisition modes only: the command waits until the pretrigger area has once been filled with data. After pretrigger
area has been filled the internal trigger engine starts to look for trigger events if the trigger detection has been
enabled.

M2CMD_CARD_WAITTRIGGER 2000h Waits until the first trigger event has been detected by the card. If using a mode with multiple trigger events like Multi-
ple Recording or Gated Sampling there only the first trigger detection will generate an interrupt for this wait com-
mand.

M2CMD_CARD_WAITREADY 4000h Waits until the card has completed the current run. In an acquisition mode receiving this command means that all data
has been acquired. In a generation mode receiving this command means that the output has stopped.

Wait command timeout

If the state for which one of the wait commands is waiting isn’t reached any of the wait commands will either wait forever if no timeout is
defined or it will return automatically with an ERR_TIMEOUT if the specified timeout has expired.

Register Value Direction Description

SPC_TIMEOUT 295130 read/write Defines the timeout for any following wait command in a millisecond resolution. Writing a zero fo this
register disables the timeout.

As a default the timeout is disabled. After defining a timeout this is valid for all following wait commands until the timeout is disabled again
by writing a zero fo this register.

A timeout occurring should not be considered as an error. It did not change anything on the board status. The board is still running and will
complete normally. You may use the timeout to abort the run after a certain time if no trigger has occurred. In that case a stop command is
necessary affer receiving the timeout. It is also possible to use the timeout to update the user interface frequently and simply call the wait
function afterwards again.

Example for card control:

// card is started and trigger detection is enabled immediately
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD CARD START | M2CMD_CARD ENABLETRIGGER) ;

// we wait a maximum of 1 second for a trigger detection. In case of timeout we force the trigger
spcm_dwSetParam_i32 (hDrv, SPC_TIMEOUT, 1000);
if (spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD WAITTRIGGER) == ERR TIMEOUT)

{

printf (“No trigger detected so far, we force a trigger now!\n”);

spcm_dwSetParam (hdrv, SPC_M2CMD, M2CMD CARD FORCETRIGGER) ;

}

// we disable the timeout and wait for the end of the run
spcm_dwSetParam i32 (hDrv, SPC_TIMEOUT, O);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD WAITREADY) ;
printf (“Card has stopped now!\n”);

Card Status

In addition to the wait for an interrupt mechanism or completely instead of it one may also read out the current card status by reading the
SPC_M2STATUS register. The status register is organized as a bitmap, so that multiple bits can be set, showing the status of the card and
also of the different data transfers.

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_CARD_PRETRIGGER 1h Acquisition modes only: the pretrigger area has been filled.
M2STAT_CARD_TRIGGER 2h The first trigger has been detected.
M2STAT_CARD_READY 4h The card has finished its run and is ready.
M2STAT_CARD_SEGMENT_PRETRG | 8h Multi/ABA/Gated acquisition of M4i/M4x/M2p only: the pretrigger area of one segment has been filled.

68 M3i.41xx / M3i.41xx-exp Manual

Acquisition modes Commands

Acquisition cards status overview

The following drawing gives you an overview of the card commands and card status information. After start of card with
M2CMD_CARD_START the card is acquiring prefrigger data until one time complete pretrigger data has been acquired. Then the status bit
M2STAT_CARD_PRETRIGGER is set. Either the trigger has been enabled together with the start command or the card now waits for trigger
enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card checks for a trig-
ger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card acquires the programmed
posttrigger data. After all post trigger data has been acquired the status bit M2STAT_CARD_READY is set and data can be read out:

I L] I

Trigger
L. Acquiring Waiting for Wailir;g Acquiring
Acquisition Pretrigger data trigger enable for Tri'gger Postirigger data
N Pretrigger o : Pretrigger Posttrigger
i g ' >
8 g . Memsize ™ ~
| = o u -
o I+ @ o o
< u § 2 <
ol a| i L gv
g g 2 g g
3 3 3 3 61
Y Y

Generation card status overview

This drawing gives an overview of the card commands and status information for a simple generation mode. After start of card with the
M2CMD_CARD_START the card is armed and waiting. Either the trigger has been enabled together with the start command or the card now
waits for trigger enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card
checks for a trigger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card starts with the
data replay. After replay has been finished - depending on the programmed mode - the status bit M2STAT_CARD_READY is set and the card
stops.

Trigger —’—l

. Waiting for Waiting Replaying
Generation trigger enable for Trigger Memsize data
<>
A A Memsize
5]
g g
= 2 e 5
3 : g :
o : g 3
g g g
% 3 3 b
Y Y

Data Transfer

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Data transfer
shares the command and status register with the card control commands and status information. In general the following details on the data
transfer are valid for any data transfer in any direction:

¢ The memory size register (SPC_MEMSIZE) must be programmed before starting the data transfer.

When the hardware buffer is adjusted from its default (see ,Output latency” section later in this manual), this must be done before defin-
ing the transfer buffers in the next step via the spcm_dwDefTransfer function.

e Before starting a data transfer the buffer must be defined using the spcm_dwDefTransfer function.

Each defined buffer is only used once. After transfer has ended the buffer is automatically invalidated.

If a buffer has to be deleted although the data transfer is in progress or the buffer has at least been defined it is necessary to call the
spcm_dwlinvalidateBuf function.

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter.

uint32 _stdcall spcm dwDefTransfer i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to define as listed below under SPCM BUF XXXX
uint32 dwDirection, // the transfer direction as defined below
uint32 dwNotifySize, // number of bytes after which an event is sent (0=end of transfer)
void* pvDataBuffer, // pointer to the data buffer
uint64 qwBrdOffs, // offset for transfer in board memory
uint64 gwTransferLen) ; // buffer length

(c) Spectrum GmbH 69

Commands Acquisition modes

This function is used to define buffers for standard sample data transfer as well as for extra data transfer for additional ABA or timestamp
information. Therefore the dwBufType parameter can be one of the following:

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the
timestamp option.

The dwDirection parameter defines the direction of the following data transfer:

SPCM_DIR_PCTOCARD 0 Transfer is done from PC memory to on-board memory of card
SPCM_DIR_CARDTOPC

SPCM_DIR_CARDTOGPU
SPCM_DIR_GPUTOCARD

Transfer is done from card on-board memory to PC memory.

RDMA transfer from card memory to GPU memory, SCAPP option needed, Linux only

w N

RDMA transfer from GPU memory to card memory, SCAPP option needed, Linux only

The direction information used here must match the currently used mode. While an acquisition mode is used
& there’s no transfer from PC to card allowed and vice versa. It is possible to use a special memory test mode

to come beyond this limit. Set the SPC_MEMTEST register as defined further below.
The dwNotifySize parameter defines the amount of bytes after which an interrupt should be generated. If leaving this parameter zero, the
transfer will run until all data is transferred and then generate an interrupt. Filling in notify size > zero will allow you to use the amount of
data that has been transferred so far. The notify size is used on FIFO mode to implement a buffer handshake with the driver or when trans-
ferring large amount of data where it may be of interest to start data processing while data transfer is still running. Please see the chapter on
handling positions further below for details.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-

fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the

range of 16, 32, 64, 128,256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify
size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the
polling mode as described later.

The pvDataBuffer must point to an allocated data buffer for the transfer. Please be sure to have at least the amount of memory allocated that
you program fo be transferred. If the transfer is going from card to PC this data is overwritten with the current content of the card on-board
memory.

The pvDataBuffer needs to be aligned to a page size (4096 bytes). Please use appropriate software com-
mands when allocating the data buffer. Using a non-aligned buffer may result in data corruption.

When not doing FIFO mode one can also use the qwBrdOffs parameter. This parameter defines the starting position for the data transfer as
byte value in relation to the beginning of the card memory. Using this parameter allows it to split up data transfer in smaller chunks if one
has acquired a very large on-board memory.

The gwTransferlen parameter defines the number of bytes that has to be transferred with this buffer. Please be sure that the allocated memory
has at least the size that is defined in this parameter. In standard mode this parameter cannot be larger than the amount of data defined with
memory size.

Memory test mode

In some cases it might be of interest to transfer data in the opposite direction. Therefore a special memory test mode is available which allows
random read and write access of the complete on-board memory. While memory test mode is activated no normal card commands are pro-
cessed:

Register Value Direction Description

SPC_MEMTEST 200700 read/write Writing a 1 activates the memory test mode, no commands are then processed.
Writing a O deactivates the memory test mode again.

Invalidation of the transfer buffer

The command can be used to invalidate an already defined buffer if the buffer is about to be deleted by user. This function is automatically
called if a new buffer is defined or if the transfer of a buffer has completed

uint32 stdcall spcm dwInvalidateBuf (// invalidate the transfer buffer
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType) ; // type of the buffer to invalidate as listed above under SPCM_BUF_XXXX

The dwBufType parameter need to be the same parameter for which the buffer has been defined:

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option. The ABA mode is only available on analog acquisition cards.

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the times-
tamp option. The timestamp mode is only available on analog or digital acquisition cards.

70 M3i.41xx / M3i.41xx-exp Manual

Acquisition modes Standard Single acquisition mode

Commands and Status information for data transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control. It is possible to send
commands for card control and data transfer at the same time as shown in the examples further below.

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_DATA_STARTDMA 10000h Starts the DMA transfer for an already defined buffer. In acquisition mode it may be that the card hasn't received a
trigger yet, in that case the transfer start is delayed until the card receives the trigger event
M2CMD_DATA_WAITDMA 20000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter described above into account.
M2CMD_DATA_STOPDMA 40000h Stops a running DMA transfer. Data is invalid afterwards.

The data transfer can generate one of the following status information:

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_DATA_BLOCKREADY 100h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_DATA_END 200h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_DATA_OVERRUN 400h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_DATA_ERROR 800h An internal error occurred while doing data transfer.

Example of data transfer

void* pvData = pvAllocMemPageAligned (1024);

// transfer data from PC memory to card memory (on replay cards)
spcm_dwDefTransfer i64 (hDrv, SPCM BUF_DATA, SPCM DIR_PCTOCARD , 0, pvbata, 0, 1024);
spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

// ... or transfer data from card memory to PC memory (acquisition cards)
spcm_dwDefTransfer 164 (hDrv, SPCM BUF_DATA, SPCM_DIR CARDTOPC , 0, pvData, 0, 1024);
SpcmideetParamii:%Z (hDrv, SPC7M2CMD, M2CMD7DATA7$TARTDMA | MZCMDiDATAiYNAITDMA);

// explicitely stop DMA tranfer prior to invalidating buffer
spcm_dwSetParam i32 (hDrv, SPC M2CMD, M2CMD DATA STOPDMA) ;
spcm_dwlnvalidateBuf (hDrv, SPCM_BUF_DATA) ;
vFreeMemPageAligned (pvData, 1024);

To keep the example simple it does no error checking. Please be sure to check for errors if using these command in real world programs!

Users should take care to explicitly send the M2CMD_DATA_STOPDMA command prior to invalidating the
buffer, to avoid crashes due to race conditions when using higher-latency data transportation layers, such A
as to remote Ethernet devices.

Standard Single acquisition mode

The standard single mode is the easiest and mostly used mode to acquire analog data with a Spectrum acquisition card. In standard single
recording mode the card is working totally independent from the PC, after the card setup is done. The advantage of the Spectrum boards is
that regardless to the system usage the card will sample with equidistant time intervals.

The sampled and converted data is stored in the on-board memory and is held there for being read out after the acquisition. This mode allows
sampling at very high conversion rates without the need to transfer the data into the memory of the host system at high speed.

After the recording is done, the data can be read out by the user and is transferred via the bus into PC memory.

This standard recording mode is the most common mode for all an-

alog and digital acquisition and oscilloscope boards. The data is Trigger
written to a programmed amount of the on-board memory (mem-
size). That part of memory is used as a ring buffer, and recording T TT T ‘—/“_—\L —————— -
is done continuously until a trigger event is detected. After the trig- N o " o
: . —_—
ger event, a certain programmable amount of data is recorded ¥
(post trigger) and then the recording finishes. Due to the continuous =Pretrigger> “Postirigger
ring buffer recording, there are also samples prior to the trigger - Memsize »

event in the memory (pretrigger).

detection is not armed. If you use a huge pre trigger size and a slow sample rate it can take some time after

When the card is started the pre trigger area is filled up with data first. While doing this the board’s trigger f
starting the board before a trigger event will be detected.

(c) Spectrum GmbH 71

FIFO Single acquisition mode Acquisition modes

Card mode
The card mode has to be set to the correct mode SPC_REC_STD_SINGLE.

Register Value Direction Description
SPC_CARDMODE 9500 read/ write Defines the used operating mode, a read command will return the currently used mode.
I SPC_REC_STD_SINGLE Th Data acquisition to on-board memory for one single trigger event.
—

Memory, Pre- and Posttrigger

At first you have to define, how many samples are to be recorded at all and how many of them should be acquired after the trigger event
has been detected.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Sets the memory size in samples per channel.
SPC_POSTTRIGGER 10100 read/write Sets the number of samples to be recorded per channel after the trigger event has been detected.

You can access these settings by the register SPC_MEMSIZE, which sets the total amount of data that is recorded, and the register
SPC_POSTTRIGGER, that defines the number of samples to be recorded after the trigger event has been detected. The size of the pretrigger
results on the simple formula:

pretrigger = memsize - posttrigger

The maximum memsize that can be use for recording is of course limited by the installed amount of memory and by the number of channels
to be recorded. Please have a look at the fopic "Limits of pre, post memsize, loops" later in this chapter.

Example

The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

int32 1lMemsize = 16384; // recording length is set to 16 kSamples
spcm_dwSetParam i32 (hDrv, SPC_CHENABLE, CHANNELO) ; // only one channel activated
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_SINGLE) ; // set the standard single recording mode
spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, 1Memsize); // recording length
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 8192); // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD WAITREADY) ;

void* pvData = pvAllocMemPageAligned (2 * 1lMemsize); // assuming 2 bytes per sample
// read out the data

spcm_dwDefTransfer 164 (hDrv, SPCM BUF_DATA, SPCM_DIR CARDTOPC , 0, pvData, 0, 2 * 1Memsize);
spcm_dwSetParam _i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD_DATA WAITDMA) ;

FIFO Single acquisition mode

The FIFO single mode does a continuous data acquisition using the on-board memory as a FIFO buffer and transferring data continuously to
PC memory. One can make on-line calculations with the acquired data, store the data continuously to disk for later use or even have a data
logger functionality with on-line data display.

Card mode
The card mode has to be set to the correct mode SPC_REC_FIFO_SINGLE.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
I SPC_REC_FIFO_SINGLE 10h Continuous data acquisition to PC memory. Complete on-board memory is used as FIFO buffer.

Length and Pretrigger

Even in FIFO mode it is possible to program a pretrigger area. In general FIFO mode can run forever until it is stopped by an explicit user
command or one can program the total length of the transfer by two counters Loop and Segment size

Register Value Direction Description

SPC_PRETRIGGER 10030 read/write Programs the number of samples to be acquired before the trigger event detection

SPC_SEGMENTSIZE 10010 read/write Length of segments to acquire.

SPC_LOOPS 10020 read/write Number of segments to acquire in fotal. If set to zero the FIFO mode will run continuously until it is
stopped by the user.

72 M3i.41xx / M3i.41xx-exp Manual

Acquisition modes FIFO Single acquisition mode

The total amount of samples per channel that is acquired can be calculated by [SPC_LOOPS * SPC_SEGMENTSIZE]. Please stick to the below
mentioned limitations of the registers.

Difference to standard single acquisition mode

The standard modes and the FIFO modes differ not very much from the programming side. In fact one can even use the FIFO mode to get the
same behavior like the standard mode. The buffer handling that is shown in the next chapter is the same for both modes.

Pretrigger
When doing standard single acquisition memory is used as a circular buffer and the pre trigger can be up to the [installed memory] - [minimum
post trigger]. Compared fo this the pre trigger in FIFO mode is limited by a special pre trigger FIFO and hence considerably shorter.

Length of acquisition.
In standard mode the acquisition length is defined before the start and is limited to the installed on-board memory whilst in FIFO mode the
acquisition length can either be defined or it can run continuously until user stops it.

Example FIFO acquisition

The following example shows a simple FIFO single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

spcm_dwSetParam i32 (hDrv, SPC_CHENABLE, CHANNELO) ; // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_SINGLE) ; // set the FIFO single recording mode
spcm_dwSetParam i64 (hDrv, SPC_ PRETRIGGER, 1024); // 1 kSample of data before trigger

// in FIFO mode we need to define the buffer before starting the transfer
void* pvData = pvAllocMemPageAligned (llBufsizeInSamples * 2); // 2 bytes per sample
spcm_dwDefTransfer_ i64 (hDrv, SPCM BUF_DATA, SPCM_DIR_CARDTOPC, 4096,

pvData, 0, 2 * llBufsizeInSamples);

// now we start the acquisition and wait for the first block
dwError = spcm dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD START | M2CMD_CARD_ENABLETRIGGER) ;
dwError = spcm dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

// we acquire data in a loop. As we defined a notify size of 4k we’ll get the data in >=4k chuncks
11TotalBytes = 0;
while (!dwError)
{
spcm dwGetParam i64 (hDrv, SPC DATA AVAIL USER LEN, &llAvailBytes); // read out the available bytes
11TotalBytes += 1llAvailBytes;

// here is the right position to do something with the data (printf is limited to 32 bit variables)
printf ("Currently Available: %$11d, total: %$11d\n", 1llAvailBytes, 1llTotalBytes);

// now we free the number of bytes and wait for the next buffer
spcm_dwSetParam i64 (hDrv, SPC_DATA AVAIL CARD_LEN, llAvailBytes);
dwError = spcm_dwSetParam_ i32 (hDrv, SPC_M2CMD, M2CMD_DATA WAITDMA) ;
}

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 2 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step Min | Max | Step Min Max Step Min | Max | Step Min | Max | Step
1 channel Standard Single 16 Mem 8 defined by post trigger I 8 8G-8 8 not used not used
Standard Multi/ABA | 16 Mem 8 8 8k 8 8 Mem/2 | 8 16 Mem/2 | 8 not used
FIFO Single not used 8 8k 8 not used 16 8G-8 8 0(x) |4G-1 1
FIFO Multi/ABA not used 8 8k 8 8 8G -8 8 16 pre+post | 8 0 () |4G-1 1
2 channels | Standard Single 16 Mem/2 |8 defined by post trigger I 8 8G-8 8 not used not used
Standard Multi/ABA | 16 Mem/2 |8 8 4k 8 8 Mem/4 | 8 16 Mem/4 | 8 not used
FIFO Single not used 8 4k 8 not used 16 8G -8 8 0(x) |4G-1 1
FIFO Multi/ABA not used 8 4k 8 8 [8c-8 [s8 16 | pre+post | 8 0 [4G-1 1

Al figures listed here are given in samples. An entry of [32G - 8] means [32 GSamples - 8] = 34,359,738,3640 samples.

(c) Spectrum GmbH 73

FIFO Single acquisition mode Acquisition modes

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
128 MSample 256 Msample 512 MSample 1 GSample 2 GSample
Mem 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 2 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 4 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

74

M3i.41xx / M3i.41xx-exp Manual

Acquisition modes Buffer handling

Buffer handlin

To handle the huge amount of data that can possibly be acquired with the M2i/M3i series cards, there is a very reliable two step buffer
strategy set up. The on-board memory of the card can be completely used as a real FIFO buffer. In addition a part of the PC memory can be
used as an additional software buffer. Transfer between hardware FIFO and software buffer is performed interrupt driven and automatically
by the driver to get best performance. The following drawing will give you an overview of the structure of the data transfer handling:

Busmaster — y HW Data FIFO Buffer

Scatter-Gather | (complete memory)
DMA Engine

| DMA Control
Engine

""""""""""""" E’vén't'é""'FIJnZIs'In&IZe'"""""""""""""""'A,;Piic'aﬁon
Y

Application Applicatidn Data Buffer
{up to seeral GByte of PC memory)

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer which is on the one side controlled by the driver and filled automatically by busmaster DMA from/to
the hardware FIFO buffer and on the other hand it is handled by the user who set's parts of this software buffer available for the driver for
further transfer. The handshake is fulfilled with the following 3 software registers:

Register Value Direction Description

SPC_DATA_AVAIL_USER_LEN 200 read Returns the number of currently to the user available bytes inside a sample data transfer.
SPC_DATA_AVAIL_USER_POS 201 read Returns the position as byte index where the currently available data samples start.
SPC_DATA_AVAIL_CARD_LEN 202 write Writes the number of bytes that the card can now use for sample data transfer again

Internally the card handles two counters, a user counter and a card counter. Depending on the transfer direction the software registers have
slightly different meanings:

Transfer direction Register Direction Description
Write to card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are free to write new data to the
card. The user can now fill this amount of bytes with new data to be transferred.
SPC_DATA_AVAIL_CARD_LEN write After filling an amount of the buffer with new data to transfer to card, the user tells the driver with this

register that the amount of data is now ready to transfer.

Read from card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are filled with newly transferred
data. The user can now use this data for own purposes, copy it, write it to disk or start calculations
with this data.

SPC_DATA_AVAIL_CARD_LEN write After finishing the job with the new available data the user needs to tell the driver that this amount of
bytes is again free for new data to be transferred.

Any direction SPC_DATA_AVAIL_USER_POS read The register holds the current byte index position where the available bytes start. The register is just
intended to help you and to avoid own position calculation
Any direction SPC_FILLSIZEPROMILLE read The register holds the current fill size of the on-board memory (FIFO buffer) in promille (1/1000) of

the full on-board memory. Please note that the hardware reports the fill size only in 1/16 parts of the
full memory. The reported fill size is therefore only shown in 1000/16 = 63 promille steps.

Directly after start of transfer the SPC_DATA_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_DATA_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for
transfer.

The counter that is holding the user buffer available bytes (SPC_DATA_AVAIL_USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get A
notice of it if the notify size is programmed to a higher value.

Remarks

e The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred unfil the application data buffer is completely used.

e Even if application data buffer is completely used there’s still the hardware FIFO buffer that can hold data until the complete on-board
memory is used. Therefore a larger on-board memory will make the transfer more reliable against any PC dead times.

¢ As you see in the above picture data is directly transferred between application data buffer and on-board memory. Therefore it is abso-
lutely critical to delete the application data buffer without stopping any DMA transfers that are running actually. It is also absolutely criti-
cal to define the application data buffer with an unmatching length as DMA can than try to access memory outside the application data

(c) Spectrum GmbH 75

Buffer handling Acquisition modes

area.

¢ As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly desirable if other threads do a lot of calculation work. However it is not necessary to use the wait functions and
one can simply request the current status whenever the program has time to do so. When using this polling mode the announced avail-
able bytes still stick to the defined notify size!

e |f the on-board FIFO buffer has an overrun (card to PC) or an underrun (PC to card) data transfer is stopped. However in case of transfer
from card to PC there is still a lot of data in the on-board memory. Therefore the data transfer will continue until all data has been trans-
ferred although the status information already shows an overrun.

¢ Geftting best bus transfer performance is done using a ,continuous buffer”. This mode is explained in the appendix in greater detail.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-

fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the

range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify
size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the
polling mode as described later.

The following graphs will show the current buffer positions in different states of the transfer. The drawings have been made for the transfer
from card to PC. However all the block handling is similar for the opposite direction, just the empty and the filled parts of the buffer are
inverted.

Step 1: Buffer definition

Directly after buffer definition the complete buffer is empty (card to PC) or
completely filled (PC to card). In our example we have a notify size which
is 1/4 of complete buffer memory to keep the example simple. In real 4,
world use it is recommended to set the notify size to a smaller stepsize. Notify Size
USER_POS

empty Buffer

Step 2: Start and first data available

In between we have started the transfer and have waited for the first data
to be available for the user. When there is at least one block of notify size
in the memory we get an inferrupt and can proceed with the data. Any

data that already was transferred is announced. The USER_POS is still USER_LEN
zero as we are right at the beginning of the complete transfer. USER_POS

Data in
PC memory

Step 3: set the first data available for card
Now the data can be processed. If transfer is going from card to PC that l

may be storing to hard disk or calculation of any figures. If transfer is go-
ing from PC to card that means we have to fill the available buffer again
with data. After the amount of data that has been processed by the user | CARD_LEN
application we set it available for the card and for the next step.

Step 4: next data available

After reaching the next border of the notify size we get the next part of the
data buffer to be available. In our example at the time when reading the
USER_LEN even some more data is already available. The user position

will now be at the position of the previous set CARD_LEN.) USER_LEN
USER_POS

Step 5: set data available again -

k
¥

Again after processing the data we set it free for the card use.
In our example we now make something else and don’t react to the inter-

rupt for a longer time. In the background the buffer is filled with more da-
Q. CARD_LEN

t : roll over the end of buffer

Now nearly the complete buffer is filled. Please keep in mind that our cur-
rent user position is still at the end of the data part that we processed and

marked in step 4 and step 5. Therefore the data to process now is splitin lge— | 1« »
two parts. Part 1 is at the end of the buffer while part 2 is starting with USER_LEN USER_LEN
address O part 2 USER_POS part 1

Step 7: set the rest of the buffer available
Feel free to process the complete data or just the part 1 until the end of n
the buffer as we do in this example. If you decide to process complete

buffer please keep in mind the roll over at the end of the buffer.

A
LJ

CARD_LEN

This buffer handling can now continue endless as long as we manage to
set the data available for the card fast enough. The USER_POS and USER_LEN for step 8 would now look exactly as the buffer shown in step 2.

76 M3i.41xx / M3i.41xx-exp Manual

Acquisition modes Buffer handling

Buffer handling example for transfer from card to PC (Data acquisition)

int8* pcData = (int8%*) pvAllocMemPageAligned (llBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM _BUF DATA, SPCM DIR CARDTOPC , 4096, (void*) pcData, 0, 11BufferSizeInBytes);

// we start the DMA transfer
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD DATA_ STARTDMA) ;

do
{
if (!dwError)
{
// we wait for the next data to be available. Afte this call we get at least 4k of data to proceed
dwError = spcm dwSetParam i32 (hDrv, SPC _M2CMD, M2CMD DATA WAITDMA) ;

// if there was no error we can proceed and read out the available bytes that are free again
spcm_dwGetParam i64 (hDrv, SPC_DATA AVAIL USER LEN, &llAvailBytes);
spcm_dwGetParam i64 (hDrv, SPC_DATA AVAIL USER_POS, &llBytePos);

printf (“We now have %11d new bytes available\n”, 1lAvailBytes);
printf (“The available data starts at position %11d\n”, 1l1lBytesPos);

// we take care not to go across the end of the buffer, handling the wrap-around
if ((11BytePos + l1lAvailBytes) >= llBufferSizeInBytes)
11AvailBytes = llBufferSizelInBytes - 1lBytePos;

// our do function gets a pointer to the start of the available data section and the length
vDoSomething (&pcData[llBytesPos], llAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i64 (hDrv, SPC_DATA AVAIL CARD LEN, 1llAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Buffer handling example for transfer from PC to card (Data generation)

int8* pcData = (int8%*) pvAllocMemPageAligned (llBufferSizeInBytes);

// before starting transfer we first need to fill complete buffer memory with meaningful data
vDoGenerateData (&pcData[0], l1lBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF DATA, SPCM DIR PCTOCARD , 4096, (void*) pcData, 0, 11BufferSizeInBytes);

// and transfer some data to the hardware buffer before the start of the card
spcm_dwSetParam i32 (hDrv, SPC_DATA AVAIL CARD_LEN, llBufferSizeInBytes);
dwError = spcm_dwSetParam_ i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

do
{
if (!dwError)
{
// if there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i64 (hDrv, SPC_DATA AVAIL USER_LEN, &llAvailBytes);
spcm_deetParam_i64 (hDrv, SPC_DATA_ AVAIL USER_POS, &llBytePos);

printf (“We now have %11d free bytes available\n”, 1llAvailBytes);
printf (“The available data starts at position %11d\n”, l1llBytesPos);

// we take care not to go across the end of the buffer, handling the wrap-around
if ((l11BytePos + l1lAvailBytes) >= llBufferSizeInBytes)
11AvailBytes = 1llBufferSizeInBytes - 11BytePos;

// our do function gets a pointer to the start of the available data section and the length
vDoGenerateData (&pcData[llBytesPos], llAvailBytes);

// now we mark the number of bytes that we just generated for replay
// and wait for the next free buffer
spcm_dwSetParam i64 (hDrv, SPC_DATA AVAIL CARD LEN, llAvailBytes);
dwError = spcm dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD DATA WAITDMA) ;
}

}

while (!dwError); // we loop forever if no error occurs

position if the buffer length is reached. However the DATA_AVAIL_USER_LEN register will give you the com-
plete amount of available bytes even if one part of the free area is at the end of the buffer and the second
half at the beginning of the buffer.

Please keep in mind that you are using a continuous buffer writing/reading that will start again at the zero f

(c) Spectrum GmbH 77

Data organisation Acquisition modes

Data organisation

Data is organized in a multiplexed way in the transfer buffer. If using 2 channels data of first activated channel comes first, then data of
second channel.

Activated Channels | ChO | Ch1 Samples ordering in buffer memory starting iih data offset zero

1 channel X A0 | Al A2 |A3 |A4 |A5 |A6 |A7 |A8 | A9 |AI0 |A11 [A12 [A13 |Al4 [Al5 |AT6
1 channel X BO B1 B2 B3 B4 B5 Bé B7 B8 B9 B10 |B11 |B12 |B13 |B14 |B15 |Bl16
2 channels X X A0 BO Al B1 A2 B2 A3 B3 A4 B4 A5 B5 Ab B6 A7 B7 A8

The samples are re-named for better readability. AO is sample O of channel O, B4 is sample 4 of channel 1, and so on

Sample format

The 14 bit A/D samples are stored in twos complement in the lower 14 bit of the 16 bit data word. 14 bit resolution means that data is
ranging from -8192...to...+8191. In standard mode the upper two bits contain the sign extension allowing to directly use the read data as
16 bit integer values. If digital inputs are activated these inputs are stored in the two upper bits.

Bit Standard Mode Digital inputs enabled
D15 ADx Bit 13 (sign extension) Digital bit 1 (X1)
D14 ADx Bit 13 (sign extension) Digital bit O (X0)
D13 ADx Bit 13 (MSB) ADx Bit 13 (MSB)
D12 ADx Bit 12 ADx Bit 12

D11 ADx Bit 11 ADx Bit 11

D10 ADx Bit 10 ADx Bit 10

D9 ADx Bit 9 ADx Bit @

D8 ADx Bit 8 ADx Bit 8

D7 ADx Bit 7 ADx Bit 7

D6 ADx Bit 6 ADx Bit 6

D5 ADx Bit 5 ADx Bit 5

D4 ADx Bit 4 ADx Bit 4

D3 ADx Bit 3 ADx Bit 3

D2 ADx Bit 2 ADx Bit 2

D1 ADx Bit 1 ADx Bit 1

DO ADx Bit O (LSB) ADx Bit O (LSB)

Converting ADC samples to voltage values

The Spectrum driver also contains a register that holds the value of the decimal value of the full scale representation of the installed ADC. This
value should be used when converting ADC values (in LSB) into real-world voltage values, because this register also automatically takes any
specialities info account, such as slightly reduced ADC resolution with reserved codes for gain/offset compensation.

Register Value Direction Description
SPC_MIINST_MAXADCVALUE 1126 read Contains the decimal code (in LSB) of the ADC full scale value.

In case of a board that uses an 8 bit ADC that provides the full ADC code (with-
out reserving any bits) the returned value would be 128. The the peak value for
a £1.0 V input range would be 1.0 V [or 1000 mv).

A returned sample value of for example +49 (decimal, two's complement, 1000 mV
signed representation) would then convert to: Vi =49 x s - 382.81 mV
A returned sample value of for example -55 (decimal) would then convert to:

V=55 x 180 429,69 mv

When converting samples that contain any additional data such as for example additional digital channels
or overrange bits, this exira information must be first masked out and a proper sign-extension must be per-
formed, before these values can be used as a signed two’s complement value for above formulas.

78 M3i.41xx / M3i.41xx-exp Manual

Clock generation Overview

Clock generation

Overview

The different clock modes

The Spectrum M3i/Md4i cards offer a wide variety of different clock modes
to match all the customers needs. All of the clock modes are described in de- [quartz 1

g . S PLL
tail with programming examples in this chapter. {programmable) L]
Quartz 2 7
The figure is showing an overview of the complete engine used on all (ou;;zn) PLL
M3i/M4i cards for clock generation. —* -
Ic':::': O_i Clock
The purpose of this chapter is to give you a guide to the best matching clock —O output
settings for your specific application and needs.

e e T T e e e |

to Slave(s) |

|
|
|
|
Star-HubOption _ _ __ _ _________

Standard internal sample rate (programmable reference quartz 1)

This is the easiest and most common way to generate a sample rate with no need for additional external clock signals. The sample rate has
a very fine resolution, low jitter and a high accuracy. The Quartz 1 is a high quality software programmable clock device acting as a refer-
ence to the internal PLL. The specification is found in the technical data section of this manual.

Quartz2 with PLL (option)

This optional second Quartz 2 is for special customer needs, either for a special direct sampling clock or as a very precise reference for the
PLL. Please feel free to contact Spectrum for your special needs. The Quarz 2 clock footprint can be equipped with a wide variety of clock
sources that are available on the market.

External Clock (reference clock)

Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a
system clock or to feed in an exact matching sample rate. The external clock is divided/multiplied using a PLL allowing a wide range of
external clock modes.

Synchronization clock (option Star-Hub)

The star-hub option allows the synchronization of up to 8 cards of the M3i/M4i series from Spectrum with a minimal phase delay between
the different cards. The clock is distributed from the master card to all connected cards. As a source it is possible to either use the program-
mable Quarz 1 clock or the external clock input of the master card. For details on the synchronization option please take a look at the ded-
icated chapter later in this manual.

Clock Mode Register
The selection of the different clock modes has to be done by the SPC_CLOCKMODE register. All available modes, can be read out by the
help of the SPC_AVAILCLOCKMODES register.

Register Value Direction Description

SPC_AVAILCLOCKMODES 20201 read Bitmask, in which all bits of the below mentioned clock modes are set, if available.

SPC_CLOCKMODE 20200 read/write Defines the used clock mode or reads out the actual selected one.
SPC_CM_INTPLL 1 Enables internal programmable high precision Quartz 1 for sample clock generation
SPC_CM_QUARTZ2 4 Enables optional Quartz 2 as reference for sample clock generation
SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

The different clock modes and all other related or required register seftings are described on the following pages.

(c) Spectrum GmbH 79

Details on the different clock modes

Clock generation

Detdails on the different clock modes

Standard internal sampling clock (PLL)

The internal sampling clock is generated in default mode by a programmable high precision quartz. You need to select the clock mode by

the dedicated register shown in the table below:

Register

Value

Direction

Description

SPC_CLOCKMODE

20200

read/write

Defines the used clock mode

| spc_cm INTPLL

1

Enables internal programmable high precision Quartz 1 for sample clock generation

The user does not have to care about how the desired sampling rate is generated by multiplying and dividing internally. You simply write the
desired sample rate to the according register shown in the table below and the driver makes all the necessary calculations. If you want to
make sure the sample rate has been set correctly you can also read out the register and the driver will give you back the sampling rate that

is matching your desired one best.

Register Value Direction Description
SPC_SAMPLERATE 20000 write Defines the sample rate in Hz for internal sample rate generation.
read Read out the internal sample rate that is nearest matching fo the desired one.

Independent of the used clock source it is possible to enable the clock output. The clock will be available on the external clock output connector
and can be used to synchronize external equipment with the board.

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Writing a ,,1” enables clock output on external clock output connector. Writing a ,0” disables the
clock output (tristate)

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

Example on writing and reading internal sampling rate

spcm_dwSetParam i32 (
spcm_dwSetParam_i64 (hDrv,
spcm_dwSetParam i32 (

(

SPC_CLOCKMODE,
SPC_SAMPLERATE,
SPC_CLOCKOUT,

SPC_CM_INTPLL); // Enables internal programmable quartz 1

62500000) ;
1)
&lSamplerate) ;

//
//

Set internal sampling rate to 62.5 MHz
enable the clock output of the card

spcm_dwGetParam_ i64
printf

SPC_SAMPLERATE,
(,Sample rate = %d\n"“,

// Read back the programmed sample rate and print
lSamplerate) ; // it. Output should be ,Sample rate = 62500000"

Minimum internal sampling rate
The minimum and the maximum internal sampling rates depend on the specific type of board. Both values can be found in the technical data
section of this manual.

Using Quariz2 with PLL (optional, M4i cards only)

In some cases it is necessary to use a special high precision frequency for sampling rate generation. For these applications all cards of the
M3i/Md4i series can be equipped with a special customer quartz. Please contact Spectrum for details on available oscillators. If your card is

equipped with a second oscillator you can enable it for sampling rate generation with the following register:

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_QUARTZ2 4 Enables optional quartz2 for sample clock generation

The quartz 2 clock is routed through a PLL to allow the generation of sampling rates based on this reference clock. As with internal PLL mode
it's also possible to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to read it back. The
result will then again be the best matching sampling rate.

Independent of the used clock source it is possible to enable the clock output. The clock will be available on the external clock output connector
and can be used to synchronize external equipment with the board.

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Writing a ,,1” enables clock output on external clock output connector. Writing a ,0” disables the
clock output (tristate)

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

80

M3i.41xx / M3i.41xx-exp Manual

Clock generation Details on the different clock modes

External clock (reference clock)

The external clock input is fed through a PLL to the clock system. Therefore the input will act as a reference clock input thus allowing to either
use a copy of the external clock or to generate any sampling clock within the allowed range from the reference clock. Please note the limited
setup granularity in comparison to the internal sampling clock generation. Details are found in the technical data section.

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Due to the fact that the driver needs to know the external fed in frequency for an exact calculation of the sampling rate you must set the
SPC_REFERENCECLOCK register accordingly as shown in the table below. The driver then automatically sets the PLL to achieve the desired
sampling rate. Please be aware that the PLL has some internal limits and not all desired sampling rates may be reached with every reference
clock.

Register Value Direction Description
SPC_REFERENCECLOCK 20140 read/write Programs the external reference clock in the range stated in the technical data section.
I External sampling rate in Hz as an integer value You need to set up this register exactly to the frequency of the external fed in clock.

Example of reference clock:

spcm_deetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM EXTREFCLOCK) ; // Set to reference clock mode
spcm_dwSetParam_i32 (hDrv, SPC_REFERENCECLOCK, 10000000); // Reference clock that is fed in is 10 MHz
spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 65200000) ; // We want to have 62.5 MHz as sampling rate

PLL Locking Error

The external clock signal is routed to a PLL to generate any sampling clock from this external clock. Due to the internal structure of the card
the PLL is even used if a copy of the clock fed in externally is used for sampling (SPC_REFERENCECLOCK = SPC_SAMPLERATE). The PLL needs
a stable and defined external clock with no gaps and no variation in the frequency. The external clock must be present when issuing the start
command. It is not possible to start the card with external clock activated and no external clock available.

When starting the card all seftings are written to hardware and the PLL is programmed to generate the desired sampling clock. If there has
been any change to the clock setting the PLL then tries to lock on the external clock signal to generate the sampling clock. This locking will

normally need 10 to 20 ms until the sampling clock is stable. Some clock settings may also need 200 ms to lock the PLL. This waiting time is
automatically added at card start.

However if the PLL can not lock on the external clock either because there is no clock available or it hasn't sufficient signal levels or the clock
is not stable the driver will return with an error code ERR_CLOCKNOTLOCKED. In that case it is necessary to check the external clock con-
nection. Please see the example below:

// settings done to external clock like shown above.

if (spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD CARD START | M2CMD_ CARD ENABLETRIGGER) =
{
printf (,External clock not locked. Please check connection\n") ;
return -1;

}

ERR_CLOCKNOTLOCKED)

(c) Spectrum GmbH 81

General Description Trigger modes and appendant registers

Trigger modes and appendant registers

General Description

The trigger modes of the Spectrum M3i series A/D cards are very extensive and give you the possibility to detect nearly any trigger event
you can think of.

You can choose between more than 10 external trigger modes and up to 20 internal trigger modes (on analog acquisition cards) including
software and channel trigger, depending on your type of board. Many of the channel trigger modes can be independently set for each input
channel (on A/D boards only) resulting in a even bigger variety of modes. This chapter is about to explain all of the different trigger modes
and setting up the card’s registers for the desired mode.

Trigger Engine Overview

Analog ADC Channel(s) Trig Level 1 -
O—| Input Stage |—<ADC Trlgge.r Channells) | Star-Hub (Option)
Detection
Ext0 r
Trig Level 0 rem
| 9 Extl che 1 OR
OR M
Ext2
Analog Trigger Input (Ext0) Trig Level 1
_Software | Ij‘
Input Stage Trlgge.r —Force Trigger | Trigger
Detection }_ Delay >
. AND
Trig Level 0
Channel(s)
Multi Purpose 1/0 (Trigger Ext1) Ext0
—> Trigger Input | TTL Trigger Extl
Run/Arm/... Digital Input | Detection Exi2 AND
f
< Asynek Out Asynchrous In
Enable Trigger Output
Enable Trigger |
Multi Purpose 1/0 (Trigger Ext2)
—> Trigger Input | TTL Trigger
Run/Arm/... Digitel Input | Detection
< Asynchronous Out Asynchrous In <
Enable Trigger Output

The trigger engine of the M3i card series allows to combine several different trigger sources with OR and AND combination, with a trigger
delay or even with an OR combination across several cards when using the Star-Hub option. The above drawing gives a complete overview
of the trigger engine and shows all possible features that are available.

Each analog input channel has two trigger level comparators to defect edges as well as windowed triggers. The card has a total of three
different additional external trigger sources. One main trigger source which also has two analog level comparators also allowing to use edge
and windowed trigger detection and two multi purpose in/outputs that can be software programmed to either additional trigger inputs or
trigger outputs or to some extended status signals.

The Enable trigger allows the user to enable or disable all trigger sources (including channel trigger and external trigger) with a single soft-
ware command. The enable trigger command will not work on force trigger.

When the card is waiting for a trigger event, either a channel trigger or an external trigger the force trigger command allows to force a
trigger event with a single software command. The force trigger overrides the enable trigger command.

Before the trigger event is finally generated, it is wired through a programmable trigger delay. This trigger delay will also work when used
in a synchronized system thus allowing each card to individually delay its trigger recognition.

82 M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers Multi Purpose 1/O Lines

Multi Purpose 1/O Lines

The M3i series has two multi purpose 1/O lines that can be used for a wide variety of functions to help the interconnection =g
with external equipment. The functionality of these multi purpose 1/O lines can be software programmed and each of these Xt
lines can either be used for input or output. Tr
The multi purpose 1/O lines may be used for additional trigger inputs allowing to combine and gate external triggers, for i ok

trigger output, for internal arm/run signals output, for asynchronous 1/O to control external equipment or as additional
digital input lines that are sampled synchronously with the analog data.

The multi purpose 1/O lines are available on the front plate and labelled with XO (line O = X0 = Ext1) and X1 (line 1 = X1 = Ext2). As default
these lines are switched off.

Please be careful when programming these lines as an output signal being connected with an external signal
source may damage components either on the external equipment or on the card itself.

Programming the behaviour

Each multi purpose 1/O line can be individually programmed. Please check the available modes by reading the SPCM_X0_AVAILMODES
and SPCM_X1_AVAILMODES register first. The available modes may differ from card to card and may be enhanced with new driver/firm-
ware versions to come.

Register Value Direction Description
SPCM_X0_AVAILMODES 47210 read Bitmask with all bits of the below mentioned modes showing the available modes for (XO = Ext1)
SPCM_X1_AVAILMODES 47211 read Bitmask with all bits of the below mentioned modes showing the available modes for (X1 = Ext2)
SPCM_X0_MODE 47200 read/write Defines the mode for (XO = Ext1). Only one mode selection is possible to be set at a time
SPCM_X1_MODE 47201 read/write Defines the mode for (X1 = Ext2). Only one mode selection is possible to be set at a time
SPCM_XMODE_DISABLE 00000000h | No mode selected. Output is tristate (default setup)
SPCM_XMODE_ASYNCIN 0000000Th | Connector is programmed for asynchronous input. Use SPCM_XX_ASYNCIO to read data asynchronous as shown in
next chapter.
SPCM_XMODE_ASYNCOUT 00000002h | Connector is programmed for asynchronous output. Use SPCM_XX_ASYNCIO to write data asynchronous as shown
in next chapter.
SPCM_XMODE_DIGIN 00000004h | Connector is programmed for digital input. Digital channel X0/X1 is written as D14/D15 of data stream during

acquisition (12 and 14 bit analog input cards only). Please check the ,Sample format” chapter for more details.
Please note that automatic sign extension of analog data is switched off as soon as one digital input line is activated.

SPCM_XMODE_TRIGIN 00000010h | Connector is programmed as additional TTL trigger input. XO/X1 is available as Ext1/Ext2 trigger input. Please be
sure to also set the corresponding trigger OR/AND masks to use this trigger input for trigger detection.
SPCM_XMODE_TRIGOUT 00000020h | Connector is programmed as trigger output and shows the trigger detection. The trigger output is HIGH as long as

postcounter is running. After reaching postcounter zero it will become LOW again. In standard FIFO mode the trigger
output is HIGH until FIFO mode is stopped.

SPCM_XMODE_OVROUT 00000040h | Shows the overrange status of the channels at the output. If the analog data of one channel exceeds the input range
the overrange signal is set to high level for that time. The overrange status of channel O is output on XO and the over-
range status of channel 1 is output on X1.

SPCM_XMODE_RUNSTATE 00000100h | Connector shows the current run state of the card. If acquisition/output is running the signal is HIGH. If card has
stopped the signal is LOW.

SPCM_XMODE_ARMSTATE 00000200h | Connector shows the current ARM state of the card. If the card is armed and ready to receive a trigger the signal is
HIGH. If the card isn’t running or the card is still acquiring pretrigger data or the trigger has been detected the signal
is LOW.

SPCM_XMODE_DIRECTTRIGOUT 00000400h | Connector is programmed as direct trigger output and shows the trigger recognition of an fed in trigger event which
will lead to a card trigger event. This mode shows the upcoming detection even before the card itself will have trig-
gered. The trigger output is HIGH as long as postcounter is running. After reaching postcounter zero it will become
LOW again. This mode ensures that the card is armed and therefor the signaled event trigger event will lead to a card
trigger. Please see below for a usage example for this mode.

SPCM_XMODE_DIRECTTRIGOUT_LR | 00000800h | Nearly identical to SPCM_XMODE_DIRECTTRIGOUT, but in contrast the above mode, this mode does not make sure
that the card is armed. The user has to take care that the repetition time of the fed in trigger event is longer than the
recording and re-arm time, otherwise the direct trigger might be generated although this event cannot be a properly
detected card trigger. Please see below for a usage example for this mode.

~i. Please note that a change to the SPCM_X0_MODE or SPCM_X1_MODE will only be updated with the next call
Q to either the M2CMD_CARD_START or M2CMD_CARD_WRITESETUP register. For further details please see the
’ relating chapter on the M2CMD_CARD registers.

Using asynchronous 1/0

To use asynchronous 1/O on the multi purpose 1/O lines it is first necessary to switch these lines to the desired asynchronous mode by pro-
gramming the above explained mode registers. As a special feature asynchronous input can also be read if the mode is set to trigger input
or digital input.

Register Value Direction Description

SPCM_XX_ASYNCIO 47220 read/write Connector X0 is linked to bit O of the register while connector X1 is linked to bit 1 of this register.
Data is written/read immediately without any relation to the currently used sampling rate or mode. If
a line is programmed to output, reading this line asynchronously will return the current output level.

(c) Spectrum GmbH 83

Multi Purpose 1/O Lines Trigger modes and appendant registers

Example of asynchronous write and read. We write a high pulse on output X1 and wait for a high level answer on input XO:

spcm_dwSetParam i32 (hDrv, SPCM X0 _MODE, SPCM_XMODE_ASYNCIN) ; // X0 set to asynchronous input
spcm dwSetParam i32 (hDrv, SPCM X1 MODE, SPCM XMODE ASYNCOUT); // X1 set to asynchronous output

spcm_deetParam_i32 (hDrv, SPCM XX ASYNCIO, O0);
spcm_dwSetParam i32 (hDrv, SPCM XX ASYNCIO, 2);
spcm_dwSetParam i32 (hDrv, SPCM_XX ASYNCIO, O0);

// programming a high pulse on output

do {
spcm_dwGetParam i32 (hDrv, SPCM_XX ASYNCIO, &lAsyncIn); // read input in a loop
} while ((lAsyncIn & 1) == 0) // until X0 is going to high level

Special behaviour of trigger output

As the driver of the M3i series is the same as the driver for the M2i series and some old software may rely on register structure of the M2i
card series there is a special compatible trigger output register that will work according to the M2i series style. It is not recommended to use
this register unless you're writing software for both card series:

Register Value Direction Description

SPC_TRIG_OUTPUT 40100 read/write M2i style trigger output programming. Write a 1" to enable X1 trigger output (SPCM_X1_MODE =
SPCM_XMODE_TRIGOUT) and X0 run state (SPCM_XO_MODE = SPCM_XMODE_RUNSTATE).
Write a ,0” to disable both outputs (SPCM_XO_MODE = SPCM_X1_MODE =
SPCM_XMODE_DISABLE)

The SPC_TRIG_OUTPUT register overrides the multi purpose |/O settings done by SPCM_X0_MODE and SPCM_X1_MODE and vice versa.
Please do not use both methods in one program.

Special direct trigger output modes

The trigger output of the cards can be used to start external equipment. To cope requirements for different applications, all M3i cards support
different output modes.

~Standard” Trigger Output

In this mode the output signal indicates the internal trigger

event after the trigger delay, and therefore the begin of post : ‘Pre: Post
trigger area. The trigger output and the recording can be de- :
layed by programming the user trigger delay. Trig In :
!:or c%etculs on the trigger delay, please see the related chapter Trig Out i ! |
in this manual. . Prog. Trig. Delay

~Direct” Trigger Output

In this mode the output signal indicates that the external fed

in trigger event (external or channel trigger) will lead to a re- :
cording affer a fix delay and the optional programmed trig- :
ger delay. The start of the recording can be delayed by Trig In

programming the user trigger delay. : . :
This can be useful when the trigger output is to be used to start Trig Out ' ;
' Fix_' Prog. Trig. Delay
<> < >

Pre

the device under test, whilst avoiding the need to record un-
needed data in the pre-trigger area. :

For details on the trigger delay, please see the related chapter
in this manual.

Using the direct trigger output modes requires the following driver and firmware version depending on your
card. Please update your system to the newest versions to run these modes mode.

e Driver version V2.06 (or newer)

e Base Ctrl firmware version V6 (or newer)

® M3i.21xx cards : Modul Ctrl firmware version V1 (or newer)
® M3i.32xx cards : Modul Ctrl firmware version V6 (or newer)
® M3i.41xx cards : Modul Ctrl firmware version V6 (or newer)

84 M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers Trigger masks

Trigger masks

Trigger OR mask

Analog ADC Channel(s) [Trigtovel 1 -

The purpose of this passage is to explain the trigger OR mask (see
left figure) and all the appendant software registers in detail.

Trigger | Channel(s) Star-Hub (Oprion)
Ly Detection | o
e
o or The OR mask shown in the overview before as one object, is separat-
it
S (=] Safbare ed into two parts: a general OR mask for external trigger (external
O mmrses_ | b [T | | oo analog and multi purpose TTL trigger) and software trigger and a
Chanseli channel OR mask.
P e Y e P
bl
AND}
bt
_Enable Trigger |
Multi Purpose 1/0 (Trigger Ext2) o
»

Every trigger source of the M3i series cards is wired to one of the above men-

tioned OR masks. The user then can program which trigger source will be rec- S o
ognized, and which one won't. SEC_TMASK_EXTO ------------------
Ext1 (X0) 1@
SPC_TMASK_EXT1 - - oot - !
This selection for the general mask is realized with the SPC_TRIG_ORMASK 6 -
R K xt2 (X1) 1o OR
register in combination with constants for every possible trigger source. SEC_TMASK EXT2 ----------------—-
This selection for the channel mpsk is rec:hzgd VYIfh thg Software ~
SPC_TRIG_CH_ORMASKO register in combination with constants for every SEC_TMASK_SOFTWARE -----------------= L. ...
possible channel trigger source. Channelo ~
SPC_TMASKO_CHO ---=----=---------- Channel
In either case the sources are coded as a biffield, so that they can be combined ’ OR
by one access to the driver with the help of a bitwise OR. channells——& o |
SPC_TMASKO_CH15 . ______!
The table below shows the relating register for the general OR mask and the
possible constants that can be written to it.
Register Value Direction Description
SPC_TRIG_AVAILORMASK 40400 read Bitmask, in which all bits of the below mentioned sources for the OR mask are set, if available.
SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.
—

SPC_TMASK_NONE 0 No trigger source selected

SPC_TMASK_SOFTWARE 1h Enables the software trigger for the OR mask. The card will trigger immediately after start.

SPC_TMASK_EXTO 2h Enables the external (analog) trigger O for the OR mask. The card will frigger when the programmed condition for this
input is valid.

SPC_TMASK_EXT1 4h Enables the external (TTL) trigger 1 for the OR mask. Please note that the mode of the multi purpose connector XO must
be programmed to trigger input if using the Ext1 trigger (SPCM_XO_MODE=SPCM_XMODE_TRIGIN). The card will
trigger when the programmed condition for this input is valid.

SPC_TMASK_EXT2 8h Enables the external (TTL) trigger 2 for the OR mask. Please note that the mode of the multi purpose connector X1 must
be programmed to trigger input if using the Ext2 trigger (SPCM_X1_MODE=SPCM_XMODE_TRIGIN). The card will
trigger when the programmed condition for this input is valid.

ger mode requiring values in the SPC_TRIG_ORMASK register, this mask should explicitely cleared, as other-

f Please note that as default the SPC_TRIG_ORMASK is set to SPC_TMASK_SOFTWARE. When not using any trig-
wise the software trigger will override other modes.

The following example shows, how to setup the OR mask, for an external trigger. As an example a simple edge detection has been chosen.
The explanation and a detailed description of the different trigger modes for the external trigger inputs will be shown in the dedicated passage
within this chapter.

spcm dwSetParam i32 (hDrv, SPC TRIG ORMASK, SPC TMASK EXTO); // Enable external trigger within the OR mask
spcm_dwSetParam i32 (hDrv, SPC_TRIG_EXTO_ LEVELO, 1800); // Trigger level set to 1.8 V
spcm_dwSetParam i32 (hDrv, SPC_TRIG_EXTO_MODE, SPC_TM POS); // Setting up external trigger for rising edges

(c) Spectrum GmbH 85

Trigger masks

Trigger modes and appendant registers

The table below is showing the registers for the channel OR mask and the possible constants that can be written to it.

Register Value Direction Description
SPC_TRIG_CH_AVAILORMASKO 40450 read Bitmask, in which all bits of the below mentioned sources/channels (0...31) for the channel OR mask
are set, if available.
SPC_TRIG_CH_ORMASKO 40460 read/write Includes the analog or digital channels (0...31) within the channel trigger OR mask of the card.
SPC_TMASKO_CHO 00000001h | Enables channelO for recognition within the channel OR mask.
SPC_TMASKO_CH1 00000002h | Enables channell for recognition within the channel OR mask.
SPC_TMASKO_CH2 00000004h | Enables channel2 for recognition within the channel OR mask.
SPC_TMASKO_CH3 00000008h | Enables channel3 for recognition within the channel OR mask.
SPC_TMASKO_CH28 10000000h | Enables channel28 for recognition within the channel OR mask.
SPC_TMASKO_CH29 20000000h | Enables channel29 for recognition within the channel OR mask.
SPC_TMASKO_CH30 40000000h | Enables channel30 for recognition within the channel OR mask.
SPC_TMASKO_CH31 80000000h | Enables channel31 for recognition within the channel OR mask.

The following example shows, how to setup the OR mask for channel trigger. As an example a simple edge detection has been chosen. The
explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the dedicated passage

within this chapter.

spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE) ;

spcm_dwSetParam i32
spcm_dwSetParam_ i32

hDrv, SPC TRIG CHO LEVELO, 0);
hDrv, SPC_TRIG_EXTO_MODE, SPC_TM_POS) ;

(

spcm_dwSetParam 132 (hDrv, SPC_TRIG CH ORMASKO, SPC_TMASK CHO);
(
(

// disable default software trigger

// Enable channelO trigger within the OR mask
// Trigger level is zero crossing

// Setting up external trigger for rising edges

Trigger AND mask

Analog ADC Channel(s) | Trig Level 1 -

|
Trigger Channel(s) Star-Hub (Opfion)

The purpose of this passage is to explain the trigger AND mask (see
left figure) and all the appendant software registers in detail.

e <@t Detection | .
- ol [| The AND mask shown in the overview before as one object, is sepa-
-
i oo ‘ ! i rated into two parts: a general AND mask for external trigger and
. | :
Tags iy | Fare g 4 v software trigger and a channel AND mask.
Detection [| | \H ey [+—>
AND —)
Channells) !
Multi Purpose 1/0 (Trigger Ext1) Ext0
=> [T Trigger | Exel
AND
—Ext2 |
Enable Trigger |
<

Every trigger source of the M3i series cards except the software trigger is

wired to one of the above mentioned AND masks. The user then can program Externalo o
which trigger source will be recognized, and which one won't. SPC_TMASK EXTO ------------------
E — T
xt1 (X0) I
SPC_TMASK_EXT1 —---—-—"—-=cooo
This selection for the general mask is realized with the SPC_TRIG_ANDMASK e -
. R Xt2 (XT) e AND
register in combination with constants for every possible trigger source. SEC_TMASK EXT2 -----------------
This selection for the channel mask is realized with the
SPC_TRIG_CH_ANDMASKO register in combination with constants forevery L.
possible channel trigger source. In either case the sources are coded as a bit- Channelo -
field, so that they can be combined by one access to the driver with the help SPC_TMASKO_CHO ~----------------- Channel
of a bitwise OR. AND
Channells—</io—
The table below shows the relating register for the general AND mask and the SPO_TMASKO_CHLS - - oo ommommmmoooos
possible constants that can be written fo it.
Register Value Direction Description
SPC_TRIG_AVAILANDMASK 40420 read Bitmask, in which all bits of the below mentioned sources for the AND mask are set, if available.
SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.

SPC_TMASK_NONE 0 No trigger source selected

SPC_TMASK_EXTO 2h Enables the external (analog) trigger O for the AND mask. The card will trigger when the programmed condition for
this input is valid.

SPC_TMASK_EXT1 4h Enables the external (TTL) trigger 1 for the AND mask. Please note that the mode of the multi purpose connector X0
must be programmed to trigger input if using the Ext1 trigger (SPCM_XO_MODE=SPCM_XMODE_TRIGIN). The card
will trigger when the programmed condition for this input is valid.

SPC_TMASK_EXT2 8h Enables the external (TTL) trigger 1 for the AND mask. Please note that the mode of the multi purpose connector X1
must be programmed to trigger input if using the Ext2 trigger (SPCM_X1_MODE=SPCM_XMODE_TRIGIN). The card
will trigger when the programmed condition for this input is valid.

—

86 M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers Software trigger

The following example shows, how to setup the AND mask, for an external trigger. As an example a simple high level detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external trigger inputs will be shown in the dedicated
passage within this chapter.

spcm dwSetParam i32 (hDrv, SPC TRIG ORMASK, SPC TMASK NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ANDMASK, SPC_TMASK EXTO0); // Enable external trigger within the AND mask
spcm_dwSetParam 132 (hDrv, SPC_TRIG_EXTO LEVELO, 2000); // Trigger level is 2.0 V (2000 mV)
spcm dwSetParam i32 (hDrv, SPC TRIG EXTO MODE, SPC TM HIGH);// Setting up external trigger for HIGH level

The table below is showing the constants for the channel AND mask and all the constants for the different channels.

Register Value Direction Description
SPC_TRIG_CH_AVAILANDASKO 40470 read Bitmask, in which all bits of the below mentioned sources/channels (0...31) for the channel AND
mask are set, if available.
SPC_TRIG_CH_ANDMASKO 40480 read/write Includes the analog or digital channels (0...31) within the channel trigger AND mask of the card.
SPC_TMASKO_CHO 00000001h | Enables channelO for recognition within the channel OR mask. m
SPC_TMASKO_CH1 00000002h | Enables channell for recognition within the channel OR mask.
SPC_TMASKO_CH2 00000004h | Enables channel2 for recognition within the channel OR mask.
SPC_TMASKO_CH3 00000008h | Enables channel3 for recognition within the channel OR mask.
SPC_TMASKO_CH28 10000000h | Enables channel28 for recognition within the channel OR mask.
SPC_TMASKO_CH29 20000000h | Enables channel29 for recognition within the channel OR mask.
SPC_TMASKO_CH30 40000000h | Enables channel30 for recognition within the channel OR mask.
SPC_TMASKO_CH31 80000000h | Enables channel31 for recognition within the channel OR mask.

The following example shows, how to setup the AND mask for a channel trigger. As an example a simple level detection has been chosen.
The explanation and a detailed description of the different trigger modes for the channel trigger inputs will be shown in the dedicated passage
within this chapter.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK NONE) ; // disable default software trigger

spcm dwSetParam i32 (hDrv, SPC TRIG CH ANDMASKO, SPC TMASK CHO); // Enable channel0O trigger within the AND mask
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CHO_LEVELO, O0); // channel level to detect is zero level
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CHO_MODE, SPC_TM HIGH); // Setting up chO trigger for HIGH levels

Software trigger

The software trigger is the easiest way of triggering any Spectrum
board. The acquisition or replay of data will start immediately af-
ter the card is started and the trigger engine is armed. The result-
ing delay upon start includes the time the board needs for its
setup and the time for recording the pre-trigger area (for acquisi-
tion cards).

For enabling the software trigger one simply has to include the
software event within the trigger OR mask, as the following table is showing:

Board
setup time

START Triggerevent
command

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.
I SPC_TMASK_SOFTWARE 1h Sets the trigger mode to software, so that the recording/replay starts immediately.

Example for setting up the software trigger:

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK SOFTWARE) ; // Internal software trigger mode is used

Force- and Enable trigger

In addition to the software trigger (free run) it is also possible to force a trigger event by software while the board is waiting for a real physical
trigger event. The forcetrigger command will only have any effect, when the board is waiting for a trigger event. The command for forcing
a trigger event is shown in the table below.

Issuing the forcetrigger command will every time only generate one trigger event. If for example using Multiple Recording that will result in
only one segment being acquired by forcetrigger. After execution of the forcetrigger command the trigger engine will fall back to the trigger
mode that was originally programmed and will again wait for a trigger event.

Register Value Direction Description
SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p series cards.

(c) Spectrum GmbH 87

Trigger delay Trigger modes and appendant registers

I M2CMD_CARD_FORCETRIGGER | 10h | Forces a trigger event if the hardware is still waiting for a trigger event. I

The example shows, how to use the forcetrigger command:

spcm dwSetParam i32 (hDrv, SPC _M2CMD, M2CMD CARD FORCETRIGGER); // Force trigger is used.

It is also possible to enable (arm) or disable (disarm) the card’s whole triggerengine by software. By default the trigger engine is disabled.

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p series cards.
M2CMD_CARD_ENABLETRIGGER | 8h Enables the trigger engine. Any trigger event will now be recognized.
M2CMD_CARD_DISABLETRIGGER | 20h Disables the trigger engine. No trig_ger events will be recognized, except force trig_ger.

The example shows, how to arm and disarm the card’s trigger engine properly:

spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD ENABLETRIGGER); // Trigger engine is armed.

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_DISABLETRIGGER); // Trigger engine is disarmed.

Trigger delay

Analog ADC Channel(z)

All of the Spectrum M3i series cards allow the user to program an
el T —— additional trigger delay. As shown in the trigger overview section,
i this delay is the last element in the trigger chain. Therefore the user
| does not have to care for the sources when programming the trigger
i delay.

— |
(| InputStage < ADC b
~ | N\ Detection |

Ext

Extl

- i
N

Softwara
> {Trigger |

_Earce Trigger | ‘ N Trigger
Detection | | ‘ ._>
T ‘ AND|—4 1

As shown in the overview the trigger delay is located after the star-
hub connection meaning that every M3i card being synchronized
can still have its own trigger delay programmed. The Star-Hub will
combine the original trigger events before the result is being delayed.

Channells)

Multi Purpose 1/0 (Trigger Ext1) Ext0

o_[TTL Trigger |

H—a— Extl

Detection | AND}

4 Ext2

. [| o The delay is programmed in samples. The resulting time delay will
[peeoion therefore be [Programmed Delay] / [Sampling Rate].

Multi Purpose 1/0 (Trigger Ext2)

The following table shows the related register and the possible values. A value of O disables the trigger delay.

Register Value Direction Description
SPC_TRIG_AVAILDELAY 40800 read Contains the maximum available delay as a decimal integer value.
SPC_TRIG_DELAY 40810 read/write Defines the delay for the detected trigger events.
0 No additional delay will be added. The resulting intezul delay is mentioned in the technical data section.

8...[8G -8] in steps of 8 (12, 14 and 16 bit cards) | Defines the additional trigger delay in number of sample clocks. The trigger delay is a full 33 bit counter and can
therefore be programmed up to (8GSamples - 8) = 8589934584. Stepsize is 8 samples for 12, 14 and 16 bit cards.

16...[8G -16] in steps of 16 (8 bit cards) Defines the additional trigger delay in number of sample clocks. The trigger delay is a full 33 bit counter and can
therefore be programmed up to (8GSamples - 16) = 8589934576. Stepsize is 16 samples for 8 bit cards.

The example shows, how to use the trigger delay command:

spcm_dwSetParam i64 (hDrv, SPC_TRIG_DELAY, 2000); // A detected trigger event will be
// delayed for 2000 sample clocks.

~+. Using the delay trigger does not affect the ratio between pre trigger and post trigger recorded number of samples, but only shifts
-{)= the trigger event itself. For changing these values, please take a look in the relating chapter about ,Acquisition Modes”.

\

88 M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers

External (analog) trigger

External (analog) trigger

Analog ADC Channel (=) L
Trigger | Channells]
Detection |
e —— £t
)
Ext
Software
Trigger | | farce Trigger_|
Detection
Trig Level 0
2 Channells)
i Ext0
+ [T Trigger | i
Detection
. 4 Ext2 |
= _Enable Trigger |
Multi Purpase 1/0 (Trigger Ext2
+ [T Trigger |
,44\147 Detection

OR

AND}

The M3i series has one main external trigger input consisting of an
input stage with programmable termination and programmable
AC/DC coupling and two comparators that can be programmed in
the range of +/- 5000 mV. Using two comparators offers a wide

\ i range of different trigger modes that are support like edge, level, re-
arm and window trigger.

Star-Hub (Option]

The external analog trigger can be easily combined with channel trig-
ger or with one or two of the multi purpose connectors being pro-
grammed as additional external TTL trigger inputs. The programming
of the masks and the multi purpose /O behaviour is shown in the
chapters above.

Trigger Mode

Please find the external (analog) trigger input modes below. A detailed description of the modes follows in the next chapters..

Register Value Direction Description
SPC_TRIG_EXTO_AVAILMODES 40500 read Bitmask shoeing all available trigger modes for external O (ExtO) = main analog trigger input
SPC_TRIG_EXTO_MODE 40510 read/write Defines the external trigger mode for the external MMCX connector trigger input. The trigger need to
be added to either OR or AND mask input to be activated.
SPC_TM_NONE 00000000h | Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.
SPC_TM_POS 0000000Th | Trigger detection for positive edges (crossing level O from below to above)
SPC_TM_NEG 00000002h | Trigger detection for negative edges (crossing level O from above to below)
SPC_TM_POS | SPC_TM_REARM | 01000001h | Trigger detection for positive edges on lebel 0. Trigger is armed when crossing level 1 to avoid false trigger on noise
SPC_TM_NEG | SPC_TM_REARM | 01000002h | Trigger detection for negative edges on lebel 1. Trigger is armed when crossing level O to avoid false trigger on noise
SPC_TM_BOTH 00000004h | Trigger detection for positive and negative edges (any crossing of level O)
SPC_TM_HIGH 00000008h | Trigger detection for HIGH levels (signal above level O)
SPC_TM_LOW 00000010h | Trigger detection for LOW levels (signal below level O)
SPC_TM_WINENTER 00000020h | Window trigger for entering area between level O and level 1
SPC_TM_WINLEAVE 00000040h | Window trigger for leaving area between level O and level 1
SPC_TM_INWIN 00000080h | Window trigger for signal inside window between level O and level 1
SPC_TM_OUTSIDEWIN 00000100h | Window trigger for signal outside window between level O and level 1

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.
SPC_TMASK_EXTO 2h Enable external trigger input for the OR mask ~
SPC_TMASK_XIO0 100h Enable extra TTL input O for the OR mask. On plain cards this input is only available if the option BaseXIO is installed.
As part of the digitizerNETBOX this input is available as connector Trigger B.
SPC_TMASK_XIO1 200h Enable extra TTL input 1 for the OR mask. These trigger inputs are only available, when option BaseXIO is installed.

Trigger Input Termination

The external trigger input is a high impedance input with 1 MOhm termination aginst GND. It is possible to program a 50 Ohm termination
by software to terminate fast trigger signals correctly. If you enable the termination, please make sure, that your trigger source is capable to
deliver the needed current. Please check carefully whether the source is able to fulfil the trigger input specification given in the technical data

section.
Register Value Direction Description
SPC_TRIG_TERM 40110 read/write A 1" sets the 50 Ohm termination for external trigger signals. A , 0" sets the high impedance termi-

nation

Please note that the signal levels will drop by 50% if using the 50 ohm termination and your source also has 50 ohm output impedance (both
terminations will then work as a 1:2 divider). In that case it will be necessary to reprogram the trigger levels to match the new signal levels.
In case of problems receiving a trigger please check the signal level of your source while connected to the terminated input.

(c) Spectrum GmbH 89

External (analog) trigger

Trigger modes and appendant registers

Trigger Input Coupling

The external trigger input can be switched by software between AC and DC coupling. Please see the technical data section for details on the

AC bandwidth.

Register Value Direction

Description

SPC_TRIG_EXTO_ACDC 40120 read/write

A 1" sets the AC coupling for the external trigger input. A ,0” sets the DC coupling (default)

Trigger level

All of the external (analog) trigger modes listed above require at least one trigger level to be set (except SPC_TM_NONE of course). Some
like the window or the re-arm triggers require even two levels (upper and lower level) to be set. The meaning of the trigger levels is depending
on the selected mode and can be found in the detailled trigger mode description that follows.

Trigger levels for the external (analog) trigger to be programmed in mV:

Register Value Direction Description Range
SPC_TRIG_EXT_AVAILO_MIN 42340 read returns the minimum trigger level to be programmed in mV

SPC_TRIG_EXT_AVAILO_MAX 42341 read returns the maximum trigger level to be programmed in mV

SPC_TRIG_EXT_AVAILO_STEP 42342 read returns the step size of trigger level to be programmed in mV

SPC_TRIG_EXTO_LEVELO 42320 read/write Trigger level O for externanrigger -5000 mV to +5000 mV
SPC_TRIG_EXTO_LEVEL1 42321 read/write Trig&;er level 1 for external trigﬁer -5000 mV to +5000 mV

Detailed description of the external analog trigger modes

For all external analog trigger modes shown below, either the OR mask or the AND must contain the external trigger to activate the external

input as trigger source:.

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.
I SPC_TMASK_EXTO 2h Enables the external [anolog_) trigger O for the mask.

Trigger on positive edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the trigger signal from lower values to higher values (rising
edge) then the trigger event will be detected.

This edge triggered external trigger mode correspond to
the trigger possibilities of usual oscilloscopes.

/' ~ Triggerlevel _\
_______________________________________ -—

I
Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_POS 1h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV

90 M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers External (analog) trigger

Trigger on negative edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the trigger signal from higher values to lower values (falling

edge) then the trigger event will be detected. "_h\ Triggerlevel N\
1
I
:
1
1
|
|

This edge triggered external trigger mode correspond to
the trigger possibilities of usual oscilloscopes.

Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_NEG 2h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV

(c) Spectrum GmbH 91

External (analog) trigger

Trigger modes and appendant registers

Trigger on positive and negative edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the trigger signal (either rising or falling edge) the trigger
event will be defected.

Thise edge triggered external trigger mode correspond to
the trigger possibilities of usual oscilloscopes.

i Triggerleve! _\
AN T %
1

Triggerevent

|
Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_BOTH 4h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV

——

Re-arm trigger on positive edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the trigger signal from lower values to higher
values (rising edge) then the trigger event will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

armed
1

Triggerevent

i
Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_POS | SPC_TM_REARM 01000001h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Defines the re-arm level in mV mV

Re-arm trigger on negative edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the trigger signal from higher values to lower
values (falling edge) then the trigger event will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected, if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

armed
|

/Z frigger level \\{_ - 7[N _// i

i
|
Triggerevent

1
Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_EXTO_LEVELO 42320 read/write Defines the re-arm level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the desired trig_ger level in mV mV

92

M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers

External (analog) trigger

Window trigger for entering signals

The trigger input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal enters the window from the out-
side, a trigger event will be detected.

_____] ﬁ/ I
—

i

|
Triggerevent

1
Triggerevent

Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

Window trigger for leaving signals

The trigger input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in-
side, a trigger event will be detected.

upper level

Triggerevent

—

|
- __+___I__I |
ower level |
< [__//

Triggerevent

Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trig_ger level in mV mV
High level trigger
This trigger mode will generate an internal gate signal that
can be useful in conjunction with a second trigger mode to ST?”
gate that second trigger. If using this mode as a single trigger :
source the card will defect a trigger event at the time when /I — Tingeravel ™
entering the high level (acting like positive edge trigger) orif | =7 f\ ____________ T N T A
the trigger signal is already above the programmed level at L : : | l
the start it will immediately detect a trigger event. 1§ \]]] i
Lo | | | |
The trigger input is continuously sampled with the selected o - : : — : :
sample rate. The trigger event will be detected if the trigger Gate ’—‘ ’—L
input is above the programmed trigger level. >
t
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_HIGH 00000008h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper rri%er level in mV mV

(c) Spectrum GmbH

93

External (analog) trigger

Trigger modes and appendant registers

Low level trigger

This trigger mode will generate an internal gate signal that
can be useful in conjunction with a second trigger mode to
gate that second trigger. If using this mode as a single trigger
source the card will detect a trigger event at the time when
entering the low level (acting like negative edge trigger) or if
the trigger signal is already above the programmed level at
the start it will immediately detect a trigger event.

The trigger input is continuously sampled with the selected

_ 7[_ _\R _______ :L . 7{'_’ N Triggerlevel _f}._

sample rate. The trigger event will be detected if the trigger Gate ’—‘ |
input is below the programmed trigger level. >
i
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_LOW 00000010h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV

In window trigger

This trigger mode will generate an internal gate signal that Start
can be useful in conjunction with a second trigger mode to :
gate that second trigger. If using this mode as a single trigger ! == .
source the card will detect a trigger event at the time when | _5_____ L x_ upparlevel f'_____
entering the window defined by the two trigger levels (acting L/ | |
like window enter trigger) or if the trigger signal is already = : : >
inside the programmed window at the start it will immediately | ====— - ‘7/{' —f— I N u— }/!I “““ iy el st
detect a trigger event. — T E——— ! :
(. o | i
The trigger input is continuously sampled with the selected
sample rate. 'Il?he trigger event?xlvill bfdetected if the trigger cea |—‘ ’—‘ >
input is inside the programmed trigger window. t
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_INWIN 00000080h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

Outside window trigger

This trigger mode will generate an internal gate signal that

can be useful in conjunction with a second trigger mode to

gate that second trigger. If using this mode as a single trigger
source the card will detect a trigger event at the time when

leaving the window defined by the two trigger levels (acting
like leaving window trigger) or if the trigger signal is already
outside the programmed windo at the start it will immediately
detect a trigger event.

The trigger input is continuously sampled with the selected
sample rate. The trigger event will be detected if the trigger
input is outside the programmed trigger window.

upper level /

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_OUTSIDEWIN 00000100h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

94

M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers

External (TTL) trigger using multi purpose I/O connectors

External (TTL) tri

Analog ADC Channel(z)

(O mputstage —< apc Channells
h Ext
Ext1
OR
Ext2
Analog Trigger Input (Ext0)
Software |
o — Trigger || _Force Trigger |
Detection
Level 0
ck
Multi Purpose 1/0 (Trigger Ext1) L Ext0
—> tigger pwr | Tl Trigger | | | | Extl
igial tpur | Detection AND!

Multi Purpose 1/0 (Trigger Ext2)
—>

rigger Inpr | TTL Trigger | |
i Detection

¢+ Ext2

_Enable Trigger |

er using multi

urpose /O connectors

The M3i card series has two additional multi purpose lines that can
be programmed as additional TTL trigger inputs to be combined ei-

f?"'uwww‘ ther with the main (analog) external trigger or with some of the chan-
== ‘ o8 I nel frigger modes explained later in this manual.

ol ‘H) e Please keep in mind that the multi purpose /O lines need to be

AND T

switched to trigger input prior to being operated as trigger input. The
programming of the masks and the multi purpose /O behaviour is
shown in the chapters before.

S <
TTL Trigger Mode
Please find the multi purpose TTL trigger input modes below. A detailed description of the modes follows in the next chapters..
Register Value Direction Description
SPC_TRIG_EXT1_AVAILMODES 40501 read Bitmask shwoing all available trigger modes for external 1 (Ext1) = multi purpose XO
SPC_TRIG_EXT2_AVAILMODES 40502 read Bitmask shwoing all available trigger modes for external 2 (Ext2) = multi purpose X1
SPC_TRIG_EXT1_MODE 40511 read/write Defines the external trigger mode for the multi purpose XO MMCX connector trigger input. The trig-
ger need to be added to either OR or AND mask input to be activated.
SPC_TRIG_EXT2_MODE 40512 read/write Defines the external trigger mode for the multi purpose X1 MMCX connector trigger input. The trig-
ger need to be added to either OR or AND mask input to be activated.
SPC_TM_NONE 00000000h | Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.
SPC_TM_POS 00000001h | Trigger detection for positive edges
SPC_TM_NEG 00000002h | Trigger detection for negative edges
SPC_TM_BOTH 00000004h | Trigger detection for positive and negative edges
SPC_TM_HIGH 00000008h | Trigger detection for HIGH levels
SPC_TM_LOW 00000010h | Trigger detection for LOW levels

For all external edge and level trigger modes, the

OR mask must contain the corresponding input, as the following table shows:

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.
SPC_TMASK_EXT1 4h Enable multi purpose X0 external trigger input for the OR mask
SPC_TMASK_EXT2 8h Enable multi purpose X1 external trig_ger input for the OR mask

Edge and level triggers

Rising edge TTL trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The board will trigger on the first rising edge that is defected
affer starting the board. The next triggerevent will then be detect-

armed and waiting for a trigger again.

|
|
ed, if the actual recording/replay has finished and the board is !
i
|
|

Triggerevent

Register Value Direction Description

SPC_TRIG_EXT1_MODE 40511 read/write Sets the trigger mode for multi purpose XO trigger input.

SPC_TRIG_EXT2_MODE 40512 read/write Sets the trigger mode for multi purpose X1 trigger input.
I SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.

Example on how to set up the board for positive TTL trigger:

spcm_dwSetParam i32

(hDrv, SPC TRIG EXTO MODE, SPC TM POS);// Set up ext. TTL trigger to detect positive edges

(c) Spectrum GmbH

95

External (TTL) trigger using multi purpose I/O connectors Trigger modes and appendant registers

HIGH level TTL trigger

This trigger mode will generate an internal gate signal that can be
very good used together with a second trigger mode to gate the
trigger. If using this mode as a single trigger source the card will Start
detect a trigger event at the time when entering the high level (act
ing like positive edge trigger) or if the trigger signal is already at

|
|
high level at the start it will immediately detect a trigger event. | : 1 1
TTL Input :
The trigger input is continuously sampled with the selected sample : . L
rate. The trigger event will be detected if the trigger input is at TTL i | Lo
high level. ' ' Lo
Gate
Register Value Direction Description
SPC_TRIG_EXT1_MODE 40511 read/write Sets the trigger mode for multi purpose XO trigger input.
SPC_TRIG_EXT2_MODE 40512 read/write Sets the trigger mode for multi purpose X1 trigger input.
I SPC_TM_HIGH 8h Sets the tri%;er mode for ex:rnol TTL trig&;er to detect HIGH |e:e|s.

Negative TTL trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The board will trigger on the first falling edge that is detected Start
after starting the board. The next triggerevent will then be detect-
ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.

¥

Triggerevent

Register Value Direction Description

SPC_TRIG_EXT1_MODE 40511 read/write Sets the trigger mode for multi purpose XO trigger input.

SPC_TRIG_EXT2_MODE 40512 read/write Sets the trigger mode for multi purpose X1 trigger input.
I SPC_TM_NEG 2h Sets the tri%;er mode for ex;rnul TTL tri%er to detect negctive-edges.

LOW level TTL trigger

This trigger mode will generate an internal gate signal that can be
very good used together with a second trigger mode to gate the

trigger. If using this mode as a single trigger source the card will Start
detect a trigger event at the time when entering the low level (acting
like negative edge trigger) or if the trigger signal is already at low

|
I
level at the start it will immediately detect a trigger event. :
TTL Input :
The trigger input is continuously sampled with the selected sample [. ‘.—.
rate. The trigger event will be detected if the trigger input is at TTL i | Lo
low level. ' : S
Gate
Register Value Direction Description
SPC_TRIG_EXT1_MODE 40511 read/write Sets the trigger mode for multi purpose XO trigger input.
SPC_TRIG_EXT2_MODE 40512 read/write Sets the trigger mode for multi purpose X1 trigger input.
I SPC_TM_LOW 10h Sets the trigger mode for ex:rnol TTL trig_ger to detect LOW |e;|s.

96 M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers

Channel Trigger

Positive and negative TTL trigger (both edges

This mode is for detecting the rising and falling edges of an ex-
ternal TTL signal. The board will trigger on the first rising or falling
edge that is detected after starting the board. The next trigger- fy
event will then be detected, if the actual recording/replay has fin-
ished and the board is armed and waiting for a trigger again.

Triggerevent Triggerevent

Register Value Direction Description
SPC_TRIG_EXT1_MODE 40511 read/write Sets the trigger mode for multi purpose XO trigger input.
SPC_TRIG_EXT2_MODE 40512 read/write Sets the trigger mode for multi purpose X1 trigger input.

I SPC_TM_BOTH 4h Sets the trigger mode for ex:rnol TTL trig_ger to detect positive:nd negative edges.

Channel Trigger

Overview of the channel trigger registers

Channells!

Ext

Extl

Ext

Softwars
Trigger || Farce Triggar |
S .| Detection ’
Triglevel 0
Channells)
Multi Purpose 1/0 (Trigger Ext1) Ul Exto |
+ [T Trigger | | i
Detection
e 4 Ext2 |
_Enable Trigger |

Malt Porpose
+ [T Trigger | |

Detection

AND}

The channel trigger modes are the most common modes, compared
to external equipment like oscilloscopes. The huge variety of different
channel trigger modes enable you to observe nearly any part of the

Star-Hub (Option]

either want only one channel to be the trigger source, or if you want
to combine two or more channels to a logical OR or a logical AND
trigger.

—]| analog signal. This chapter is about to explain the different modes in
— defail. To enable the channel trigger, you have to set the channel trig-
‘ ‘H 55 1= germode register accordingly. Therefore you have to choose, if you
AND|——{ 1%

L

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):.

Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask

The following table shows the according registers for the two general channel trigger modes. It lists the maximum of the available channel
mode registers for your card’s series. So it can be that you have less channels installed on your specific card and therefore have less valid
channel mode registers. If you try to set a channel, that is not installed on your specific card, a error message will be returned.

Register Value Direction Description
SPC_TRIG_CH_AVAILMODES 40600 read Bitmask, in which all bits of the below mentioned modes for the channel trigger are set, if available.
SPC_TRIG_CHO_MODE 40610 read/write Sets the trigger mode for channel 0. Channel O must be enabled in the channel OR/AND mask.
SPC_TRIG_CH1_MODE 40611 read/write Sets the trigger mode for channel 1. Channel 1 must be enabled in the channel OR/AND mask.
SPC_TM_NONE 00000000h | Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.
SPC_TM_POS 00000001h | Enables the trigger detection for positive edges
SPC_TM_NEG 00000002h | Enables the trigger detection for negative edges
SPC_TM_BOTH 00000004h | Enables the trigger detection for positive and negative edges
SPC_TM_POS | SPC_TM_REARM 01000001h | Trigger detection for positive edges on lebel 0. Trigger is armed when crossing level 1 to avoid false trigger on noise
SPC_TM_NEG | SPC_TM_REARM 01000002h | Trigger detection for negative edges on lebel 1. Trigger is armed when crossing level O to avoid false trigger on noise
SPC_TM_LOW 00000010h | Enables the trigger detection for LOW levels
SPC_TM_HIGH 00000008h | Enables the trigger detection for HIGH levels
SPC_TM_WINENTER 00000020h | Enables the window trigger for entering signals
SPC_TM_WINLEAVE 00000040h | Enables the window trigger for leaving signals
SPC_TM_INWIN 00000080h | Enables the window trigger for inner signals
SPC_TM_OUTSIDEWIN 00000100h | Enables the window trig_ger for outer signals

(c) Spectrum GmbH 97

Channel Trigger Trigger modes and appendant registers

If you want to set up a two channel board to detect only a positive edge on channel O, you would have fo setup the board like the following
example. Both of the examples either for the single trigger source and the OR trigger mode do not include the necessary settings for the trigger
levels. These settings are detailed described in the following paragraphs.

spcm_dwSetParam 132 (hDrv, SPC TRIG ORMASK, SPC TMASK NONE) ; // disable software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASKO, SPC_TMASKO_CHO); // Enable channel 0 in the OR mask
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CHO_MODE, SPC_TM POS); // Set triggermode of channel 0 to positive edge

If you want to set up a two channel board to defect a trigger event on either a positive edge on channel O or a negative edge on channel 1
you would have to set up your board as the following example shows.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE) ; // disable software trigger
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CH_ORMASKO, SPC_TMASKO CHO | SPC_TMASKO_CHI1); // Enable channel 0 + 1
spcm_dwSetParam i32 (hDrv, SPC_TRIG CHO MODE, SPC_TM POS); // Set triggermode of channel 0 to positive edge
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CHl1 MODE, SPC_TM NEG); // Set triggermode of channel 1 to negative edge

Channel trigger level

All of the channel trigger modes listed above require at least one trigger level to be set (except SPC_TM_NONE of course). Some modes like
the window triggers require even two levels (upper and lower level) to be set.

After the data has been sampled, the upper N data bits are compared with the N bits of the trigger levels. The following table shows the level
registers and the possible values they can be set to for your specific card.

As the trigger levels are compared to the digitized data, the trigger levels depend on the channels input range. For every input range available
to your board there is a corresponding range of trigger levels. On the different input ranges the possible stepsize for the trigger levels differs

as well as the maximum and minimum values. The table further below gives you the absolute trigger levels for your specific card series.

10 bit resolution for the trigger levels:

Register Value Direction Description Range
SPC_TRIG_CHO_LEVELO 42200 read/write Trigger level O channel O: main trigger level / upper level if 2 levels used 51110 +511
SPC_TRIG_CH1_LEVELO 42201 read/write Trigger level O channel 1: main trigger level / upper level if 2 levels used 51110 +511
SPC_TRIG_CHO_LEVEL1 42300 read/write Trigger level 1 channel 0: auxiliary trigger level / lower level if 2 levels used 51110 +511
SPC_TRIG_CH1_LEVEL1 42301 read/write Trigger level 1 channel 1: auxiliary trigger level / lower level if 2 levels used | -511to +511
— —
Trigger level representation depending on selected input range
Input ranges

Triggerlevel +200 mV +500 mV 1V 2V 25V 5V 10V
Path O (Buffered) x x x x n.a. x x
Path 1 (HF, 50 Ohms) n.a. x x n.a. x x n.a.
511 +199.6 mV +499.0 mV +998.0 mV +1.996V +2.495V +4.99V +9.98V
510 +199.2 mV +498.0 mV +996.0 mV +1.992V +2.490V +4.98V +9.96V
256 +100.0 mV +250.0 mV +500.0 mV +1.00V +1.25V +2.50V +5.00V
2 +0.8 mV +2.0 mV +4.0 mV +7.8 mV +9.8 mV +19.6 mV +39.0 mV
1 +0.4 mV +1.0mV +2.0mV +3.9 mV +4.9 mV +9.8 mV +19.5 mV
0 oV (% oV oV oV oV oV
-1 0.4 mV -1.0mV 2.0mV 3.9 mv -4.9 mV 9.8 mV -19.5 mV
2 0.8 mV 2.0mV 4.0 mV 7.8 mV 9.8 mV -19.6 mV -39.0 mV
256 -100.0 mV -250.0 mV -500.0 mV -1.00 vV -1.25V 2.50V -5.00V
-510 -199.2 mV -498.0 mV 996.0 mV -1.992 vV 2.490V -4.98V 996V
511 -199.6 mV -499.0 mV -998.0 mV -1.996 V -2.495V -4.99 V 9.98V
Step size 0.4 mV 1.0 mV 2.0 mV 3.9 mV 4.9 mV 9.8 mV 19.5 mV

The following example shows, how to set up a one channel board fo trigger on channel O with rising edge. It is assumed, that the input range
of channel O is set to the the +£200 mV range. The decimal value for SPC_TRIG_CHO_LEVELO corresponds then with 16.0 mV, which is the

resulting trigger level.

spcm dwSetParam i32 (hDrv, SPC TRIG ORMASK, SPC TMASK NONE) ; // disable default software trigger
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CHO_MODE, SPC_TM_POS) ; // Setting up channel trig (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CHO_LEVELO, 40); // Sets triggerlevel to 16.0 mV

(

spcm_dwSetParam i32

SPC_TRIG_CH_ORMASKO,

SPC_TMASKO CHO) ;

//

and enable it within the OR mask

98

M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers

Channel Trigger

Reading out the number of possible trigger levels

The Spectrum driver also contains a register that holds the value of the maximum possible different trigger levels considering the above men-
tioned exclusion of the most negative possible value. This is useful, as new drivers can also be used with older hardware versions, because
you can check the trigger resolution during run time. The register is shown in the following table:

Register Value Direction Description

SPC_READTRGLVLCOUNT 2500 r

Contains the number of different possible trigger levels meaning + of the value.

In case of a board that uses 8 bits for trigger detection the returned value would
be 127, as either the zero and 127 positive and negative values are possi-

ble.The resulting trigger step width in mV can easily be calculated from the re-

turned value. It is assumed that you know the actually selected input range.

To give you an example on how to use this formula we assume, that the

+£1.0 V input range is selected and the board uses 8 bits for trigger detection.

The result would be 7.81 mV, which is the step width for your type of board
within the actually chosen input range.

Detailed description of the channel trigger modes

Trigger step width =

Trigger step width =

Input Range .

Number of trigger levels + 1

+1000 mV
127 + 1

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):

Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask

Channel trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower values to higher values (ris-
ing edge) then the trigger event will be detected. = Triggerlevel ~
_______________________________________ -
— |
These edge triggered channel trigger modes correspond to ~ /I/ _
the trigger possibilities of usual oscilloscopes. | t
[
I
] _
|
Triggerevent
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS Th
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

Channel trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher values to lower values (fall-
ing edge) then the trigger event will be detected.

These edge triggered channel trigger modes correspond to

the trigger possibilities of usual oscilloscopes.

N Triggerevel /7 ™\
1
1
]
1
1
1
I
]

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG 2h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

(c) Spectrum GmbH

99

Channel Trigger

Trigger modes and appendant registers

Channel trigger on positive and negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal (either rising or falling edge) the trigger
event will be defected.

These edge triggered channel trigger modes correspond fo
the trigger possibilities of usual oscilloscopes.

i Triggerleve! _\
_____ — """"""7{"" Ty
- 1

Triggerevent Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_BOTH 4h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from lower values to higher
values (rising edge) then the trigger event will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

armed
1 1

Triggerevent Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 01000001h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm level relatively to the channel's input range board dependent

Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from higher values to lower
values (falling edge) then the trigger event will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected, if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

armed
1 |

/Zt;g_g;r_b_w;_x\i__jl___ o

I 1
Triggerevent Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Defines the re-arm level relatively to the channel’s input range board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

100 M3i.41xx / M3i.41xx-exp Manual

Trigger modes and appendant registers Channel Trigger

Channel window trigger for entering signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-

dow. Every time the signal enters the window from the out- —.
side, a trigger event will be detected.

Triggerevent

1
Triggerevent

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependent

Channel window trigger for leaving signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in- —

side, a trigger event will be detected. N _/Z‘ _________ pparleel / f':__-__

|
|
1 -
i >
“““ e o D p——
ower level | I
. [~ I
[
[
I
1

Triggerevent Triggerevent

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower Irigger level relatively to the channel’s input range. board dependent

High level trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. If using this mode as a single trigger
source the card will detect a trigger event at the time when
entering the high level (acting like positive edge trigger) or if
the analog signal is already above the programmed level at
the start it will immediately detect a trigger event.

The channel is continuously sampled with the selected sample
rate. The trigger event will be detected if the analog signal is
above the programmed trigger level.

I

Gate

-v

Register

Value

Direction

set to

Value

SPC_TRIG_CHO_MODE

40610

read/write

SPC_TM_HIGH

00000008h

SPC_TRIG_CHO_LEVELO

42200

read/write

Set it to the upper trigger level relatively to the channel’s input range.

board dependent

(c) Spectrum GmbH

101

Channel Trigger

Trigger modes and appendant registers

Low level trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. If using this mode as a single trigger
source the card will detect a trigger event at the time when
entering the low level (acting like negative edge trigger) or if
the signal is already above the programmed level at the start
it will immediately detect a trigger event.

The channel is continuously sampled with the selected sample
rate. The trigger event will be detected if the analog signal is
below the programmed trigger level.

-vY

Gate

Register

Value

Direction

set to

Value

SPC_TRIG_CHO_MODE

40610

read/write

SPC_TM_LOW

00000010h

SPC_TRIG_CHO_LEVELO

42200

read/write

Set it to the upper trigger level relatively to the channel’s input range.

board dependent

In window trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. If using this mode as a single trigger
source the card will detect a trigger event at the time when
entering the window defined by the two trigger levels (acting
like window enter trigger) or if the signal is already inside the
programmed window at the start it will immediately detect a

:

i
. _7/{— R 0 | | level
ower leve
trigger event. 1 = _f/ :
| | | | |
The channel is continuously sampled with the selected sample
. . . . : Gate
rate. The trigger event will be detected if the analog signal is |—‘ >
inside the programmed trigger window. t
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_INWIN 00000080h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependent

Outside window trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. If using this mode as a single trigger
source the card will detect a trigger event at the time when
leaving the window defined by the two trigger levels (acting
like leaving window trigger) or if the signal is already outside
the programmed window at the start it will immediately de-
tect a trigger event.

The channel is continuously sampled with the selected sample
rate. The trigger event will be detected if the analog signal is
outside the programmed trigger window.

upper level / - \\
|

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_OUTSIDEWIN 00000100h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependent

102

M3i.41xx / M3i.41xx-exp Manual

Mode Multiple Recording Recording modes

Mode Multiple Recording

The Multiple Recording mode allows the acquisition of data .
blocks with multiple trigger events without restarting the hard- Pre:Post

ware. ’_I I——|]_l

Trigger : _ :
nAsnd NnAsn NaANA

The on-board memory will be divided into several segments of

the same size. Each segment will be filled with data when a trig- Input : :
ger event occurs (acquisition mode). UV }V VY Jv:yvy Jv:yvy
As this mode is totally controlled in hardware there is a very Memo an~nlan.nlNon.n
ry o A A
small re-arm time from end of one segment until the trigger de- UV VVV U VVUVUVY

tection is enabled again. You'll find that re-arm time in the tech-

nical data section of this manual. ~Segment

The following table shows the register for defining the structure of the segments to be recorded with each trigger event.

Register Value Direction Description

SPC_POSTTRIGGER 10100 read/write Acquisition only: defines the number of samples to be recorded per channel after the trigger event.

SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Recording segment: the total number of samples to be recorded per channel
after detection of one trigger event including the time recorded before the trigger (pre trigger).

Each segment in acquisition mode can consist of pretrigger and/or posttrigger samples. The user always has to set the total segment size
and the postirigger, while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using Multiple Recording the maximum pretrigger is limited depending on the number of active chan-
nels. When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN. &
Please have a look at the table further below to see the maximum pretrigger length that is possible.

Recording modes

Standard Mode

With every detected trigger event one data block is filled with data. The length of one multiple recording segment is set by the value of the
segment size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Multiple Recording. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_STD_MULTI 2 Enables Multiple Recording for standard acquisition.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.

FIFO Mode

The Multiple Recording in FIFO Mode is similar to the Multiple Recording in Standard Mode. In contrast to the standard mode it is not nec-
essary to program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block
by the driver as described under FIFO single mode example earlier in this manual. These blocks are online available for further data process-
ing by the user program. This mode significantly reduces the amount of data to be transferred on the PCI bus as gaps of no interest do not
have to be transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Multiple Recording.
The advantage of Multiple Recording in FIFO mode is that you can stream data online to the host system. You can make realtime data pro-
cessing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Multiple Recording. For
detailed information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_FIFO_MULTI 32 Enables Multiple Recording for FIFO acquisition.

The number of segments to be recorded must be set separately with the register shown in the following table:

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.
1..[4G-1] Defines the total segments to be recorded.

(c) Spectrum GmbH 103

Trigger Modes Mode Multiple Recording

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 2 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step Min | Max | Step Min Max Step Min | Max | Step Min | Max | Step
1 channel Standard Single 16 Mem 8 defined by post trigger | 8 8G-8 8 not used not used
Standard Multi/ABA | 16 Mem 8 8 8k 8 8 Mem/2 8 16 Mem/2 8 not used
FIFO Single not used 8 8k 8 not used 16 8G-8 8 0(x) |4G-1 1
FIFO Multi/ABA not used 8 8k 8 8 8G - 8 8 16 pre+post | 8 0 (x) |4G-1 1
2 channels | Standard Single 16 Mem/2 |8 defined by post trigger | 8 8G-8 8 not used not used
Standard Multi/ABA § 16 Mem/2 8 8 4k 8 8 Mem/4 8 16 Mem/4 8 not used
FIFO Single not used 8 4k 8 not used 16 8G-8 8 0(x) |4G-1 1
FIFO Multi/ABA not used 8 4k 3 8 [sc-8 [s 16 | pre+post | 8 O |4G-1 |1

All figures listed here are given in samples. An entry of [32G - 8] means [32 GSamples - 8] = 34,359,738,360 samples.
The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory

128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 2 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 4 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Multiple Recording and Timestamps

Multiple Recording is well matching with the timestamp option. If timestamp Start
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right.

‘Trigger1 : Trigger2 : Trigger3

me -

Trigger

Please keep in mind that the trigger events are timestamped, not the begin- Input
ning of the acquisition. The first sample that is available is at the time position
of [Timestamp - Pretrigger].

The programming details of the timestamp option is explained in an extra © Stamp3
chapter.

Trigger Modes

When using Multiple Recording all of the card’s trigger modes can be used except the software trigger. For detailed information on the avail-
able trigger modes, please take a look at the relating chapter earlier in this manual.

Trigger Counter

The number of acquired trigger events in Multiple Recording mode is counted in hardware and can be read out while the acquisition is running
or after the acquisition has finished. The trigger events are counted both in standard mode as well as in FIFO mode.

Register Value Direction Description

SPC_TRIGGERCOUNTER 200905 read Returns the number of trigger events that has been acquired since the acquisition start. The internal
trigger counter has 48 bits. It is therefore necessary to read out the trigger counter value with 64 bit
access or 2 x 32 bit access if the number of trigger events exceed the 32 bit range.

The trigger counter feature needs at least driver version V2.17 and firmware version V20 (M2i series), V10

(M3i series), V6 (M4i/M4x series) or V1 (M2p series). Please update the driver and the card firmware to these

versions to use this feature. Trying to use this feature without the proper firmware version will issue a driver
error.

104 M3i.41xx / M3i.41xx-exp Manual

Mode Multiple Recording

Programming examples

Using the trigger counter information one can determine how many Multiple Recording segments have been acquired and can perform a
memory flush by issuing Force trigger commands to read out all data. This is helpful if the number of trigger events is not known at the start
of the acquisition. In that case one will do the following steps:

Program the maximum number of segments that one expects or use the FIFO mode with unlimited segments
Set a timeout to be sure that there are no more trigger events acquired. Alternatively one can manually proceed as soon as it is clear from
the application that all trigger events have been acquired

Read out the number of acquired trigger segments

Issue a number of Force Trigger commands to fill the complete memory (standard mode) or to transfer the last FIFO block that contains

valid data segments

Use the trigger counter value to split the acquired data into valid data with a real trigger event and invalid data with a force trigger event.

Programming examples

The following example shows how to set up the card for Multiple Recording in standard mode.

spcm_dwSetParam_ i32

spcm_dwSetParam i64
spcm_dwSetParam i64

spcm_dwSetParam i64

spcm_dwSetParam i32
spcm_dwSetParam 132

(hDrv,

(hDrv,
(hDrv,

(hDrv,

(hDrv,
(hDrv,

SPC_CARDMODE, SPC_REC_STD MULTI); // Enables Standard Multiple Recording

SPC_SEGMENTSIZE, 1024); // Set the segment size to 1024 samples

SPC_POSTTRIGGER, 768) ; // Set the posttrigger to 768 samples and therefore
// the pretrigger will be 256 samples

SPC_MEMSIZE, 4096) ; // Set the total memsize for recording to 4096 samples

// so that actually four segments will be recorded

// Set triggermode to ext. TTL mode (rising edge)
// and enable it within the trigger OR-mask

SPC_TRIG EXTO MODE, SPC TM POS);
SPC_TRIG_ORMASK, SPC_TMASK_EXTO);

The following example shows how to set up the card for Multiple Recording in FIFO mode.

spcm_dwSetParam_ i32

spcm_dwSetParam i64
spcm_dwSetParam 164

spcm_dwSetParam 164

spcm_dwSetParam 132
spcm_dwSetParam i32

(hDrv,

(hDrv,
(hDrv,

(hDrv,

(hDrv,
(hDrv,

SPC_CARDMODE, SPC_REC _FIFO_MULTI); // Enables FIFO Multiple Recording

SPC_SEGMENTSIZE, 2048) ; // Set the segment size to 2048 samples

SPC_POSTTRIGGER, 1920) ; // Set the posttrigger to 1920 samples and therefore
// the pretrigger will be 128 samples

SPC_LOOPS 256) ; // 256 segments will be recorded

SPC_TRIG_EXTO_MODE, SPC_TM NEG); // Set triggermode to ext. TTL mode (falling edge)

SPC_TRIG ORMASK, SPC TMASK EXTO0); // and enable it within the trigger OR-mask

(c) Spectrum GmbH

105

General information Timestamps

Timestamps

General information

The timestamp function is used to record trigger events relative to the beginning of the measurement, relative to a fixed time-zero point or
synchronized to an external reset clock. The reset clock can come from a radio clock a GPS signal or from any other external machine.

The timestamp is internally realized as a very wide counter that is running with the currently used sampling rate. The counter is reset either
by explicit software command or depending on the mode by the start of the card. On receiving the trigger event the current counter value is
stored in an extra FIFO memory.

This function is designed as an enhancement to the Multiple Recording mode and is also used together with the ABA mode option but can
also be used without these options with plain single acquisitions.

Each recorded timestamp consists of the number of samples that has been counted since the last

counter reset has been done. The actual time in relation to the reset command can be easily calcu- =
lated by the formula on the right. Please note that the timestamp recalculation depends on the cur-

rently used sampling rate. Please have a look at the clock chapter to see how to read out the

sampling rate.

Timestamp
Sampling rate

If you want to know the time between two timestamps, you can simply calculate this by the for- Timestamp_, | ~ Timestamp
mula on the right. At = n+ n

Sampling rate

The following registers can be used for the timestamp option:

Register Value Direction Description
SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit 0 to 7
SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit O to 7
SPC_TIMESTAMP_TIMEOUT 47045 read/write Set's a timeout in milli seconds for waiting of an reference clock edge
SPC_TIMESTAMP_AVAILMODES 47001 read Returns all available modes as a bitmap. Modes are listed below
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET 1h The counters are reset and the local PC time is stored for read out by SPC_TIMESTAMP_STARTTIME and
SPC_TIMESTAMP_STARTDATE registers.
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock
SPC_TSCNT_REFCLOCKPOS 200h Cloulr(ﬂer is split, upper part is running with external reference clock positive edge, lower part is running with sampling
cloc
SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock
SPC_TSXIOINC_ENABLE 2000h Enables the trigger synchronous acquisition of the two 10 bit incremental counters with every stored timestamp in the
upper 20 bit of the timestamp data.
SPC_TSXIOACQ_ENABLE 1000h Enables the trigger synchronous acquisition of the BaseXIO inputs with every stored timestamp in the upper byte.
SPC_TSXIOACQ_DISABLE 0 The timestamp is filled up with leading zeros as a sign extension for positive values.
SPC_TSFEAT_NONE 0 No additional timestamp is created. The total number of stamps is only trigger related.
SPC_TSFEAT_STORE1STABA 10000h Enob;es ﬂée creation of one additional timestamp for the first A area sample when using the optional ABA (dualime-
ase) mode.

already active. This is the case when the card either has already done an acquisition after the last reset or if
the clock setup has already been actively transferred to the card by issuing the M2CMD_CARD_WRITESETUP
command.

f Writes to the SPC_TS_RESET register can only have an effect on the counters, if the cards clock generation is

Example for setting timestamp mode:

The timestamp mode consists of one of the mode constants, one of the counter and one of the feature constants:

// setting timestamp mode to standard using internal clocking
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_ CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL | SPC_TSFEAT_NONE) ;

// setting timestamp mode to start reset mode using internal clocking
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_STARTRESET | SPC_TSCNT_ INTERNAL | SPC_TSFEAT_NONE) ;

// setting timestamp mode to standard using external reference clock with positive edge
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_REFCLOCKPOS | SPC_TSFEAT NONE) ;

106 M3i.41xx / M3i.41xx-exp Manual

Timestamps Timestamp modes

Timestamp modes

Standard mode

In standard mode the timestamp counter is set to zero once by writing the TS_RESET commando to the command register. After that command
the counter counts continuously independent of start and stop of acquisition. The timestamps of all recorded trigger events are referenced to
this common zero time. With this mode you can calculate the exact time difference between different recordings and also within one acqui-
sition (if using Multiple Recording or Gated Sampling).

[[[

Card - ---4 Trig ? | Acquisition 1 |' = ---1Trig? | Acquisition 2 |' - {Trig ?| Acquisition3 |- - --- -~
A . A . .
Ti P [77]78]79]0o]o1[o2]03]0a]05]0s[07[08f09]10[11]12]13[14] 1 5[16]17]18]1 9] 20]21] 22] 23] 24] 25] 26] 27[28] 29[30[31 32] 33[3a[35 36| 37] 38] 39]40f 41|42 43[44] a5] a6 47]48]49]
Counter H H H
Timestamps
TS RESET| [CARD START CARD_START CARD_START

The following table shows the valid values that can be written to the timestamp command register for this mode:

Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET Th The timestamp counter is set fo zero
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Please keep in mind that this mode only work sufficiently as long as you don’t change the sampling rate
between two acquisitions that you want to compare. &

StartReset mode

In StartReset mode the timestamp counter is set to zero on every start of the card. After starting the card the counter counts continuously. The
timestamps of one recording are referenced to the start of the recording. This mode is very useful for Multiple Recording and Gated Sampling
(see according chapters for detailed information on these two optional modes)

]

Trigger]

'
'
Card - ---4 Trig ? | Acquisition 1 |' = ---1Trig? | Acquisition 2 |' - 1Trig ?| Acquisition3d |- -----"
A . A . .
' ' '
Ti P [77]78]79]80] 0001 [02]03]04]05]0s]07}08]09] 10]1 1]12]13]14]1 5[00]01]02[03]0aO5[0s 07 [08]09] 10]11]12]13]14] 1 5]16[00]01]02[03] 04 O5] 06 {07 080910 11[12]1 3] 14]1 5]
Counter H H H
. . .
Timestamps
ICARD_START CARD_START CARD_START
The following table shows the valid values that can be written to the timestamp command register.
Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all imestamps are in relation to card start.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

(c) Spectrum GmbH 107

Timestamp modes Timestamps

Refclock mode

The counter is split in a HIGH and a LOW part and an additional external signal, that affects both parts of the counter, needs to be fed in

externally. The external reference clock signal will reset the LOW part of the counter and increase the HIGH part of the counter. The upper
counter will hold the number of the clock edges that have occurred on the external reference clock signal and the lower counter will hold the
position within the current reference clock period with the resolution of the sampling rate.

This mode can be used to obtain an absolute time reference when using an external radio clock or a GPS receiver. In that case the higher
part is counting the seconds since the last reset and the lower part is counting the position inside the second using the current sampling rate.

BaseXIO needs to be installed on the card. Otherwise there is no additional reference clock input available
and this mode has no functionadlity. If using a digitizerNETBOX this additional timestamp reference clock input
is available as a standard and no option is needed to use this mode.

j Please keep in mind that as this mode uses an additional external signal. If using plain M2i cards the option

The counting is initialized with the timestamp reset command. Both counter parts will then be set to zero.

Reset Signal
Trigger [L [1 L[

Card - ---- Trig ? | Acquisition 1 I' ---1Trig? | Acquisition 2 |- - [Trig ?l Acquisition 3 | """
A | ! A ' A ' '
Ti . v ! v !
v IXX_lOO 1 o 1 02 1
Counter [F7[72[79[00]01 [o2 |03 |64 05 [06 [o7 [08 o510 11 [1 2|00 |01 [02]03 [04 05 [06 [o7 [o8 [0S 10 [12[13[1[1 516 [17 18] 9 |20 21 [22 |23 24 [25 |00 o1 [02 03 o4 [05 [0 [o7 [oe o9
v v A4
Timestamps
TS_RESET | ICARD_START | CARD_START CARD_START

The following table shows the valid values that can be written to the timestamp command register for this mode:

Register Value Direction Description
SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit 0 to 7
SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7
SPC_TIMESTAMP_TIMEOUT 47045 read/write Sets a timeout in milli seconds for waiting for a reference clock edge
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET 1h The counters are reset. If reference clock mode is used this command waits for the edge the timeout time.
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all imestamps are in relation to card start.
SPC_TSCNT_REFCLOCKPOS 200h Cloulr(ﬂer is split, upper part is running with external reference clock positive edge, lower part is running with sampling
cloc
SPC_TSCNT_REFCLOCKNEG 400h Clountelr isksplit, upper part is running with external reference clock negative edge, lower part is running with sam-
pling cloc

To synchronize the external reference clock signal with the PC clock it is possible to perform a timestamp reset command which waits a spec-
ified time for the occurrence of the external clock edge. As soon as the clock edge is found the function stores the current PC time and date

which can be used to get the absolute time. As the timestamp reference clock can also be used with other clocks that don't need to be syn-

chronized with the PC clock the waiting time can be programmed using the SPC_TIMESTAMP_TIMEOUT register.

Example for initialization of timestamp reference clock and synchronization of a seconds signal with the PC clock:

spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_ REFCLOCKPOS) ;
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_ TIMEOUT, 1500);
if (ERR _TIMEOUT == spcm dwSetParam i32 (hDrv, SPC TIMESTAMP CMD, SPC TS RESET))

printf ("Synchronization with external clock signal failed\n");

// now we read out the stored synchronization clock and date
int32 1SyncDate, 1SyncTime;

spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP STARTDATE, &lSyncDate);
spcm_dwGetParam i32 (hDrv, SPC TIMESTAMP STARTTIME, &lSyncTime);

// and print the start date and time information (European format: day.month.year hour:minutes:seconds)
printf ("Start date: %$02d.%02d.%04d\n", 1lSyncDate & Oxff, (lSyncDate >> 8) & Oxff, (lSyncDate >> 16) & Oxffff);
printf ("Start time: %02d:%02d:%02d\n", (1lSyncTime >> 16) & Oxff, (lSyncTime >> 8) & Oxff, 1lSyncTime & Oxff);

108 M3i.41xx / M3i.41xx-exp Manual

Timestamps Reading out the timestamps

Reading out the timestamps

General

The timestamps are stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out timestamps using DMA
transfer similar to the DMA transfer of the main sample data DMA transfer. The card has two completely independent busmaster DMA engines
in hardware allowing the simultaneous transfer of both timestamp and sample data.

As seen in the picture the extra FIFO is holding ABA and timestamp data as the same time. Nevertheless it is not necessary to care for the
shared FIFO as the extra FIFO data is splitted inside the driver in the both data parts.

Busmaster — HW Data FIFO Buffer

Scatter-Gather | (complete memory)
DMA Engine

| Extra Data < DMA Control
Splitter [Engine
""""" /""Xs‘"""'rv;n'r'é""'n;n:a;halz;'""'""""""""""""-;,;P'.i;a.io,,
l A\
Apphcati Applicati Application Applicatidn Data Buffer
ABA[Buffer ﬁmﬁf‘ﬂmn {up to seYeral GByte of PC memory)
Buffer

The only part that is similar for both kinds of data transfer is the handling of the DMA engine. This is similar to the main sample data transfer
engine. Therefore additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for exira transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.
M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.
M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.
M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.

The extra FIFO data transfer can generate one of the following status information:.

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

Data Transfer using DMA

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Extra data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

(c) Spectrum GmbH 109

Reading out the timestamps Timestamps

Definition of the transfer buffer

Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

spcm_dwDefTransfer 164 (hDrv, SPCM BUF TIMESTAMP, SPCM CARDTOPC, 0, pvBuffer, 0, 1lLenOfBufferInBytes);

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

Buffer handling

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set's parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation
SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred
timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation
SPC_TS_AVAIL_CARD_LEN 222 write After finishing the job with the new available timestamp data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_XXX_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for

transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get
notice of it if the notify size is programmed to a higher value.

Remarks

¢ The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.

¢ As shown in the drawing above the DMA control will announce new data fo the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

110 M3i.41xx / M3i.41xx-exp Manual

Timestamps Reading out the timestamps

bytes still stick to the defined notify size!
¢ If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

int8* pcData = (int8*) pvAllocMemPageAligned (l1BufSizeInBytes):;

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer 164 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1BufSizelInBytes);

do
{
// we wait for the next data to be available. After this call we get at least 4k of data to proceed
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA STARTDMA | M2CMD_EXTRA_WAITDMA) ;

if (!dwError)

{

// 1f there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_TS_AVAIL USER LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC_TS AVAIL USER POS, &lBytePos);

printf (“We now have %d new bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos):;

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1lBufSizeInBytes)
lAvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TS AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

the hardware using busmaster DMA this is not critical as long as the application data buffers are large

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by f
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling

When using M2i cards the Polling mode needs driver version V1.25 and firmware version V11 to run. Please
update your system to the newest versions to run this mode. Polling mode for M3i cards is included starting A
with the first delivered card version.

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is inacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
is similar to the above explained DMA buffer transfer. The value ,notify size” is ignored and should be set to 4k (4096).

Buffer handling

The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or
SPC_ABA_AVAIL_USER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that
has been read. In minimum this will be one DWORD = 4 bytes.

(c) Spectrum GmbH 11

Reading out the timestamps Timestamps

Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

int8* pcData = (int8%*) pvAllocMemPageAligned (lBufSizeInBytes);
// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, 1lBufSizelInBytes);

// we start the polling mode
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA POLL) ;
// this is pur polling loop
do
{
spcm_dwGetParam 132
spcm_dwGetParam 132

(hDrv,
(hDrv,

SPC_TS_AVAIL_USER_LEN,
SPC_TS_AVAIL_USER_POS,

&1AvailBytes) ;
&1BytePos) ;

if (lAvailBytes > 0)
{
printf
printf

(“We now have %d new bytes available\n”,
(“The available data starts at position %d\n”,

l1AvailBytes) ;
1BytesPos) ;

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1BufSizeInBytes)
1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL CARD_LEN, lAvailBytes);
}
}
while

(!dwError); // we loop forever if no error occurs

Comparison of DMA and polling commands
This chapter shows you how small the difference in programming is between the DMA and the polling mode:

DMA mode Polling mode

Define the buffer

Start the transfer
Wait for data
Available bytes?
Min available bytes
Current position?
Free buffer for card

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA)
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA)
spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
programmed notify size

specm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, IBytes);

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIRR...);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
not in polling mode

spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);

4 bytes

spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, IBytes);

Data format
Each timestamp is 56 bit long and internally mapped to 64 bit (8 bytes). The counter value contains the number of clocks that have been

recorded with the currently used sampling rate since the last counter-reset has been done. The matching time can easily be calculated as
described in the general information section at the beginning of this chapter.

The values the counter is counting and that are stored in the timestamp FIFO represent the moments the trigger event occurs internally. Com-
pared to the real external trigger event, these values are delayed. This delay is fix and therefore can be ignored, as it will be identical for all
recordings with the same setup.

Standard data format

When infernally mapping the timestamp from 56 bit to a 64 bit value the leading 8 bits are filled up with zeros (as a sign extension for
positive values), to have the stamps ready for calculations as a unsigned 64 bit wide infeger value.

Timestamp Mode 8™ byte 7' byte | 6" byte | 5t byte | 4™ byte | 3" byte | 2" pyte | 1% byte
Standard/StartReset Oh 56 bit wide Timestamp
Refclock mode Oh 24 bit wide Refclock edge counter (seconds counter) | 32bit wide sample counter

Extended BaseXIO-Data format

Sometimes it is useful to store the level of additional external static signals together with a recording, such as e.g. control inputs of an external
input multiplexer or settings of an external. When programming a special flag the upper byte of every 64 bit timestamp value is not (as in

standard data mode) filled up with leading zeros, but with the values of the BaseXIO digital inputs. The following table shows the resulting
64 bit timestamps.

Timestamp Mode 8' byte 7' byte | 6" byte | 5% byte | 4t byte | 3" byte | 2"d byte | 15 byte
Standard / StartReset XIO7...XIO0 56 bit wide Timestamp
Refclock mode XIO7...XI00 24 bit wide Refclock edge counter (seconds counter) | 32bit wide sample counter

112 M3i.41xx / M3i.41xx-exp Manual

Timestamps Combination of Memory Segmentation Options with Timestamps

no longer sign extended integer 64 values so that before using these stamps for calculations (such as calcu-

The BaseXIO-Data sampling option requires the option BaseXIO to be installed. All enhanced timestamps are i
lating the difference between two stamps) one has to mask out the leading byte of the stamps first.

Extended BaseXIO incremental encoder counter format

Some applications require to relate the generated timestamps to a rotary position coming from incremental encoders. Therefore this dedicated
timestamp mode provides storage of values from two 10 bit counters (leading to a range from 0 to 1023) with separate ,Count” and ,Reset”
lines is provided. This mode requires therefore four external TTL lines which are only available, if the BaseXIO option is installed. Details of
the BaseXIO pinout can be found in the BaseXIO chapter in this manual.

With each rising edge of the count input the counter is incremented by one step. Because that input is synchronized into the internal clock
domain, please make sure that the HIGH and the LOW time are at least 16 times of the sampling period time long. So when sampling with
100 MS/s (10 ns period time) the pulse has at least a length of 160 ns. A HIGH event on the reset line (assertion) will set the counter asyn-
chronously back to zero. The de-assertion of the reset line is synchronized to the same internal clock domain as the count inputs to prevent
runt pulses from corrupting the counter reset.

When enabling the M3i encoder option the total 64 bits of one timestamp are divided up info up to four parts:

Timestamp Mode 8™ byte | 7' byte | 6' byte | 5% byte | 4t byte | 3" byte | 2" pyte 15! byte
Standard / StartReset 10 bit wide Incre- 10 bit wide Incre- 44bit wide sample counter

mental Counter 1 mental Counter 2
Refclock mode 10 bit wide Incre- 10 bit wide Incre- 14 bit wide Refclock edge 30bit wide sample counter

mental Counter 1 mental Counter 2 counter (seconds counter)

Using the incremental encoder counter requires the driver V2.16 (or newer) and the M3i main control firm- ..
ware version V14 (or newer). Please update your system to the latest versions to run this mode. Q
The BaseXIO-Data sampling option requires the option BaseXIO to be installed. All enhanced timestamps are

no longer sign extended integer 64 values so that before using these stamps for calculations (such as calcu- A
lating the difference between two stamps) one has to mask out the incremental counter and the Reference

clock counter values of the stamps first.

Selecting the timestamp data format
The selection between the different data format for the timestamps is done with a flag that is written to the timestamp command register. As
this register is organized as a biffield, the data format selection is available for all possible timestamp modes.

Register Value Direction Description
SPC_TIMESTAMP_CMD 47100 r/w
SPC_TSXIOINC_ENABLE 2000h Enables the trigger synchronous acquisition of the two 10 bit incremental counters with every stored timestamp in the
upper 20 bit of the timestamp data.
SPC_TSXIOACQ_ENABLE 1000h Enables the trigger synchronous acquisition of the BaseXIO inputs with every stored timestamp in the upper byte.
SPC_TSXIOACQ_DISABLE 0 The timestamp is filled up with leading zeros as a sign extension for positive values.

Combination of Memory Segmentation Options with Timestamps

This topic should give you a brief overview how the timestamp option interacts with the options Multiple Recording and ABA mode for which
the timestamps option has been made.

Multiple Recording and Timestamps

Multiple Recording is well matching with the timestamp option. If timestamp Start
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right.

‘Trigger1 : Trigger2 : Trigger3

e e

Trigger

Please keep in mind that the trigger events are timestamped, not the begin- Input
ning of the acquisition. The first sample that is available is at the time position
of [Timestamp - Pretrigger].

The programming details of the timestamp option is explained in an extra © Stamp3
chapter.

(c) Spectrum GmbH 113

Combination of Memory Segmentation Options with Timestamps Timestamps

The following example shows the setup of the Multiple Recording mode together with activated timestamps recording and a short display of
the acquired timestamps. The example doesn’t care for the acquired data itself and doesn’t check for error:

// setup of the Multiple Recording mode

spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_MULTI) ; // Enables Standard Multiple Recording
spcm_dwSetParam i64 (hDrv, SPC_SEGMENTSIZE, 1024); // Segment size is 1 kSample, Posttrigger is 768
spcm_dwSetParam i64 (hDrv, SPC_POSTTRIGGER, 768) ; // samples and pretrigger therefore 256 samples.
spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, 4096) ; // 4 kSamples in total acquired -> 4 segments

// setup the Timestamp mode and make a reset of the timestamp counter
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL) ;
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE RESET) ;

// now we define a buffer for timestamp data and start acquistion, each timestamp is 64 bit = 8 bytes
int64* pllStamps = (int64*) pvAllocMemPageAligned (8 * 4);

spcm_dwDefTransfer_ i64 (hDrv, SPCM BUF_ TIMESTAMP, SPCM_DIR_CARDTOPC, 0, (void*) pllStamps, 0, 4 * 8);
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_EXTRA STARTDMA) ;

// we wait for the end timestamps transfer which will be received if all segments have been recorded
spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD_EXTRA WAITDMA) ;

// as we now have the timestamps we just print them and calculate the time in milli seconds
int64 llSamplerate;

double dTime ms;

int32 1lOver;

spcm_dwGetParam_i64 (hDrv, SPC_SAMPLERATE, &llSamplerate);

spcm_dwGetParam i32 (hDrv, SPC_ OVERSAMPLINGFACTOR, &lOver);

for (int 1 = 0; 1 < 4; i++)
{
dTime ms = 1000.0 * pllStamps[i] / llSamplerate / lOver);

printf ("#%d: $I64d samples = %.3f ms\n", i, pllStamps[i], dTime ms);
}

ABA Mode and Timestamps

The ABA mode is well matching with the timestamp option. If timestamp .) .
recording is activated, each trigger event and therefore each B time base " Pre | Post :

segment will get time tamped as shown in the drawing on the right. —

Trigger : . :
Please keep in mind that the trigger events - located in the B area - are time ;
tamped, not the beginning of the acquisition. The first B sample that is ‘ ‘ ‘ ‘ \,P\ J‘ L ‘ ‘ ‘ ‘ ‘ ‘ ’
available is at the time position of [Timestamp - Pretrigger]. Input \\ i "‘u" L\’\,’ i
The first A area sample is related to the card start and therefore in a fixed /
but various settings dependent relation to the timestamped B sample. To :

<« A —>< B >, A

bring exact relation between the first A area sample (and therefore all
area A samples) and the B area samples it is possible to let the card stamp
the first A area sample automatically after the card start. The following table shows the register to enable this mode:

Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp setup including mode and additional features
SPC_TSFEAT_MASK FOOOOh Mask for the feature relating bits of the SPC_TIMESTAMP_CMD bitmask.
SPC_TSFEAT_STORE1STABA 10000h Enables storage of one additional timestamp for the first A area sample (B time base related) in addition to the trigger
related timestamps.
SPC_TSFEAT_NONE Oh No additional timestamp is created. The total number of stamps is only trigger related.

This mode is compatible with all existing timestamp modes. Please keep in mind that the timestamp counter is running with the B area time-
base.

// normal timestamp setup (e.g. setting timestamp mode to standard using internal clocking)
uint32 dwTimestampMode = (SPC_TSMODE_STANDARD | SPC_TSMODE_DISABLE) ;

// additionally enable index of the first A area sample
dwTimestampMode |= SPC_TSFEAT STORE1STABA;

spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_ CMD, dwTimestampMode) ;

The programming details of the ABA mode and timestamp modes are each explained in an dedicated chapter in this manual.

Using the cards in ABA mode with the timestamp feature to stamp the first A are sample requires the follow-
& ing driver and firmware version depending on your card:

114 M3i.41xx / M3i.41xx-exp Manual

Timestamps Combination of Memory Segmentation Options with Timestamps

M2i: driver version V2.06 (or newer) and firmware version V16 (or newer)
M3i: driver version V2.06 (or newer) and firmware version V6 (or newer)

Please update your system to the newest versions to run this mode.

(c) Spectrum GmbH 115

General information ABA mode (dual timebase)

ABA mode (dual timebase)

General information

The ABA mode allows the acquisition of data with a dual timebase. In case of trigger event the inputs are sampled very fast with the pro-
grammed sampling rate. This part is similar to the Multiple Recording option. But instead of having no data in between the segments one has
the opportunity to continuously sample the inputs with a slower sampling rate the whole time. Combining this with the recording of the
timestamps gives you a complete acquisition with a dual timebase as shown in the drawing.

Pre : Post 5

o

Trigger

i ‘\'\ \m VAN N PN SN I VS
Input T

«— A —><«<— B ——>

As seen in the drawing the area around the trigger event is sampled between pretrigger and posttrigger with full sampling speed (area B of
the acquisition). Outside of this area B the input is sampled with the slower ABA clock (area A of the acquisition). As changing sampling
clock on the fly is not possible there is no real change in the sampling speed but area A runs continuously with a slow sampling speed without
stopping when the fast sampling takes place. As a result one gets a continuous slow sampled acquisition (area A) with some fast sampled
parts (area B)

The ABA mode is available for standard recording as well as for FIFO recording. In case of FIFO recording ABA and the acquisition of the
fast sampled segments will run continuously until it is stopped by the user.

A second possible application for the ABA mode is the use of the ABA data for slow monitoring of the inputs while waiting for an acquisition.
In that case one wouldn't record the timestamps but simply monitor the current values by acquiring ABA data.

The ABA mode needs a second clock base. As explained above the acquisition is not changing the sampling clock but runs the slower ac-
quisition with a divided clock. The ABA memory setup including the divider value can be programmed with the following registers

Register Value Direction Description

SPC_SEGMENTSIZE 10010 read/write Size of one B-segment: the total number of samples to be recorded per channel after detection of one
trigger event including the time recorded before the trigger (pre trigger).

SPC_POSTTRIGGER 10030 read/write Defines the number of samples to be recorded after each trigger event per channel.

SPC_ABADIVIDER 10040 read/write Programs the divider which is used to sample slow ABA data:

For 12 bit and 14 bit cards : between 8 and 131064 in steps of 8
For 8 bit: between 16 and 262128 in steps of 16

The resulting ABA clock is then calculated by sampling rate / ABA divider.

Each segment can consist of pretrigger and/or posttrigger samples. The user always has fo set the total segment size and the postirigger,
while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using ABA mode or Multiple Recording the maximum pretrigger is limited depending on the number
& of active channels. When the calculated value exceeds that limit, the driver will return the error
ERR_PRETRIGGERLEN.

Standard Mode

With every detected trigger event one data block is filled with data. The length of one ABA segment is set by the value of the segmentsize
register. The total amount of samples to be recorded is defined by the memsize register.

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling standard ABA mode. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode

116 M3i.41xx / M3i.41xx-exp Manual

ABA mode (dual timebase) General information

SPC_REC_STD_ABA 8h Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with pro-
grammed sampling rate the inputs are sampled continuously with a slower sampling speed.

The total number of samples to be recorded to the on-board memory in standard mode is defined by the SPC_MEMSIZE register.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.
FIFO Mode

The ABA FIFO Mode is similar to the Multiple Recording FIFO mode. In contrast to the standard mode it is not necessary to program the
number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block by the driver as described
under Single FIFO mode example earlier in this manual. These blocks are online available for further data processing by the user program.
This mode significantly reduces the average data transfer rate on the PClI bus. This enables you to use faster sample rates then you would be
able to in FIFO mode without ABA.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
SPC_REC_FIFO_ABA 80h Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sam-
pling clock.

The number of segments to be recorded must be set separately with the register shown in the following table:

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.
1..[4G-1] Defines the total segments to be recorded.

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 2 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min ng Step Min | ng | Step Min ng Step Min | ng | Step Min | Max Stee
1 channel Standard Single 16 Mem 8 defined by post trigger I 8 8G-8 8 not used not used
Standard Multi/ABA | 16 Mem 8 8 8k 8 8 Mem/2 | 8 16 Mem/2 | 8 not used
— — —
FIFO Single not used 8 8k 8 not used 16 8G-8 8 0 () |4G-1 1
FIFO Multi/ABA not used 8 8k 8 8 8G -8 8 16 pre+post | 8 0 (o) |4G-1 1
2 channels | Standard Single 16 Mem/2 |8 defined by post trigger I 8 8G-8 8 not used not used
Standard Multi/ABA | 16 Mem/2 |8 8 4k 8 8 Mem/4 |8 16 Mem/4 | 8 not used
— — —
FIFO Single not used 8 4k 8 not used 16 8G-8 8 0fx) |4G-1 1
FIFO Multi/ABA not used 8 4k 8 8 [8c-8 [s8 16 | pre+post | 8 O |4G-1 |1

All figures listed here are given in samples. An entry of [32G - 8] means [32 GSamples - 8] = 34,359,738,360 samples.
The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory

128 MSample | 256 MSample | 512 MSample 1 GSample 2 GSample
Mem 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 2 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 4 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

(c) Spectrum GmbH 117

Reading out ABA data ABA mode (dual timebase)

Example for setting ABA mode:

The following example will program the standard ABA mode, will set the fast sampling rate to 100 MHz and acquire 2k segments with Tk
pretrigger and Tk postirigger on every rising edge of the trigger input. Meanwhile the inputs are sampled continuously with the ABA mode
with a ABA divider set to 5000 resulting in a slow sampling clock for the A area of 100 MHz / 5000 = 20 kHz:

// setting the fast sampling clock as internal 100 MHz
spcm_dwSetParam i32 (hDrv, SPC CLOCKMODE, SPC CM INTPLL);
spcm_dwSetParam i64 (hDrv, SPC_SAMPLERATE, 100000000);

// enable the ABA mode and set the ABA divider to 5000 -> 100 MHz / 5000 = 20 kHz
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_ABA);
spcm_dwSetParam i32 (hDrv, SPC_ABADIVIDER, 5000);

// define the segmentsize, pre and posttrigger and the total amount of data to acquire
spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, 16384);

spcm_dwSetParam i64 (hDrv, SPC SEGMENTSIZE, 2048);

spcm_dwSetParam i64 (hDrv, SPC_POSTTRIGGER, 1024);

// set the trigger mode to external with positive edge
spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ;
spcm_dwSetParam 132 (hDrv, SPC_TRIG_EXTO MODE, SPC_TM POS);

Reading out ABA data

General

The slow ,A” data is stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out slow ,A” data using DMA
transfer similar fo the DMA transfer of the main sample data DMA transfer. The card has two completely independent busmaster DMA engines
in hardware allowing the simultaneous transfer of both ,A” and sample data. The sample data itself is read out as explained before using

the standard DMA routine.

As seen in the picture the extra FIFO is holding ABA and timestamp data as the same time. Nevertheless it is not necessary to care for the
shared FIFO as the extra FIFO data is splitted inside the driver in the both data parts.

AL

L

E HW Data FIFO Buffer
Scatter-Gather | (complete memory)
DMA Engine

| Extra Data it DMA Control
Splitter =% Engine
""""" /\rv,... " 6 TS LR v S 9 gl 0 - R R W 6N 0 B RS - BR SERREL
Y
Appcation Application Application ApplibaliJn Data Buffer
ABA|Buffer ﬁn;;:m" !l.lp to seyeral GByte of PC memory)
Buffer

The only part that is similar for both kinds of data transfer is the handling of the DMA engine. This is similar to the main sample data transfer
engine. Therefore additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for exira transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.
M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.
M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.
M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.

118 M3i.41xx / M3i.41xx-exp Manual

ABA mode (dual timebase) Reading out ABA data

The extra FIFO data transfer can generate one of the following status information:.

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

Data Transfer using DMA

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Extra data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

Definition of the transfer buffer

Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

spcm_dwDefTransfer 164 (hDrv, SPCM BUF_TIMESTAMP, SPCM _CARDTOPC, 0, pvBuffer, 0, 1lLenOfBufferInBytes);

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

Buffer handling

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set's parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation

SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred

timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation
SPC_TS_AVAIL_CARD_LEN 222 write Atter finishing the job with the new available timestamp data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_XXX_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for

transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get A
notice of it if the notify size is programmed to a higher value.

Remarks

¢ The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.

¢ As shown in the drawing above the DMA control will announce new data fo the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

(c) Spectrum GmbH 119

Reading out ABA data ABA mode (dual timebase)

bytes still stick to the defined notify size!
¢ If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

int8* pcData = (int8*) pvAllocMemPageAligned (l1BufSizeInBytes):;

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer 164 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1BufSizelInBytes);

do
{
// we wait for the next data to be available. After this call we get at least 4k of data to proceed
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA STARTDMA | M2CMD_EXTRA_WAITDMA) ;

if (!dwError)

{

// 1f there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_TS_AVAIL USER LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC_TS AVAIL USER POS, &lBytePos);

printf (“We now have %d new bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos):;

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1lBufSizeInBytes)
lAvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TS AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by
the hardware using busmaster DMA this is not critical as long as the application data buffers are large
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling

When using M2i cards the Polling mode needs driver version V1.25 and firmware version V11 to run. Please
update your system to the newest versions to run this mode. Polling mode for M3i cards is included starting
with the first delivered card version.

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is inacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
is similar to the above explained DMA buffer transfer. The value ,notify size” is ignored and should be set to 4k (4096).

Buffer handling

The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or
SPC_ABA_AVAIL_USER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that
has been read. In minimum this will be one DWORD = 4 bytes.

120 M3i.41xx / M3i.41xx-exp Manual

ABA mode (dual timebase)

Reading out ABA data

Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

int8* pcData = (int8%*) pvAllocMemPageAligned (lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page =
spcm_dwDefTransfer i64 (hDrv, SPCM BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096,

4 kByte
(void*) pcbata, O,

// we start the polling mode
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA POLL) ;
// this is pur polling loop
do
{
spcm_dwGetParam 132
spcm_dwGetParam 132

(hDrv,
(hDrv,

SPC_TS_AVAIL_USER_LEN,
SPC_TS_AVAIL_USER_POS,

&1AvailBytes) ;
&1BytePos) ;

if (lAvailBytes > 0)
{
printf
printf

(“We now have %d new bytes available\n”, lAvailBytes);
(“"The available data starts at position %d\n”, 1lBytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1BufSizeInBytes)
1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL CARD_LEN, lAvailBytes);
}
}
while

(!dwError); // we loop forever if no error occurs

1BufSizeInBytes) ;

Comparison of DMA and polling commands
This chapter shows you how small the difference in programming is between the DMA and the polling mode:

DMA mode Polling mode

Define the buffer

Start the transfer
Wait for data
Available bytes?
Min available bytes
Current position?
Free buffer for card

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA)
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA)
spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
programmed notify size

specm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, IBytes);

ABA Mode and Timestamps

The ABA mode is well matching with the timestamp option. If timestamp
recording is activated, each trigger event and therefore each B time base
segment will get time tamped as shown in the drawing on the right.

Please keep in mind that the trigger events - located in the B area - are time
tamped, not the beginning of the acquisition. The first B sample that is
available is at the time position of [Timestamp - Pretrigger].

The first A area sample is related to the card start and therefore in a fixed
but various settings dependent relation to the timestamped B sample. To
bring exact relation between the first A area sample (and therefore all

area A samples) and the B area samples it is possible to let the card stamp

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIRR...);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
not in polling mode

spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);

4 bytes

spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, IBytes);

gPre Posfé
Trigger : f—l
HRRITTARNES
inpur i i
i
«~— A —i<— B —>i A

the first A area sample automatically after the card start. The following table shows the register to enable this mode:

Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp setup including mode and additional features
SPC_TSFEAT_MASK FOOOOh Mask for the feature relating bits of the SPC_TIMESTAMP_CMD bitmask.
SPC_TSFEAT_STORE1STABA 10000h Enables storage of one additional timestamp for the first A area sample (B time base related) in addition to the trigger
related timestamps.
SPC_TSFEAT_NONE Oh No additional timestamp is created. The total number of stamps is only trigger related.

(c) Spectrum GmbH 121

Reading out ABA data ABA mode (dual timebase)

This mode is compatible with all existing timestamp modes. Please keep in mind that the timestamp counter is running with the B area time-
base.

// normal timestamp setup (e.g. setting timestamp mode to standard using internal clocking)
uint32 dwTimestampMode = (SPC_TSMODE_STANDARD | SPC_TSMODE_DISABLE) ;

// additionally enable index of the first A area sample
dwTimestampMode |= SPC_TSFEAT_STORE1STABA;

spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_ CMD, dwTimestampMode) ;

The programming details of the ABA mode and timestamp modes are each explained in an dedicated chapter in this manual.

Using the cards in ABA mode with the timestamp feature to stamp the first A are sample requires the follow-
& ing driver and firmware version depending on your card:

M2i: driver version V2.06 (or newer) and firmware version V16 (or newer)
M3i: driver version V2.06 (or newer) and firmware version V6 (or newer)

Please update your system to the newest versions to run this mode.

122 M3i.41xx / M3i.41xx-exp Manual

Option BaseXIO Introduction

Option BaseXIO

Introduction

With this simpleto-use versatile enhancement it is possible to control a wide range of external instruments or other equipment. Therefore you
have up to eight asynchronous digital I/Os available. When using the BaseXIO lines as digital 1/O, they are completely independent from
the board’s function, data direction or sampling rate and directly controlled by software (asynchronous 1/Os).

Using the option BaseXIO this way is useful if external equipment should be digitally controlled or any kind of signal source must be pro-
grammed. It also can be used if status information from an external machine has to be obtained or different test signals have to be routed to
the board. In addition to the asynchronous 1/O function, some of these lines can have special purposes such as secondary TTL trigger lines
(M2i cards only), RefClock seconds signal for the timestamp option and special lines for incremental encoders (M3i cards only).

The eight MMCX coaxial connectors are directly mounted on the base card. When plugged internally with right-angle MMCX connectors,
this options does not require any additional system slot. By default this option is delivered with a readily plugged additional bracket equipped
with SMB connectors, to have access to the lines from outside the system to easily connect with external equipment.

The internal connectors are mounted on two locations on the base card. The picture below shows the location of the MMCX connectors on
the card, the details of the connectors on the extra bracket are shown in the introductional part of this manual.

Different functions

Asynchronous Digital 1/0

This way of operating the option BaseXIO allows to asynchronously sample the data on the inputs or to generate asynchronous pattern on
the outputs. The eight available lines consist of two groups of buffers each driving or receiving 4 bits of digital data as the drawing is showing.

The data direction of each group can be individually
programmed to be either input or output.

™ © XIO[3..0 ™, 0 XIO[7..4
4 LL?/ 4 291 4 LL‘-‘(4 (741 As a result three different combinations are possible
when using BaseXIO as pure digital 1/O:

8 asynchronous digital inputs
¢ 8 asynchronous digital outputs
Direction0 Direction1 ¢ mixed mode with 4 inputs and 4 outputs

The table below shows the direction register and the possible values. To combine the values you can easily OR them bitwise.

Register Value Direction Description

SPC_XIO_DIRECTION 47100 r/w Defines groupwise the direction of the digital 1/O lines. Values can be combined by a bitwise OR.
XD_CHO_INPUT 0 Sets the direction of the lower group (bit D3...DO) to input.
XD_CH1_INPUT Sets the direction of the upper group (bit D7...D4) to input.

0
XD_CHO_OUTPUT 1 Sets the direction of the lower group (bit D3...DO) to output.
2

XD_CH1_OUTPUT Sets the direction of the upper group (bit D7...D4) to output.

(c) Spectrum GmbH 123

Different functions Option BaseXIO

Special Input Functions

Some of the BaseXIO lines can be used in special functions, which requires the respective of the above mentioned groups of four lines
(XIO3...XIO0) or (XIO4...XIO7) to be set as input. The upper group can be programmed to be either input or output, when only using the
timestamp reference option and thus only uses one input in the lower group:

* XIOO0: no special function yet
¢ XIO1: no special function yet

<} O Count2 * XIO2: RefClock for timestamp option

A o * XIO3: Count input for incremental counter]

~ Reset] XIO4: Count input for incremental counter2
<|I O RefClock ® XIOS5: Reset input for incremental counter]
A A * XIO6: no special function yet
~ © Countl ~ © Reset2 XIO7: Reset input for incremental counter2

All of the above mentioned special features are explained in detail in the relating section of this manual. Because the incremental counter
also implies the RefClock usage (see timestamp chapter for details) the only two valid setups using special features are:

¢ None of the special inputs are used, both groups can be input or output
¢ Only RefClock used, other group can be either input or output
o RefClock and incremental counters are used, so both groups must be set to input

When using one or more of the inputs with their special features, it is still possible to sample the groups asynchronously as described in the
section before. So as an example when using only bit 2 as an reference clock input the remaining three lines of the input group can still be
used as asynchronous digital inputs. When reading the data of the inputs all bits are sampled, even those that are used for special purposes.
In these cased the user might mask the read out digital data manually, to not receive unwanted lines.

The table below shows the direction register for the remaining upper group and the possible values. To combine the values for both groups
you can easily OR them bitwise.

Register Value Direction Description

SPC_XIO_DIRECTION 47100 read/write Defines the direction of the remaining digital 1/O lines.
XD_CHO_INPUT 0 The direction of the lower group (bit D3...DO) must be set to input, when using the special features.
XD_CH1_INPUT 0 Sets the direction of the upper group (bit D7...D4) to input.
XD_CH1_OUTPUT 2 Sets the direction of the upper group (bit D7...D4) to output.

Transfer Data

The outputs can be written or read by a single 32 bit register. If the register is read, the actual pin data will be sampled. Therefore reading
the lines declared as outputs gives back the generated pattern. The single bits of the digital 1/O lines correspond with the number of the bit
of the 32 bit register. Values written to the three upper bytes will be ignored.

Register Value Direction Description

SPC_XIO_DIGITALIO 47110 r Reads the data directly from the pins of all digital 1/O lines either if they are declared as inputs or
outputs.

SPC_XIO_DIGITALIO 47110 w Writes the data to all digital I/O lines that are declared as outputs. Bytes that are declared as inputs
will ignore the written data.

Programming Example

The following example shows, how to program the lower group to be input and the upper group to be output, and how to write and read
and inferpret/mask the digital data:

// Define direction: set ChO as Input and Chl as output
spcm_dwSetParam i32 (hDrv, SPC XIO DIRECTION, XD CHO INPUT | XD CH1 OUTPUT);

spcm_dwSetParam_ i32 (hDrv, SPC_XIO_DIGITALIO, 0xAO0); // Set all even output bits HIGH, all odd to LOW
// The write to the inputs will be ignored
spcm_dwGetParam i32 (hDrv, SPC_XIO_DIGITALIO, &lData); // Read back the digital data (incl. outputs)
// Bits 7.4 will be the output value OxA
lData = lData & (uint32) OxOF // Mask out the output bits to have inputs only

Special Sampling Feature

When using the option BaseXIO in combination with the timestamp option one can enable two special auto sampling option: one that samples
the eight BaseXIO lines synchronously with each trigger event and another that samples values from two 10 bit counters for incremental en-
coder applications. This feature is independent of the BaseXIO line settings. For details, please refer to the timestamp chapter in this manual.

124 M3i.41xx / M3i.41xx-exp Manual

Option BaseXIO Different functions

This special sampling feature requires the option Timestamp to be installed. A

Electrical specifications

The electrical specifications of the BaseXIO inputs and outputs can be found either in the technical data section of this manual or in the
datasheet.

(c) Spectrum GmbH 125

Star-Hub introduction Option Star-Hub (M3i and M4i only)

Option Star-Hub (M3i and M4i only)

Star-Hub introduction

The purpose of the Star-Hub is to extend the number of channels available for acquisition or generation by interconnecting multiple cards and
running them simultaneously.

The Star-Hub option allows to synchronize several cards of the same M3i/M4i series that are mounted within one host system (PC):

e For the M3i series there are the two different versions available: a small version with 4 connectors (option SH4) for synchronizing up to
four cards and a big version with 8 connectors (option SH8) for synchronizing up to eight cards.

e For the M4i series there are the two different mechanical versions available, with 8 connectors for synchronizing up to eight cards.

The Star-Hub allows synchronizing cards of the same family only. It is not possible to synchronize cards of
different families!

Both versions are implemented as a piggy -back module that is mounted to one of the cards. For details on how to install several cards in-
cluding the one carrying the Star-Hub module, please refer to the section on hardware installation.

Either which of the two available Star-Hub options is used, there will be no phase delay between the sampling clocks of the synchronized
cards and either no delay between the trigger events. The card holding the Star-Hub is automatically also the clock master. Any one of the
synchronized cards can be part of the trigger generation.

Star-Hub trigger engine

The trigger bus between an M3i/M4i card and the Star-Hub option consists of several lines. Some of them send the trigger information from
the card’s trigger engine to the Star-Hub and some receives the resulting trigger from the Star-Hub. All trigger events from the different cards
connected are combined with OR on the Star-Hub.

While the returned trigger is identical for all synchronized cards, the sent out trigger of every single card depends on their trigger seftings.

Star-Hub clock engine

The card holding the Star-Hub is the clock master for the complete system. If
you need fo feed in an external clock to a synchronized system the clock has [quartz 1 [
to be connected to the master card. Slave cards cannot generate a Star-Hub | (pregrammable) [P
[Eoml
PLL

system clock. As shown in the drawing on the right the clock master can use Zerrsy
either the programmable quartz 1 or the external clock input to be broadcast | (option)
to all other cards. — -

ooy O ———

Clock
All cards including the clock master itself receive the distributed clock with ————O ouput
equal phase information. This makes sure that there is no phase delay be-

tween the cards. I P T I A ;

to Slave(s) :

|
|
|
|
Star-HubOption _ _ __ _ _________

Software Interface

The software interface is similar to the card software interface that is explained earlier in this manual. The same functions and some of the
registers are used with the Star-Hub. The Star-Hub is accessed using its own handle which has some extra commands for synchronization
setup. All card functions are programmed directly on card as before. There are only a few commands that need to be programmed directly
to the Star-Hub for synchronization.

The software interface as well as the hardware supports multiple Star-Hubs in one system. Each set of cards connected by a Star-Hub then
runs totally independent. It is also possible to mix cards that are connected with the Star-Hub with other cards that run independent in one
system.

Star-Hub Initialization

The interconnection between the Star-Hubs is probed at driver load time and does not need to be programmed separately. Instead the cards
can be accessed using a logical index. This card index is only based on the ordering of the cards in the system and is not influenced by the
current cabling. It is even possible to change the cable connections between two system starts without changing the logical card order that
is used for Star-Hub programming.

The Star-Hub initialization must be done AFTER initialization of all cards in the system. Otherwise the inter-
A connection won’t be received properly.

126 M3i.41xx / M3i.41xx-exp Manual

Option Star-Hub (M3i and M4i only) Software Interface

The Star-Hubs are accessed using a special device name ,sync” followed by the index of the star-hub to access. The Star-Hub is handled
completely like a physical card allowing all functions based on the handle like the card itself.

Example with 4 cards and one Star-Hub (no error checking to keep example simple)

drv_handle hSync;
drv_handle hCard[4];

for (i = 0; i < 4; i++)
{
sprintf (s, "/dev/spcm%d", 1i);
hCard[i] = spcm_hOpen (s);
}
hSync = spcm_hOpen ("syncO");

spcm_vClose (hSync);
for (1 = 0; 1 < 4; i++)
spcm_vClose (hCard[i]);

Example for a digitizerNETBOX with two internal digitizer/generator modules, This example is also suitable for accessing a remote server
with two cards installed:

drv_handle hSync;
drv_handle hCard[2];

for (1 = 0; 1 < 2; i++)
{
sprintf (s, "TCPIP::192.168.169.14::INST%d::INSTR", 1i);
hCard[i] = spcm hOpen (s);
}
hSync = spcm_hOpen ("syncQO");

spcm_vClose (hSync);
for (i = 0; i < 2; i++4)
spcm_vClose (hCard[il]);

When opening the Star-Hub the cable interconnection is checked. The Star-Hub may return an error if it sees internal cabling problems or if
the connection between Star-Hub and the card that holds the Star-Hub is broken. It can’t identify broken connections between Star-Hub and
other cards as it doesn’t know that there has to be a connection.

The synchronization setup is done using bit masks where one bit stands for one recognized card. All cards that are connected with a Star-
Hub are internally numbered beginning with O. The number of connected cards as well as the connections of the star-hub can be read out
after initialization. For each card that is connected fo the star-hub one can read the index of that card:

Register Value Direction Description

SPC_SYNC_READ_NUMCONNECTORS 48991 read Number of connectors that the Star-Hub offers at max. (available with driver V5.6 or newer)

SPC_SYNC_READ_SYNCCOUNT 48990 read Number of cards that are connected to this Star-Hub

SPC_SYNC_READ_CARDIDXO 49000 read Index of card that is connected to starhub logical index O (mask 0x0001)

SPC_SYNC_READ_CARDIDX1 49001 read Index of card that is connected to starhub logical index 1 (mask 0x0002)

read

SPC_SYNC_READ_CARDIDX7 49007 read Index of card that is connected to star-hub logical index 7 (mask 0x0080)

SPC_SYNC_READ_CARDIDX8 49008 read M?2i only: Index of card that is connected to star-hub logical index 8 (mask 0x0100)

read

SPC_SYNC_READ_CARDIDX15 49015 read M2i only: Index of card that is connected to starhub logical index 15 (mask 0x8000)

SPC_SYNC_READ_CABLECONO read Returns the index of the cable connection that is used for the logical connection 0. The cable connec-
tions can be seen printed on the PCB of the star-hub. Use these cable connection information in case
that there are hardware failures with the star-hub cabeling.

49100 read

SPC_SYNC_READ_CABLECON15 49115 read Returns the index of the cable connection that is used for the logical connection 15.

In standard systems where all cards are connected to one star-hub reading the star-hub logical index will simply return the index of the card
again. This results in bit O of star-hub mask being 1 when doing the setup for card O, bit 1 in star-hub mask being 1 when sefting up card 1
and so on. On such systems it is sufficient to read out the SPC_SYNC_READ_SYNCCOUNT register to check whether the star-hub has found
the expected number of cards to be connected.

spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ SYNCCOUNT, &lSyncCount);
for (i = 0; i < 1SyncCount; i++)
{
spcm_dwGetParam i32 (hSync, SPC_SYNC READ CARDIDXO0 + i, &lCardIdx);
printf ("star-hub logical index %d is connected with card %d\n“, i, 1lCardIdx);

}

(c) Spectrum GmbH 127

Software Interface Option Star-Hub (M3i and M4i only)

In case of 4 cards in one system and all are connected with the star-hub this program excerpt will return:

is connected with card 0
is connected with card 1
is connected with card 2
is connected with card 3

star-hub logical index
star-hub logical index
star-hub logical index
star-hub logical index

w N P o

Let's see a more complex example with two Star-Hubs and one independent card in one system. Star-Hub A connects card 2, card 4 and
card 5. Star-Hub B connects card O and card 3. Card 1 is running completely independent and is not synchronized at all:

card Star-Hub connection card handle star-hub handle card index in star-hub musl; ft;r this card in
star-hul

card O - /dev/spcmO O (of star-hub B) 0x0001

card 1 - /dev/spem1 -

card 2 star-hub A /dev/spcm2 syncO O (of star-hub A) 0x0001

card 3 star-hub B /dev/spcm3 syncl 1 (of star-hub B) 0x0002

card 4 - /dev/spcm4 1 (of star-hub A) 0x0002

card 5 - /dev/spcm5 2 (of star-hub A) 0x0004

Now the program has to check both star-hubs:

for (j = 0; j < 1lStarhubCount; j++)

{

spcm_dwGetParam_i32 (hSync[j], SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);

for (i = 0; i < 1SyncCount; i++)
{
spcm_dwGetParam i32 (hSync[j], SPC_SYNC_READ CARDIDX0 + i, &lCardIdx);
printf ("star-hub %c logical index %d is connected with card %d\n“, (!j 2 YA’ : ’'B’), i, 1lCardIdx);
}

printf ("\n");

}

In case of the above mentioned cabling this program excerpt will return:

star-hub A logical index 0 is connected with card 2
star-hub A logical index 1 is connected with card 4
star-hub A logical index 2 is connected with card 5

star-hub B logical index 0 is connected with card 0
star-hub B logical index 1 is connected with card 3

For the following examples we will assume that 4 cards in one system are all connected to one star-hub to keep things easier.

Setup of Synchronization

The synchronization setup only requires one additional register to enable the cards that are synchronized in the next run

Register Value Direction Description
SPC_SYNC_ENABLEMASK 49200 read/write Mask of all cards that are enabled for the synchronization

The enable mask is based on the logical index explained above. It is possible to just select a couple of cards for the synchronization. All other
cards then will run independently. Please be sure to always enable the card on which the star-hub is located as this one is a must for the
synchronization.

In our example we synchronize all four cards. The star-hub is located on card #2 and is therefor the clock master

spcm_dwSetParam i32 (hSync, SPC_SYNC_ENABLEMASK, 0xO000F); // all 4 cards are masked

// set the clock master to 100 MS/s internal clock
spcm_deetParam_i32 (hCard[2], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[2], SPC_SAMPLEATE, MEGA(100));

// set all the slaves to run synchronously with 100 MS/s

spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLEATE, MEGA(100));
spcm_dwSetParam i32 (hCard[1], SPC_SAMPLEATE, MEGA(100));
spcm_deetParam_i32 (hCard[3], SPC_SAMPLEATE, MEGA(100));

Setup of Trigger

Setting up the trigger does not need any further steps of synchronization setup. Simply all trigger settings of all cards that have been enabled
for synchronization are connected together. All trigger sources and all trigger modes can be used on synchronization as well.

128 M3i.41xx / M3i.41xx-exp Manual

Option Star-Hub (M3i and M4i only)

Software Interface

Having positive edge of external trigger on card O fo be the trigger source for the complete system needs the following setup:

spcm_dwSetParam i32 (hCard[

spcm_dwSetParam i32 (hCard[0],
spcm_dwSetParam i32 (hCard[0],

spcm_dwSetParam i32 (hCard[1],

spcm_dwSetParam i32 (hCard[3],

SPC_TRIG_ORMASK, SPC_TMASK_EXTO);
SPC_TRIG EXTO MODE, SPC_TM POS);

SPC_TRIG_ORMASK, SPC_TM NONE) ;
2], SPC_TRIG ORMASK, SPC_TM NONE);
SPC_TRIG_ORMASK, SPC_TM_NONE) ;

Assuming that the 4 cards are analog data acquisition cards with 4 channels each we can simply setup a synchronous system with all channels
of all cards being trigger source. The following setup will show how to set up all trigger events of all channels to be OR connected. If any of
the channels will now have a signal above the programmed trigger level the complete system will do an acquisition:

for (i = 0; i < 1SyncCount;

{

for (j = 0; j < 2; j++)
{

spcm_dwSetParam 132

}

i++4)

int32 1AllChannels = (SPC_TMASKO CHO | SPC_TMASKO CHl1 | SPC_TMASK CH2 | SPC_TMASK CH3);
spcm_dwSetParam i32 (hCard[i],

// set all channels to trigger on positive edge crossing trigger level 100
(hCard[i], SPC_TRIG_CHO_MODE + j, SPC_TM POS);
spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CHO_LEVELO + j, 100);

SPC_TRIG_CH_ORMASKO, 1AllChannels);

Run the synchronized cards

Running of the cards is very simple. The star-hub acts as one big card containing all synchronized cards. All card commands have to be
omitted directly to the star-hub which will check the setup, do the synchronization and distribute the commands in the correct order to all
synchronized cards. The same card commands can be used that are also possible for single cards:

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the settings can be
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER | 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER | 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

All other commands and settings need to be send directly to the card that it refers to.

This example shows the complete setup and synchronization start for our four cards:

spcm_dwSetParam_i32 (hSync,

for (1 = 0; i < 4; i++)
{

SPC_SYNC_ENABLEMASK, 0x000F); // all 4 cards are masked

// to keep it easy we set all card to the same clock and disable trigger

spcm_deetParam_i32 (hCard[i], SPC_CLOCKMODE, SPC_CM INTPLL) ;
spcm_dwSetParam_i32 (hCard[i], SPC_SAMPLERATE, MEGA (100));
spcm_dwSetParam i32 (hCard[i], SPC_TRIG_ORMASK, SPC_TM NONE) ;
}

// card 0 is trigger master and waits for external positive edge
spcm_deetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_ EXTO) ;
spcm_dwSetParam 132 (hCard[0], SPC_TRIG _EXTO MODE, SPC_TM POS);

// start the cards and wait for them a maximum of 1 second to be ready

spcm_dwSetParam_i32 (hSync, SPC_TIMEOUT, 1000);

spcm_dwSetParam i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER) ;

if (spcm_dwSetParam i32 (hSync, SPC_M2CMD, M2CMD_CARD_WAITREADY) == ERR_TIMEOUT)
printf ("Timeout occured - no trigger received within time\n")

Using one of the wait commands for the Star-Hub will return as soon as the card holding the Star-Hub has
reached this state. However when synchronizing cards with different memory sizes there may be other cards A
that still haven’t reached this level.

(c) Spectrum GmbH 129

Software Interface Option Star-Hub (M3i and M4i only)

SH-Direct: using the Star-Hub clock directly without synchronization

Starting with driver version 1.26 build 1754 it is possible to use the clock from the Star-Hub just like an external clock and running one or
more cards totally independent of the synchronized card. The mode is by example useful if one has one or more output cards that run con-
tinuously in a loop and are synchronized with Star-Hub and in addition to this one or more acquisition cards should make multiple acquisitions
but using the same clock.

For all M2i cards is is also possible to run the ,slave” cards with a divided clock. Therefore please program a desired divided sampling rate
in the SPC_SAMPLERATE register (example: running the Star-Hub card with 10 MS/s and the independent cards with 1 MS/s). The sampling
rate is automatically adjusted by the driver to the next matching value.

What is necessary?

¢ All cards need to be connected to the Star-Hub

¢ The card(s) that should run independently can not hold the Star-Hub

® The card(s) with the Star-Hub must be setup to synchronization even if it's only one card

¢ The synchronized card(s) have to be started prior to the card(s) that run with the direct Star-Hub clock

Setup
At first all cards that should run synchronized with the Star-Hub are set-up exactly as explained before. The card(s) that should run indepen-
dently and use the Star-Hub clock need to use the following clock mode:

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_SHDIRECT 128 Uses the clock from the Star-Hub as if this was an external clock

When using SH_Direct mode, the register call to SPC_CLOCKMODE enabling this mode must be written before
A initiating a card start command to any of the connected cards. Also it is not allowed to be modified later in
the programming sequence to prevent the driver from calculating wrong sample rates.

Example
In this example we have one generator card with the Star-Hub mounted running in a continuous loop and one acquisition card running inde-
pendently using the SH-Direct clock.

// setup of the generator card

spcm_dwSetParam i32 (hCard[0] SPC_CARDMODE, SPC_REP_STD_ SINGLE) ;

’
spcm_dwSetParam_i32 (hCard[0], SPC_LOOPS, 0); // infinite data replay
spcm_dwSetParam i32 (hCard[0], SPC_CLOCKMODE, SPC CM INTPLL);

spcm_dwSetParam i32 (hCard[0], SPC_SAMPLERATE, MEGA(1));

spcm_dwSetParam 132 (hCard[0], SPC_TRIG_ORMASK, SPC_TM SOFTWARE) ;

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x0001); // card 0 is the generator card
spcm_dwSetParam i32 (hSync, SPC_SYNC_ CLKMASK, 0x0001); // only for M2i/M3i cards: set ClkMask

// Setup of the acquisition card (waiting for external trigger)
spcm_dwSetParam_i32 (hCard[1] SPC_CARDMODE, SPC_REC_STD_SINGLE) ;

spcm_dwSetParam i32 (hCard[1], SPC_CLOCKMODE, SPC CM SHDIRECT);
spcm_dwSetParam i32 (hCard[1], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam 132 (hCard[1], SPC_TRIG _ORMASK, SPC_TMASK EXTO) ;
spcm_dwSetParam i32 (hCard[1], SPC_TRIG_EXTO MODE, SPC TM POS);

// now start the generator card (sync!) first and then the acquisition card
spcm_dwSetParam i32 (hSync, SPC TIMEOUT, 1000);
spcm_dwSetParam i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER) ;

// start first acquisition
spcm_dwSetParam i32 (hCard[1], SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD ENABLETRIGGER | M2CMD_CARD WAITREADY) ;

// process data

// start next acquistion
spcmfdeetParamfi32 (hCard[1l], SPCiMZCMD, M2CMD7CARD7$TART | M2CMD7CARD7ENABLETRIGGER | M2CMD7CARD7WAITREADY);

// process data

Error Handling

The Star-Hub error handling is similar to the card error handling and uses the function spcm_dwGetErrorinfo_i32. Please see the example in
the card error handling chapter to see how the error handling is done.

130 M3i.41xx / M3i.41xx-exp Manual

Option Remote Server Introduction

Option Remote Server

Introduction

Using the Spectrum Remote Server (order code
-SPc-RServer) it is possible to access the
M2i/M3i/M4i/M4x/M2p card(s) installed in one
PC (server) from another PC (client) via local area
network (LAN), similar to using a digitizerNETBOX
or generatorNETBOX.

SBench 6 C++, LabVIEW, Local Programming Webserver
MATLAB, .NET

It is possible to use different operating systems on
both server and client. For example the Remote Serv-
er is running on a Linux system and the client is ac-
cessing them from a Windows system.

The Remote Server software requires, that the option
,-SPc-RServer” is installed on at least one card in-
stalled within the server side PC. You can either
check this with the Control Center in the "Installed
Card features" node or by reading out the feature register, as described in the , Installed features and options” passage, earlier in this manual.

stalled. Additionally at least on one card in the server PC the feature flag SPCM_FEAT_REMOTESERVER must

To run the Remote Server software, it is required to have least version 3.18 of the Spectrum SPCM driver in- i
be set.

Installing and starting the Remote Server

Windows

Windows users find the Control Center installer on the USB-Stick under ,In- E] Spectrum Remote Server (32-bit) = e L
”\ . \ . I u SPCH Remote Server 1.8.11687 -

stall\win\spcm_remote_install.exe”. Remote Server started successfully. =

After the installation has finished there will be a new start menu entry in the Press q + Enter to close the program. =

Folder "Spectrum GmbH" fo start the Remote Server. To start the Remote Server
automatically after login, just copy this shortcut to the Autostart directory.

Linux

Linux users find the versions of the installer for the different StdC libraries under
under /Install/linux/spcm_control_center/ as RPM packages.

To start the Remote Server type "spcm_remote_server" (without quotation
marks). To start the Remote Server automatically after login, add the following
line to the .bashrc or .profile file (depending on the used Linux distribution) in
the user's home directory:

spcm_remote_server&

Detecting the digitizerNETBOX

Before accessing the digitizerNETBOX/generatorNETBOX one has to determine the IP address of the digitizerNETBOX/generatorNETBOX.
Normally that can be done using one of the two methods described below:

Discovery Function

The digitizerNETBOX/generatorNETBOX responds to the VISA described Discovery function. The next chapter will show how to install and
use the Spectrum control cenfer to execute the discovery function and to find the Spectrum hardware. As the discovery function is a standard
feature of all LXI devices there are other software packages that can find the digitizerNETBOX/generatorNETBOX using the discovery func-
tion:

e Spectrum control center (limited to Spectrum remote products)

e free LXI System Discovery Tool from the LXI consortium (www.Ixistandard.org)
® Measurement and Automation Explorer from National Instruments (NI MAX)
o Keysight Connection Expert from Keysight Technologies

(c) Spectrum GmbH 131

Detecting the digitizerNETBOX Option Remote Server

Additionally the discovery procedure can also be started from ones own specific application:

#define TIMEOUT_ DISCOVERY 5000 // timeout value in ms
const uint32 dwMaxNumRemoteCards = 50;

char* pszVisa[dwMaxNumRemoteCards] = { NULL };
char* pszIdn[dwMaxNumRemoteCards] = { NULL };

const uint32 dwMaxIdnStringLen 256;
const uint32 dwMaxVisaStringLen = 50;

// allocate memory for string list

for (uint32 i = 0; i1 < dwMaxNumRemoteCards; i++)
{
pszVisa[i] = new char [dwMaxVisaStringLen];
pszIdn[i] = new char [dwMaxIdnStringLen];
memset (pszVisa[i], 0, dwMaxVisaStringLen) ;
memset (pszIdn([i], 0, dwMaxIdnStringLen) ;
}

// first make discovery - check if there are any LXI compatible remote devices
dwError = spcm dwDiscovery ((char**)pszVisa, dwMaxNumRemoteCards, dwMaxVisaStringLen, TIMEOUT DISCOVERY) ;

// second: check from which manufacturer the devices are
spcm_dwSendIDNRequest ((char**)pszIdn, dwMaxNumRemoteCards, dwMaxIdnStringLen);

// Use the VISA strings of these devices with Spectrum as manufacturer
// for accessing remote devices without previous knowledge of their IP address

As the digitizerNETBOX/generatorNETBOX is a standard network device it has its own IP address and host name and can be found in the
computer network. The standard host name consist of the model type and the serial number of the digitizerNETBOX/generatorNETBOX. The
serial number is also found on the type plate on the back of the digitizerNETBOX/generatorNETBOX chassis.

As default DHCP (IPv4) will be used and an IP address will be automatically set. In case no DHCP server is found, an IP will be obtained
using the AutolP feature. This will lead to an IPv4 address of 169.254.x.y (with x and y being assigned to a free IP in the network) using a
subnet mask of 255.255.0.0.

The default IP setup can also be restored, by using the ,LAN Reset” button on the device.

If a fixed IP address should be used instead, the parameters need to be set according to the current LAN requirements.

Windows 7, Windows 8, Windows 10

Under Windows 7, Windows 8 and EEE]

. o ey = vl ~ = e 1
Windows 10 the digitizerNETBOX and = Neork » - [43][Search Network 2
generatorNETBOX devices are listed under the e L L e e e - A @
Lother devices” tree with their given host name. B—— - =TT -

B Desktop % _ DN2_465-08_sn08085 Propert [Pt |

. . P SPECTRUM-PC ot — - sl
A right click on the digitizerNETBOX or & Downloads =S ey

. . %] Recent Pl :
generatorNETBOX device opens the properties i -

o . o o SRV-DCO1
window where you find further information on the =5 Libraries = DNZ_465-08_sn05085
device including the IP address. 5| Documents _ Device Detals

o) Music A S
" Manufacturer: Spectrum GmbH
- . . k| Pictures : spectrum-instrumentation.com
From here it is possible to go the website of the B ideos)
SRV-SRCO01 Model:

' K

device where all necessary information are found
to access the device from software.

.spectrum-instrumentation.com

1% Computer

e Model number: i
& Local Disk () SRY-TS02 e
8 Tmp (\SRV-NASL) g
. 4 Other Devices (3)
€l Network 8 Troubleshooting Information
| DN2.465-08_sn0a0gs Serial number: 3085
-
MAC address: 00:03:2d:2Liaesae
4 ‘ SMC0025802CDC40 Unique identifier: uuid:c470b8b3-64fa-4eec-393-05f3380698ba
-4 IP address: 192,168,169, 14
4 Printers (1)
‘%?’ NPILF42B3 (HP Laserlet

<] DN2.465-08 508085 Categories: Other Devices
Network location: spectrum.local
—~——

132 M3i.41xx / M3i.41xx-exp Manual

Option Remote Server Accessing remote cards

Troubleshooting

If the above methods do not work please try one of the following steps:

o Ask your network administrator for the IP address of the digitizerNETBOX/generatorNETBOX and access it directly over the IP address.

¢ Check your local firewall whether it allows access to the device and whether it allows to access the ports listed in the technical data sec-
tion.

e Check with your network administrator whether the subnet, the device and the ports that are listed in the technical data section are acces-
sible from your system due to company security settings.

Accessing remote cards

To detect remote card(s) from the client PC, start the Spectrum Control Center on the client and click "Netbox Discovery". All discovered cards
will be listed under the "Remote" node.

Using remote cards instead of using local ones is as easy as using a digitizerNETBOX and only requires a few lines of code to be changed
compared fo using local cards.

Instead of opening two locally installed cards like this:

hDrv0
hDrvl

spcm_hOpen ("/dev/spcmO"); // open local card spcm0
spcm _hOpen ("/dev/spcml"); // open local card spcml

one would call spem_hOpen() with a VISA string as a parameter instead:

hDrv0
hDrvl

spcm hOpen ("TCPIP::192.168.1.2::inst0::INSTR"); // open card spcm0 on a Remote Server PC
spcm_hOpen ("TCPIP::192.168.1.2::instl::INSTR"); // open card spcml on a Remote Server PC

to open cards on the Remote Server PC with the IP address 192.168.1.2. The driver will take care of all the network communication.

(c) Spectrum GmbH 133

Error Codes

Appendix

Appendix

Error Codes

The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and
change the seftings to run the program.

error name
ERR_OK
ERR_INIT

ERR_TYP

ERR_FNCNOTSUPPORTED
ERR_BRDREMAP
ERR_KERNELVERSION

ERR_HWDRVVERSION

ERR_ADRRANGE
ERR_INVALIDHANDLE
ERR_BOARDNOTFOUND
ERR_BOARDINUSE
ERR_EXPHW64BITADR
ERR_FWVERSION
ERR_SYNCPROTOCOL
ERR_LASTERR

ERR_BOARDINUSE
ERR_ABORT
ERR_BOARDLOCKED

ERR_DEVICE_MAPPING
ERR_NETWORKSETUP
ERR_NETWORKTRANSFER
ERR_FWPOWERCYCLE
ERR_NETWORKTIMEOUT
ERR_BUFFERSIZE
ERR_RESTRICTEDACCESS
ERR_INVALIDPARAM
ERR_TEMPERATURE

ERR_REG
ERR_VALUE

ERR_FEATURE
ERR_SEQUENCE
ERR_READABORT
ERR_NOACCESS
ERR_TIMEOUT
ERR_CALLTYPE

ERR_EXCEEDSINT32

ERR_NOWRITEALLOWED
ERR_SETUP

ERR_CLOCKNOTLOCKED
ERR_MEMINIT
ERR_POWERSUPPLY
ERR_ADCCOMMUNICATION
ERR_CHANNEL
ERR_NOTIFYSIZE
ERR_RUNNING
ERR_ADJUST
ERR_PRETRIGGERLEN
ERR_DIRMISMATCH
ERR_POSTEXCDSEGMENT
ERR_SEGMENTINMEM

ERR_MUILTIPLEPW

value (hex)
Oh
Th

3h

4h
5h
6h

7h

8h
%h
Ah
Bh
Ch
Dh
Eh
10h

11h
20h
30h

32h
40h
41h
42h
43h
44h
45h
46h
47h

100h
101h

102h
103h
104h
105h
107h
108h

109h

10Ah
10Bh

10Ch
10Dh
10Eh
10Fh
110h
111h
120h
130h
140h
141h
142h
143h

144h

value (dec.) error description

0
1

3

(5]

10
11
12
13
14
16

32

48

50
64
65
66
67
68
69
70
71

256

258
259
260
261
263
264

265

266
267

269

270

271

272

273

288

304

320
321

322

324

Execution OK, no error.

An error occurred when initializing the given card. Either the card has already been opened by another process or an
hardware error occurred.

Initialization only: The type of board is unknown. This is a critical error. Please check whether the board is correctly
plugged in the slot and whether you have the latest driver version.

This function is not supported by the hardware version.
The board index re map table in the registry is wrong. Either delete this table or check it carefully for double values.

The version of the kernel driver is not matching the version of the DLL. Please do a complete re-installation of the hard-
ware driver. This error normally only occurs if someone copies the driver library and the kernel driver manually.

The hardware needs a newer driver version to run properly. Please install the driver that was delivered together with
the card.

One of the address ranges is disabled (fatal error), can only occur under Linux.

The used handle is not valid.

A card with the given name has not been found.

A card with given name is already in use by another application.

Express hardware version not able to handle 64 bit addressing -> update needed.
Firmware versions of synchronized cards or for this driver do not match -> update needed.
Synchronization protocol versions of synchronized cards do not match -> update needed

Old error waiting to be read. Please read the full error information before proceeding. The driver is locked until the
error information has been read.

Board is already used by another application. It is not possible to use one hardware from two different programs at the
same time.

Abort of wait function. This return value just tells that the function has been aborted from another thread. The driver
library is not locked if this error occurs.

The card is already in access and therefore locked by another process. It is not possible to access one card through
multiple processes. Only one process can access a specific card at the time.

The device is mapped to an invalid device. The device mapping can be accessed via the Control Center.

The network setup of a digitizerNETBOX has failed.

The network data transfer from/to a digitizerNETBOX has failed.

Power cycle (PC off/on) is needed to update the card's firmware (a simple OS reboot is not sufficient 1)

A network timeout has occurred.

The buffer size is not sufficient (too small).

The access to the card has been intentionally restricted.

An invalid parameter has been used for a certain function.

The temperature of at least one of the card’s sensors measures a temperature, that is too high for the hardware.

The register is not valid for this type of board.

The value for this register is not in a valid range. The allowed values and ranges are listed in the board specific docu-
mentation.

Feature (option) is not installed on this board. It's not possible to access this feature if it's not installed.

Command sequence is not allowed. Please check the manual carefully to see which command sequences are possible.
Data read is not allowed after aborting the data acquisition.

Access to this register is denied. This register is not accessible for users.

A timeout occurred while waiting for an interrupt. This error does not lock the driver.

The access to the register is only allowed with one 64 bit access but not with the multiplexed 32 bit (high and low dou-
ble word) version.

The return value is int32 but the software register exceeds the 32 bit integer range. Use double int32 or int64 accesses
instead, to get correct return values.

The register that should be written is a read-only register. No write accesses are allowed.

The programmed setup for the card is not valid. The error register will show you which setting generates the error mes-
sage. This error is returned if the card is started or the setup is written.

Synchronization to external clock failed: no signal connected or signal not stable. Please check external clock or try to
use a different sampling clock to make the PLL locking easier.

On-board memory initialization error. Power cycle the PC and try another PCle slot (if possible). In case that the error
persists, please contact Spectrum support for further assistance.

On-board power supply error. Power cycle the PC and try another PCle slot (if possible). In case that the error persists,
please contact Spectrum support for further assistance.

Communication with ADC failed.P ower cycle the PC and try another PCle slot (if possible). In case that the error per-
sists, please contact Spectrum support for further assistance.

The channel number may not be accessed on the board: Either it is not a valid channel number or the channel is not
accessible due to the current setup (e.g. Only channel O is accessible in interlace mode)

The notify size of the last spcm_dwDefTransfer call is not valid. The notify size must be a multiple of the page size of
4096. For data transfer it may also be a fraction of 4k in the range of 16, 32, 64, 128, 256, 512, Tk or 2k. For ABA

and timestamp the notify size can be 2k as a minimum.

The board is still running, this function is not available now or this register is not accessible now.

Automatic card calibration has reported an error. Please check the card inputs.

The calculated pretrigger size (resulting from the user defined postirigger values) exceeds the allowed limit.

The direction of card and memory transfer mismatch. In normal operation mode it is not possible to transfer data from
PC memory to card if the card is an acquisition card nor it is possible to transfer data from card to PC memory if the
card is a generation card.

The posttrigger value exceeds the programmed segment size in multiple recording/ABA mode. A delay of the multiple
recording segments is only possible by using the delay trigger!

Memsize is not a multiple of segment size when using Multiple Recording/Replay or ABA mode. The programmed seg-
ment size must match the programmed memory size.

Multiple pulsewidth counters used but card only supports one at the time.

134

M3i.41xx / M3i.41xx-exp Manual

Appendix

Error Codes

error name
ERR_NOCHANNELPWOR

ERR_ANDORMASKOVRLAP
ERR_ANDMASKEDGE
ERR_ORMASKLEVEL
ERR_EDGEPERMOD

ERR_DOLEVELMINDIFF
ERR_STARHUBENABLE
ERR_PATPWSMALLEDGE
ERR_PCICHECKSUM

ERR_MEMALLOC
ERR_EEPROMLOAD

ERR_CARDNOSUPPORT

ERR_CONFIGACCESS
ERR_FIFOHWOVERRUN

ERR_FIFOFINISHED
ERR_TIMESTAMP_SYNC
ERR_STARHUB

ERR_INTERNAL_ERROR

value (hex)
145h

146h
147h
148h
14%h

14Ah
14Bh
14Ch
203h

205h
206h

207h

208h
301h

302h
310h
320h

FFFFh

value (dec.)

325

326

327

330
331
332
515

517
518

519

520
769

770

784

800

65535

Spectrum Knowledge Base

error description

The channel pulsewidth on this card can’t be used together with the OR conjunction. Please use the AND conjunction
of the channel trigger sources.

Trigger AND mask and OR mask overlap in at least one channel. Each trigger source can only be used either in the
AND mask or in the OR mask, no source can be used for both.

One channel is activated for trigger detection in the AND mask but has been programmed to a trigger mode using an
edge trigger. The AND mask can only work with level trigger modes.

One channel is activated for trigger detection in the OR mask but has been programmed to a trigger mode using a
level trigger. The OR mask can only work together with edge trigger modes.

This card is only capable to have one programmed trigger edge for each module that is installed. It is not possible to
mix different trigger edges on one module.

The minimum difference between low output level and high output level is not reached.
The card holding the star-hub must be enabled when doing synchronization.
Combination of pattern with pulsewidth smaller and edge is not allowed.

The check sum of the card information has failed. This could be a critical hardware failure. Restart the system and
check the connection of the card in the slot.

Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.

Timeout occurred while loading information from the on-board EEProm. This could be a critical hardware failure.
Please restart the system and check the PCI connector.

The card that has been found in the system seems to be a valid Spectrum card of a type that is supported by the driver
but the driver did not find this special type internally. Please get the latest driver from
www.spectrum-instrumentation.com and install this one.

Internal error occured during config writes or reads. Please contact Spectrum support for further assistance.

Hardware buffer overrun in FIFO mode. The complete on-board memory has been filled with data and data wasn’t
transferred fast enough to PC memory. If acquisition speed is smaller than the theoretical bus transfer speed please
check the application buffer and try to improve the handling of this one.

FIFO transfer has been finished, programmed data length has been transferred completely.

Synchronization to timestamp reference clock failed. Please check the connection and the signal levels of the reference
clock input.

The auto routing function of the Star-Hub initialization has failed. Please check whether all cables are mounted cor-
rectly.

Internal hardware error detected. Please check for driver and firmware update of the card.

You will also find additional help and information in our knowledge base available on our website:

https://spectrum-instrumentation.com/en/knowledge-base-overview

(c) Spectrum GmbH 135

Continuous memory for increased data transfer rate

Continuous memory for increased data transfer rate

The continuous memory buffer has been added to the driver version 1.36. The continuous buffer is not avail-
& able in older driver versions. Please update to the latest driver if you wish to use this function.

Background

All modern operating systems use a very complex memory management strategy that strictly separates between physical memory, kernel mem-
ory and user memory. The memory management is based on memory pages (normally 4 kByte = 4096 Bytes). All software only sees virtual
memory that is translated into physical memory addresses by a memory management unit based on the mentioned pages.

This will lead to the circumstance that although a user program allocated a larger memory block (as an example 1 MByte) and it sees the
whole 1 MByte as a virtually continuous memory area this memory is physically located as spread 4 kByte pages all over the physical memory.
No problem for the user program as the memory management unit will simply translate the virtual continuous addresses to the physically
spread pages totally transparent for the user program.

When using this virtual memory for a DMA transfer things become more complicated. The DMA engine of any hardware can only access
physical addresses. As a result the DMA engine has to access each 4 kByte page separately. This is done through the Scatter-Gather list. This
list is simply a linked list of the physical page addresses which represent the user buffer. All franslation and set-up of the Scatter-Gather list is
done inside the driver without being seen by the user. Although the Scatter-Gather DMA transfer is an advanced and powerful technology it
has one disadvantage: For each transferred memory page of data it is necessary to also load one Scatter-Gather entry (which is 16 bytes on
32 bit systems and 32 bytes on 64 bit systems). The little overhead to transfer (16/32 bytes in relation to 4096 bytes, being less than one
percent) isn't critical but the fact that the continuous data transfer on the bus is broken up every 4096 bytes and some different addresses
have to be accessed slow things down.

The solution is very simple: everything works faster if the user buffer is not only virtually continuous but also physically continuous. Unfortu-
nately it is not possible to get a physically continuous buffer for a user program. Therefore the kernel driver has to do the job and the user
program simply has to read out the address and the length of this continuous buffer. This is done with the function spcm_dwGetContBuf as
already mentioned in the general driver description. The desired length of the continuous buffer has to be programmed to the kernel driver
for load time and is done different on the different operating systems. Please see the following chapters for more details.

Next we'll see some measuring results of the data transfer rate with/without continuous buffer. You will find more results on different mother-
boards and systems in the application note number é ,Bus Transfer Speed Details”. Also with newer M4i/M4x/M2p cards the gain in speed
is not as impressive, as it is for older cards, but can be useful in certain applications and settings. As this is also system dependent, your
improvements may vary.

136 M3i.41xx / M3i.41xx-exp Manual

Continuous memory for increased data transfer rate

Bus Transfer Speed Details (M2i/M3i cards in an example system)

PCI 33 MHz slot PCI-X 66 MHz slot PCI Express x1 slot
Mode read write read write read write
User buffer 109 MB/s 107 MB/s 195 MB/s 190 MB/s 130 MB/s 138 MB/s
Continuous kernel buffer § 125 MB/s 122 MB/s 248 MB/s 238 MB/s 160 MB/s 170 MB/s
Speed advantage 15% 14% 27% 25% 24% 23%

Bus Transfer Standard Read/Write Transfer Speed Details (M4i.44xx card in an example system)

Notifysize Notifysize Notifysize Notifysize Notifysize
16 kByte 64 kByte 512 kByte 2048 kByte 4096 kByte
Mode read write read write read write read write read write
User buffer 243 MB/s 132 MB/s 793 MB/s 464 MB/s 2271 MB/s | 1352 MB/s | 2007 MB/s | 1900 MB/s | 2687 MB/s | 2284 MB/s
Continuous kernel buffer § 239 MB/s 133 MB/s 788 MB/s 457 MB/s 2270 MB/s | 1470 MB/s | 2555 MB/s | 2121 MB/s | 2989 MB/s | 2549 MB/s
Speed advantage -1.6% +0.7% 0.6% -1.5% 0% +8.7% +27.3% +11.6% +11.2% +11.6%
Bus Transfer FIFO Read Transfer Speed Details (M4i.44xx card in an example system)
Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize
4 kByte 8kByte | 16kByte | 32kByte | 64 kByte | 256 kByte | 1024 kByte | 2048 kByte | 4096 kByte
Mode FIFO read | FIFO read | FIFO read | FIFO read FIFO read FIFO read FIFO read | FIFO read | FIFO read
User buffer 455 MB/s 858 MB/s 1794 MB/s 2005 MB/s 3335 MB/s 3386 MB/s 3369 MB/s 3331 MB/s 3335 MB/s
Continuous kernel buffer | 540 MB/s 833 MB/s 1767 MB/s 1965 MB/s 3216 MB/s 3386 MB/s 3389 MB/s 3388 MB/s 3389 MB/s
Speed advantage +18.6% -2.9% -1.5% -2.0% -3.5% 0% +0.6% +1.7% +1.6%
Bus Transfer FIFO Read Transfer Speed Details (M2p.5942 card in an example system)
Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize | Notifysize
4 kByte SkByte | 16kByte | 32kByte | 64 kByte | 256 kByte | 1024 kByte | 2048 kByte | 4096 kByte
Mode FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read
User buffer 282 MB/s 462 MB/s 597 MB/s 800 MB/s 800 MB/s 799 MB/s 799 MB/s 799 MB/s 797 MB/s
Continuous kernel buffer | 279 MB/s 590 MB/s 577 MB/s 800 MB/s 800 MB/s 800 MB/s 800 MB/s 800 MB/s 799 MB/s
Speed advantage -1.1% +27.7% -3.4% +0.0% +0.0% 0% +0.1% +0.1% +0.3%

Setup on Linux systems

On Linux systems the continuous buffer setting is done via the command line argument contmem_mb when loading the kernel driver module:

insmod spcm.ko contmem mb=4

As memory allocation is organized completely different compared to Windows the amount of data that is available for a continuous DMA
buffer is unfortunately limited to a maximum of 8 MByte. On most systems it will even be only 4 MBytes.

Setup on Windows systems

The continuous buffer settings is done with the Spectrum Control Center us-
ing a setup located on the ,Support” page. Please fill in the desired con-
tinuous buffer settings as MByte. After setting up the value the system needs
to be restarted as the allocation of the buffer is done during system boot

time.

If the system cannot allocate the amount of memory it will divide the de-
sired memory by two and try again. This will continue until the system can
allocate a continuous buffer. Please note that this try and error routine will
need several seconds for each failed allocation try during boot up proce-
dure. During these tries the system will look like being crashed. It is then
recommended to change the buffer settings to a smaller value to avoid the
long waiting time during boot up.

Continuous buffer settings should not exceed 1/4 of system memory. Dur-
ing tests the maximum amount that could be allocated was 384 MByte of
continuous buffer on a system with 4 GByte memory installed.

I@ spectrum Control Center [DEM-2312E739CD

Card Support | versions | about |

&l

2|

—Debug Logging

Log Level ILog all Errors

Log Path Ic:'lI

™ append Logging ko file

File: Mame

I spcmdry_debug. bxt

—Kernel Registry Setting

Continous Memory Allocation (ME)

|64

Quit

(c) Spectrum GmbH

137

Continuous memory for increased data transfer rate

Usage of the buffer

The usage of the continuous memory is very simple. It is just necessary to read the start address of the continuous memory from the driver and
use this address instead of a self allocated user buffer for data transfer.

Function spcm_dwGetContBuf
This function reads out the internal continuous memory buffer (in bytes) if one has been allocated. If no buffer has been allocated the function
returns a size of zero and a NULL pointer.

uint32 stdcall spcm dwGetContBuf i64 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to read as listed above under SPCM BUF XXXX
void** ppvDataBuffer, // address of available data buffer
uint64* pagwContBufLen) ; // length of available continuous buffer

uint32 stdcall spcm dwGetContBuf i64m (// Return value is an error code

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to read as listed above under SPCM BUF XXXX
void** ppvDataBuffer, // address of available data buffer

uint32* pdwContBufLenH, // high part of length of available continuous buffer

uint32* pdwContBufLenL) ; // low part of length of available continuous buffer

Please note that it is not possible to free the continuous memory for the user application.

Example
The following example shows a simple standard single mode data acquisition setup (for a card with 12/14/16 bit per resolution one sample
equals 2 bytes) with the read out of data afterwards. To keep this example simple there is no error checking implemented.

int32 1lMemsize = 16384; // recording length is set to 16 kSamples
spcm_dwSetParam_i64 (hDrv, SPC_CHENABLE, CHANNELO) ; // only one channel activated
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_SINGLE) ; // set the standard single recording mode
spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, lMemsize); // recording length in samples
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 8192); // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD START | M2CMD_CARD ENABLETRIGGER | M2CMD CARD WAITREADY) ;

// we now try to use a continuous buffer for data transfer or allocate our own buffer in case there’s none
spcm_dwGetContBuf i64 (hDrv, SPCM_BUF DATA, &pvData, &gwContBuflLen);
if (gwContBufLen < (2 * 1lMemsize))

pvData = pvAllocMemPageAligned (1Memsize * 2); // assuming 2 bytes per sample

// read out the data
spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 0, pvData, 0, 2 * 1lMemsize);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

// ... Use the data here for analysis/calculation/storage
// delete our own buffer in case we have created one

if (gwContBufLen < (2 * 1lMemsize))
vFreeMemPageAligned (pvData, 1lMemsize * 2);

138 M3i.41xx / M3i.41xx-exp Manual

Details on M3i cards 1/O lines

Details on M3i cards 1/0 lines

Multi Purpose 1/O Lines

The MMCX Multi Purpose |/O connec-
tors (XO and X1) of the M3i cards from
Spectrum are protected against over
voltage conditions.

For this purpose clamping diodes of the

3.3V 3.3V

Lok]

types 1N4148 are used in conjunction X@/x1 (o) {71 > Xe/x1 170

with a series resistor. Both /O lines are
internally clamped to signal ground and
to 3.3V clamping voltage. So when con-
necting sources with a higher level than
the clamping voltage plus the forward
voltage of typically 0.6..0.7 V will be
the resulting maximum high-level level.

X@/X1 Output Enable

The maximum forward current limit for the used 1N4148 diodes is 100 mA, which is effectively limited by the used series resistor for logic
levels up to 5.0V. To avoid floating levels with unconnected inputs, a pull up resistor of 10 kOhm to 3.3V is used on each line.

Interfacing with clock input
The clock input of the M3i cards is AC-coupled, single-

ended PECL type. Due to the internal biasing and a rela-

tively high maximum input voltage swing, it can be di-
rectlly connected to various logic standards, without the
need for external level converters.

Single-ended LVTTL sources
All LVTTL sources, be it 2.5V LVTTL or 3.3V LVTTL must be

terminated with a 50 Ohm series resistor to avoid reflec-

tions and limit the maximum swing for the M3i card.

Differential (LV)PECL sources

Differential drivers require equal load on both the true
and the inverting outputs. Therefore the inverting output

should be loaded as shown in the drawing. All PECL driv-

ers require a proper DC path to ground, therefore emitter
resistors Rg must be used, whose value depends on the
supply voltage of the driving PECL buffer:

Vee - Vi 2.5V 3.3V 5.0V
Re ~50 Ohm | ~100 Ohm | ~200 Ohm

Interfacing with clock output

The clock output of the M3i cards is AC-coupled, sin-
gle-ended PECL type. The output swing of the M3i
clock output is approximately 800 mVpp.

Internal biased single-ended receivers
Because of the AC coupling of the M3i clock output,
the signal must be properly re-biased for the receiv-
er. Receivers that provide an infernal re-bias only re-
quire the signal to be terminated to ground by a
50 Ohm resistor.

Differential (LV)PECL receivers

Differential receivers require proper re-biasing and
likely a small minimum difference between the true
and the inverting input to avoid ringing with open re-
ceiver inputs. Therefore a Thevenin-equivalent can
be used, with receivertype dependant values for

R1,R2,R1" and R2'.

3.3V LUPECL

External | M3i Card

[M31 Clk Input

2.5V LUTTL
3.3V LUTTL
Sinewave

7

M3i Clk Input

I

I

1

i

[

I

| D -
i O/ 10
[

I

[

I

[

\/

10 nF
2.5U LUPECL

3.3U LUPECL

R
[5e]

5.0U PECL

M3i Card External
M31 Clk Output

L O

10 nf O/
—

18 nfF H
S < internally
- © re-biased

- - - Ucc Ucc
O

| R1 |
RT'

M3i Clk Output

3.3V LUPECL

- -
18 nF U
18 nF

< J [k 2.5U LUPECL
< © ~ ~ 3.3V LUPECL
5.0U PECL

I
l
I

(c) Spectrum GmbH 139

	Introduction
	Preface
	Overview
	General Information
	Different models of the M3i.41xx series
	Additional options
	Star-Hub
	BaseXIO (versatile digital I/O)

	The Spectrum type plate
	Hardware information
	Block diagram
	Technical Data
	Dynamic Parameters
	Order Information

	Hardware Installation
	System Requirements
	Warnings
	ESD Precautions
	Cooling Precautions
	Sources of noise

	Connector Handling Precautions
	Installing the board in the system
	Installing a single board without any options
	Installing a board with option BaseXIO
	Installing multiple boards synchronized by star-hub option

	Software Driver Installation
	Windows
	Before installation
	Running the driver Installer
	After installation

	Linux
	Overview
	Standard Driver Installation
	Standard Driver Update
	Compilation of kernel driver sources (optional and local cards only)
	Update of a self compiled kernel driver
	Installing the library only without a kernel (for remote devices)
	Control Center

	Software
	Software Overview
	Card Control Center
	Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products
	Wake On LAN of digitizerNETBOX/generatorNETBOX
	Netbox Monitor
	Device identification
	Hardware information
	Firmware information
	Software License information
	Driver information
	Installing and removing Demo cards
	Feature upgrade
	Software License upgrade
	Performing card calibration
	Performing memory test
	Transfer speed test
	Debug logging for support cases
	Device mapping
	Firmware upgrade

	Accessing the hardware with SBench 6
	C/C++ Driver Interface
	Header files
	General Information on Windows 64 bit drivers
	Microsoft Visual C++ 6.0, 2005 and newer 32 Bit
	Microsoft Visual C++ 2005 and newer 64 Bit
	C++ Builder 32 Bit
	Linux Gnu C/C++ 32/64 Bit
	C++ for .NET
	Other Windows C/C++ compilers 32 Bit
	Other Windows C/C++ compilers 64 Bit

	Driver functions
	Delphi (Pascal) Programming Interface
	Driver interface
	Examples

	.NET programming languages
	Library
	Declaration
	Using C#
	Using Managed C++/CLI
	Using VB.NET
	Using J#

	Python Programming Interface and Examples
	Driver interface
	Examples

	Java Programming Interface and Examples
	Driver interface
	Examples

	LabVIEW driver and examples
	MATLAB driver and examples

	Programming the Board
	Overview
	Register tables
	Programming examples
	Initialization
	Initialization of Remote Products
	Error handling
	Gathering information from the card
	Card type
	Hardware version
	Firmware versions
	Production date
	Last calibration date (analog cards only)
	Serial number
	Maximum possible sampling rate
	Installed memory
	Installed features and options
	Miscellaneous Card Information
	Function type of the card
	Used type of driver

	Reset

	Analog Inputs
	Channel Selection
	Important note on channel selection

	Setting up the inputs
	Input Path
	Input ranges
	Read out of input features
	Input termination
	Input coupling
	AC/DC offset compensation
	Anti aliasing filter (Bandwidth limit)
	Enhanced Status Register
	Automatic on-board calibration of the offset and gain settings

	Acquisition modes
	Overview
	Setup of the mode

	Commands
	Card Status
	Acquisition cards status overview
	Generation card status overview
	Data Transfer

	Standard Single acquisition mode
	Card mode
	Memory, Pre- and Posttrigger
	Example

	FIFO Single acquisition mode
	Card mode
	Length and Pretrigger
	Difference to standard single acquisition mode
	Example FIFO acquisition
	Limits of pre trigger, post trigger, memory size

	Buffer handling
	Data organisation
	Sample format
	Converting ADC samples to voltage values

	Clock generation
	Overview
	The different clock modes
	Clock Mode Register

	Details on the different clock modes
	Standard internal sampling clock (PLL)
	Using Quartz2 with PLL (optional, M4i cards only)
	External clock (reference clock)

	Trigger modes and appendant registers
	General Description
	Trigger Engine Overview
	Multi Purpose I/O Lines
	Programming the behaviour
	Using asynchronous I/O
	Special behaviour of trigger output
	Special direct trigger output modes

	Trigger masks
	Trigger OR mask
	Trigger AND mask

	Software trigger
	Force- and Enable trigger
	Trigger delay
	External (analog) trigger
	Trigger Mode
	Trigger Input Coupling
	Trigger level
	Detailed description of the external analog trigger modes

	External (TTL) trigger using multi purpose I/O connectors
	TTL Trigger Mode
	Edge and level triggers

	Channel Trigger
	Overview of the channel trigger registers
	Channel trigger level
	Detailed description of the channel trigger modes

	Mode Multiple Recording
	Recording modes
	Standard Mode
	FIFO Mode
	Limits of pre trigger, post trigger, memory size
	Multiple Recording and Timestamps

	Trigger Modes
	Trigger Counter

	Programming examples

	Timestamps
	General information
	Example for setting timestamp mode:

	Timestamp modes
	Standard mode
	StartReset mode
	Refclock mode

	Reading out the timestamps
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands
	Data format

	Combination of Memory Segmentation Options with Timestamps
	Multiple Recording and Timestamps
	ABA Mode and Timestamps

	ABA mode (dual timebase)
	General information
	Standard Mode
	FIFO Mode
	Limits of pre trigger, post trigger, memory size
	Example for setting ABA mode:

	Reading out ABA data
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands
	ABA Mode and Timestamps

	Option BaseXIO
	Introduction
	Different functions
	Asynchronous Digital I/O
	Special Input Functions
	Transfer Data
	Programming Example
	Special Sampling Feature
	Electrical specifications

	Option Star-Hub (M3i and M4i only)
	Star-Hub introduction
	Star-Hub trigger engine
	Star-Hub clock engine

	Software Interface
	Star-Hub Initialization
	Setup of Synchronization
	Setup of Trigger
	Run the synchronized cards
	SH-Direct: using the Star-Hub clock directly without synchronization
	Error Handling

	Option Remote Server
	Introduction
	Installing and starting the Remote Server
	Windows
	Linux

	Detecting the digitizerNETBOX
	Discovery Function
	Finding the digitizerNETBOX/generatorNETBOX in the network
	Troubleshooting

	Accessing remote cards

	Appendix
	Error Codes
	Spectrum Knowledge Base

	Continuous memory for increased data transfer rate
	Background
	Setup on Linux systems
	Setup on Windows systems
	Usage of the buffer

	Details on M3i cards I/O lines
	Multi Purpose I/O Lines
	Interfacing with clock input
	Interfacing with clock output

