SPECTRUM

INSTRUMENTATION

Perfect fit — modular designed solutions

@ e ©
@® SPECTRUM
b CHO
ClockOut (@) et
@
g ‘®-CHZ
&
e (@)
@

Status , Clock
?
&

@sPecRUM 6 6 6 6 6 & 6 © © © & ©

---generator

666660666 ® ©6 6 ©6 © 6 © © © © o @

digitizerNETBOX

DN2.22x-xx
DN6.22x-xx

Ethernet/LXI remote high speed digitizer
with 8 bit resolution

Hardware Manual
Software Driver Manual

Valid for all versions

Manual Printed: 23. February 2024

Digitizers | Transient Recorders | Arbitrary Waveform Generators | Digital Waveform Acquisition Cards

for PCI Express, PXI Express and LXI/Ethernet

(c) SPECTRUM INSTRUMENTATION GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY

SBench, digitizerNETBOX, generatorNETBOX and hybridNETBOX are registered trademarks of Spectrum Instrumentation GmbH.
Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10, Windows 11 and Windows Server are trademarks/registered trademarks of Microsoft Corporation.

LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.

Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc.

Keysight VEE, VEE Pro and VEE Onelab are trademarks/registered trademarks of Keysight Technologies, Inc.

FlexPro is a registered trademark of Weisang GmbH & Co. KG.

PCle, PCl Express, PCI-X and PCI-SIG are trademarks of PCI-SIG.

PICMG and CompactPCl are trademarks of the PCI Industrial Computation Manufacturers Group.

PXl is a trademark of the PXI Systems Alliance.

LXI is a registered trademark of the LXI Consortium.

IVl is a registered trademark of the IVl Foundation.

Oracle and Java are registered trademarks of Oracle and/or its aoffiliates.

Python is a trademark/registered trademark of Python Software Foundation.

Julia is a trademark/registered trademark of Julia Computing, Inc.

Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation.
AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
Arm is a trademark or registered trademark of Arm Limited (or its subsidiaries).

NVIDIA, CUDA, GeForce, Quadro, Tesla and Jetson are trademarks and/or registered trademarks of NVIDIA Corporation.

Table of Contents

Tﬂble Of Contentsconoconconoconconoconconoconconoconoonocoooooocoooooocoooooocoooooo'oooooo'oooooo'oooooo'oooooo'oooooo'oooooo'o 3

Safety INSIUCHONS c..cereeceseeccssecscssecssssesssssessssesssssessess |11
Symbols aNd Safety LADESc..oiiiiiiii ettt
General safety informationcccoooiiiiiiiiiiiie
Requirements for users and duties for operators

GeNeral SAfEly G WOTK.......iiiiiiii ettt ettt ettt ettt ettt et eneas
Bringing the product into service
Intended USecoveeiiiiiiiieee
Application area of the product
Requirements for the technical state of the product
Requirements for operationcccocoveiieninnccnncnn
Electrical safety and POWET SUPPIYoeiiiiii ettt
Requirements for the [0CAHONoiiiiii ettt
Requirements on the ventilation
IMAINIENANCE. ... s
REPQIT/SEIVICE ...ttt h et ettt et h ettt ettt et
Cleaning the module housing (NETBOX devices, cables, amplifiers, systems only)
Opening the module (NETBOX devices, amplifiers only)
Dismounting parts of the card (instrument card only) ...
Markings and Labelling

PGCking Iistoooonoooooonoconconoconconoconconoconconoconoonoconoonoconoonoconoonoconocnoconocnoconocnoconocooconocooconocooconocoo 1 4

Introduction 000 1 5
PREfOICE .ttt e b ettt ettt
General Information
digitizerNETBOX Overview
INtern@l DIGItiZEr MOUIESeiiieiii ettt ettt ettt et e et e ekt e e at e ekt e e bt e et e ent e et e e eenaeeen

Differences between plain cards and digitizer modules inside the digitizerNETBOX
Overview of digitizer modules inside the DN2.22x and DN6.22x digitizerNETBOX
Different models of the DIN2.22X SEIES.........c.eviuiriiuiitiiteit ettt ettt sttt ettt ettt e et ettt ettt ea et
Additional options for DN2 products
19" Rack Mount Kit
DC Power Supply ...oeeviiiiiiiiienee.
Different models of the DN6.22x series...
Additional options for DN6 products
19 Rack Mount Kit
AC Cable OPHONS ...ttt ettt
The Spectrum type plate ..

Dynamic Parameters
RMS Noise Level (Zero Noise)
DN2 specific Technical Data............
DN specific Technical Data...............

DN2 Order Informationc...ccoeeuvnnne.

DNG Order INFOMOHONeetiiiiiii ittt b ettt e bttt ettt sb ettt et steenae e b e

(c) Spectrum Instrumentation GmbH 3

Hardware Installation 000 30
LA a1 1T T OSSR POUUPPUPPRIRt
ESD PreCaUtiONSooiiiiiiiii e
Opening the Chassis..
Cooling Precautions............cccooeiiiiiiiiniiieiiiciieeee
SoUrces of NOISEc.eoueieiiieiiiiei e
Installing 19" rack mount option for DN2.............c.ccoc.e.
Installing 19" rack mount option for DN6..............ccuviee.
Setup of digitizerNETBOX/generatorNETBOX
CoNNECHIONS ...t
Back Side DN2 ..o
Front Panel DN2 digitizerNETBOX/generatorNETBOX
Front Panel DN2 hybridNETBOX DN2.80x and DN2.8TXcuoiiiiiiiiiiie ittt
Front Panel DN2 hybridNETBOX DN2.82xccccuceee.
Front Panel DNé digitizerNETBOX or generatorNETBOX
Ethernet Default SEHINGS ... iiuieiiiee ettt ettt ettt ettt et be ettt
Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX
DisSCOVErY FUNCHONciiiiiiiiiiiiiiie e
Finding the digitizerNETBOX/generatorNETBOX/hybridNETBOX in the network
Troubleshooting

Software Driver INStallationceccecceeccecceecenccnccesceeccsecescesccsscasccsccsscsscsscssscssccssssscssscsssssces 39
Required Software for operation
Location

Overview
Driver Installation with Installation Script...
Standard Driver Update
Compilation of kernel driver sources (optional and local cards only)
Update of a self compiled kernel driver................occooiiiiiiiiiiii
Installing the library only without a kernel (for remote devices)
Installation from Spectrum Repository
Control Center

4 (c) Spectrum Instrumentation GmbH

software 000 45
SOMWEAIE OVEIVIEW ...ttt ettt ettt ettt ettt et ebt ettt ettt
CArd CONTOl CONIET ...t ettt b et ettt e b e st ettt et ettt ekt shee bt e e et e

Discovery of Remote Cards, digitizerNETBOX/generatorNETBOX/hybridNETBOX products
Wake On LAN of digitizerNETBOX/generatorNETBOX/hybridNETBOX
Netbox Monitor
Device identification
Hardware information
Firmware information ...
Software License information............
Driver information..........ccccooceeniininn.
Installing and removing Demo cards
R U] e e e LT TSSOSO URUPSUPRRTPPO
Software License upgrade....................
Performing card calibration (A/D only)
PErfOrMINgG MEMOTY HESt ... ittt ittt ettt ettt ettt et e at e eht et e ekt e bt ene e e et e bt e eteeteenee e e neeens
Transfer speed fest.........ccooeieeninn.
Debug logging for support cases......
Device mappingccccceevevinnnnnne.
Accessing the hardware with SBench 6...
C/C++ Driver Inferface...........cccuvvvnni.
[YoTe Y TSP TSU U SUPUTPR P
General Information on Windows 64 bit drivers............cuiiieiiiiiiiie et
Microsoft Visual C++ 6.0, 2005 and newer 32 Bit
Microsoft Visual C++ 2005 and NEWET G4 Bit......cc.oiiiiiiiiiieiiieiiet ettt ettt e eneas
LINUX GNU C/CAt B2/ O Bit e e
Ct for NET ..ot
Other Windows C/C++ compilers 32 Bit
Other Windows C/C++ compilers 64 Bit
Driver Functionscoviiiiiiiei e
Delphi (Pascal) Programming Interface ...
DIFIVET INFEITACE ...ttt ettt ettt et e a e e ettt ekttt e st e h ekttt e et ettt e bt et et et ne e
EXOMIPIES ... ettt h ettt etttk ettt ettt ettt et b e e ne e ntte e tteeneeenee s
.NET programming languages
LI DTQITY ettt et ea ettt th et b et b e bt e e tb e e tb e et b eeaa e etbeeetteeaeeeaee s
DECIANGHON ...ttt ettt h e ettt
Using CH...oovviiiiiiiiiiiniiieciieces
Using Managed C++/ClLI
Using VB.NET
USING JH ..o
Python Programming Interface and Examples
Driver interface
EXMPIES -ttt ettt et h ettt a e ea etttk ekt Rt R e bt ekt e bt e st eh e e bt e bt bt et e e e ene e b an
Java Programming Inferface and Examples..
Driver interface
EXMPIES -ttt ettt et h ettt a e ea etttk ekt Rt R e bt ekt e bt e st eh e e bt e bt bt et e e e ene e b an
Julia Programming Interface and Examples ..
Driver interface
EXxamples......cooeiviiienieieieeee
LabVIEW driver and examples...............
MATLAB driver and XAMPIESc..viiiiiiiie ettt ettt ettt ettt ettt

Integrated WeEbSErver..... e ciieecieneeieneeccnencccnneccesaessseecsssecsssecssssecssssesssssessssscssssesssssescsse &9
HOME SCIEEIN ..ottt

LAN Configuration

SEUTTY .ttt et e ettt e ettt e ettt e a e ettt et e et e e e e e
Documentation

Firmware Update
PO T <.
Downloads

Logging.............
Accesscoce.....

Embedded Server ..
[ReTe Ao T PSSP P PRI

(c) Spectrum Instrumentation GmbH 5

Ivl Driver'......'......'...'..'...'..'...'..'...'..'...'..'...'..'...'..'...'..'...'..'...'..'...'................................ 73
AABOUE IVttt h e E e h et e R E ekt a e ettt et e e e eht ettt ettt ettt
General Concept of the SPECUM IVI AIIVETc..iiiiiiiiii ittt ettt ettt ettt est ettt esbeenbeentenaeen
Supported Spectrum Hardwareccoccoeviiiiiiiniece

Supported data acquisition and generation card families:
Supported digitizerNETBOX families............ccceeneenn.
Supported generatorNETBOX families........................
IVI Compliangecceveeeiiiiiiniiiieccec e
Supported Operating Systemsccceevveirieernnenne.
Supported Standard Driver Features.............cccceeuni.n..
IVIScope Supported Class Capabilities............c.cco.....
IVIDigitizer Supported Class Capabililies.oiiiiiiiie ettt
IVIFGen Supported Class Capabilifies ..ot
Find more Information on IVI..............c......
General Information on IVI
IVI Getting Started Guides and VIAEOScoiiiiiiiiiiiiie it
Installationccoevieiiiiiiec
Installer ...
Shared Components
Installation Procedure
Installation of the IVI driver package
CONFIGUIGHON STOTE ...ttt ettt ettt oottt et et e 2 e et e st eaa e e s e e st e ekt e st em bt es b e eh e e st enteenb e et e esee bt enteeneenneens
GeNEral INFOrMAION ...ttt bttt ettt ettt ettt et et eeees
REPEATE CAPADITIHES ... ettt ettt et e et e et e et et et e et et e e e e

Programming the Boardccccceccereccsecccsccssecssecsssccssssssessssssssssssssssessssssssssssssssssssssssssssssssses 79
OVEIVIBW ...ttt e+ttt ettt ettt et e et e e
Register tables
Programming examples
INitialiZation........ocoeveiieiiecec
Initialization of Remote Products.............
Error handling.......coovoeviiiiiiiie,
Gathering information from the card

T Y ettt ettt ht e ettt a b e th e tt e e h e e nh b e h e et e et e eenae et e et e e eabeeeneean
Hardware and PCB version
Reading currently used PXI slot No. (M4x only)

FITMWAIE VEISIONS ...ttt ettt ettt e et e et e et e e e e
Production datecccoocvenienieniencnne.

Last calibration date (analog cards only) ..

Serial number ...

Maximum possible sampling rate

Installed memoryccccoevviinninns

Installed features and options...........

Miscellaneous Card Information

Function type of the card

USEA TYPE OF AFIVET ..ottt ettt a e ittt ekttt a b e et e et e e enb e et e e eabeeeaae s

CUSIOM MOAIFICAHONS ... e e e

Analog Inputs.. 89
Channel Selectionc..ccoevcenicniinnn
Important note on channel selection
Setting up the inputs
Input ranges..........
Input offset.......ccoiiiiiiiiiiiis
AC/DC OffSEt COMPENSAIION ...ttt ettt ettt e bt e st e e bt e e e e et e e ease e et e enteeenseeeneeas
ReOd OUE OF INPUE FEAIUIES ...ttt ettt ettt ettt b e et at e et e bt e b e e s et ebeesbeenseeneenaeene e
Input couplingoooveiiiiieiiii
Anti aliasing filter (Bandwidth limit)
Automatic on-board calibration of the offset and gain SEHINGSc.iiiiiiiiiieic e

6 (c) Spectrum Instrumentation GmbH

Acquisition modes 000 95
OVEIVIBW ...ttt ettt e+ 4ottt e e 4o ettt et e e oo bttt e a4 e e skttt e e e e e ettt e e e e e ettt et e e e e et
SEHUP OF the MOTE ...ttt ettt ettt ettt etttk b ettt nhe e teebe et ere e
Commands.................
Card Status
Acquisition cards status overview
Generation card status overview
Data Transfercccoeeieiiiiineennen.
Standard Single acquisition mode
Cardmode.......ccooovvvieeiiiiiee,
Memory, Pre- and Postirigger
e Ty SRR OPRSPRP

FIFO Single acquisition mode
€A MOAE ... et ettt ettt
eI Tt I =t el To T PP ST UPT PR
Difference to standard single acquisition mode............
Example FIFO acquisitionccccevveivieiniiiieeen

Limits of pre trigger, post trigger, memory size..................

Buffer handlingcccoooiiiiiii

Data organization
TeTiaTe) o oY1 1T OSSP TUSUUSTURPIt
Converting ADC samples 10 VOltage VAIUESoiiiiiiiiiiii et
Enabling hardware sample conversion to offset-binary

Clock gENEralionceeeceeeeeceneecceneeccseeecssseccsseecssseecsssecssssesssssesssssessssessssssssssssssssssssssssssses 110
OVEIVIBW ...ttt ettt e e oottt e e e e oottt e e a4 oo e et ettt e e e e e oo n e bttt e e e e e e et bttt et e e e e e R nt ittt et e e e e e e ntat et e e e e e e e nntateeaeeeeane 110
Clock Mode Register...........c..ooouiiiiiieniiiiiiiiieeeiene 110
The different clock modesccocooiiiiiiiii 110
Details on the different clock modes.............c...ccoceevieni.. 11
Standard internal sampling clock (PLL).............ccvveeene.. 11
Special Clock Modecccooviiiiiiiiiiiee 112
Using Quartz2 with PLL (optional, M4i cards only)
OVEISAMPIING ..ttt ettt ettt ettt e o2t e o2t e o2t e o2t e e st e e as e e at e e s bt e n b e ab e e nb e e eb e e eab e e tteeeabeeenteeetee e
External clock (reference clock)

PXI Reference Clock (M4x cards only)

Trigger modes and appendant registers ...c.ccceeeceseccseccssecsseccsecsssesssesssessssesssssssssssesssssssses 115

General Description 115
TrigQer ENGINE OVEIVIEW......oiiiiiiiiiiiti ettt ettt e e ettt e e ettt et e e e e et eeeeens 115
BT Lo N ST U P UR PSR TRP 116

Trigger OR mask ... 116

Trigger AND mask. 17
Software frigger 119
Force- and Enable trigger. 19
Trigger delay 120

THIGGET COUNTET ...ttt ettt ettt ettt ettt oottt e e ettt e e et e e et e e et eeneneees 120
Main external window trigger [EXtO/TIGO)uiiuiiiieii ettt ettt ettt ettt et et et et et ettt e e

Trigger Mode.......ccoovviiiiiiiie,

Trigger Input Termination

THGGEr INPUE COUPIING .ttt ettt ettt ettt e et e st e et e et e e et e as e e e ebeeeateeenneeenaeaeneeen
Secondary external level trigger (Ext1/Trg1)....ccccocvvevnrens

Trigger Mode.......ccuooiiiiiiieict e 122

Trigger level.......ooooiiiiiiiiii 122
Detailed description of the external analog trigger modes ... 123
Channel THGGETvovvieieeieeit ettt 127
Overview of the channel trigger reGISIErS.ooiiiiiiiii ettt et 127
(@] 1oL T T I e o =Y = U PSPPSR 128
Detailed description of the channel trigger MOdes.oiiiiiiiiii s 129

MU"‘i PUI"POSG I/o LineS 000 135

On-board I/O lines (X0, X1, X2) 135
Programming the behavior 135
USING GSYNCRIONOUS 1/ ...ttt ettt ettt ettt et s e ettt ekt e et et et e bttt et eneenae s 136
Special behavior of rGGer OUIPUL.........oiuiiiiii ittt ettt ettt aeas 136
SyYNCHrONOUS digital INPUS ... eeeieei et ettt ettt ettt et e et e et et e et e e e et et et e e s 137

(c) Spectrum Instrumentation GmbH 7

MOde MU"‘ipIe Recording 000 138

RECOTAING MOTES ...ttt ettt ettt et ettt e o2t e et e e st e eab e e e st e e st e et e e e st e e enseeenseeenseeenseeennas 138
SEANAAIA MO ...ttt ettt et h ettt e 138
FIFO MOdE ..ot 138

Limits of pre trigger, post trigger, memory size 139
Multiple Recording and Timestamps 140

Trigger Modescooeviiniiiieieeie, 140

PrOGraMMING EXAMPIES. ... eiiiiiiiii ittt ettt ettt ettt ettt et e et e et e et et ettt et ettt aeas 141

Mode Gated SAMPliNgG ..cccecereecceseecsseecsssecssssecssssesssssesssssessssesssssssssssssssssssssssssssssssssssssssee 142

ACGUISTTION MOMES ...ttt ettt ettt ettt ettt ettt e sttt e a e e s et e e et e e a bt e e ekt e e at e e ea et e e n bt e enb e e nnseentbeeenbeennneenneeene 142
Standard Mode 142
FIFO IMOAE ...ttt ettt ettt ettt ettt e ettt et e e a e bt e e e et ettt et e et eeareeaeas 142

Limits of pre trigger, post trigger, memory size
Gate-End Alignment
Gated Sampling and Timestamps

AT Te] T TP T OO TEP ST PP TP PP PP P PUPU TP PPPPPPUN

Detailed description of the external analog trigger modes ... 145
Channel triggers modes 149
PrOGraMMING EXAMPIES. ... ettt ettt ettt ekt e ettt ettt e ke ettt e eat e ettt et et e et e et etaeeneas 154

TiMESTAMPS ceuceeuceecenenneectencssencseenssecssesssecsssessessssssssssssessessses |39

General informationccccoviviieniennn, 155
Example for sefting timestamp mode: ...
Timestamp modes........ccceovvviviierieeniene,
Standard mode
SHAMRESET MOTE. ...ttt ettt ettt e ettt et oot h e b et e et h ettt ae e
REFEIOEK MOTE. ... ettt ettt
Reading out the timestamps
GENMETAL. ... h et bt ettt ettt
Data TranSFer USING DIMA L.....oiiiiiiiiiee ettt ettt ettt ettt ettt ekt e bt esb e et e s e e bt e bt e st et e bttt beenaeeaeenneas 159
Data Transfer using Pollingccccoviiiiieniiein, 160
Comparison of DMA and polling commands 161
Data FOrMQL ... 161
Combination of Memory Segmentation Options with Timestamps 163
Multiple Recording and Timestampsccccooviiiiiiiiiiiiiiiieieeeeeee e 163
L7 e I e T =Y PSPPSR SRR 163
Gated SAMPling AN TIMESIAMPSc..eiutiiiii ittt ettt ettt ettt ettt e et beesb e et e st e et e bt ene et e bt e eseenneeneeenee e 164
ABA MOde AN TIMESIAMPS........eeiii ettt ettt ettt e et et e st e e et e e e et e e et e e e et e e snbeetteeeateeenseeneeenns 165

ABA mode (dual HHmebase) c....ceveeeiereecsseccssnecscsaeccsseessseessssacssssecssssessssssssssessssssssssssssssees 166

General information 166
Standard Mode 166
FIFOModeeiiiiiiiiiiiiiiceeeee e 167

Limits of pre trigger, post trigger, memory size.................. 167
Example for setting ABA mode:cocovevienianiranan, 168

Reading out ABA data 168
General................ 168
Data Transfer using DMA 169
Data Transfer using Polling 171
Comparison of DMA and polling commands.............oiiiiiiiiiiiii ittt ettt et en 172
ABA MOE AN TIMESIAMPS ...ttt ettt ettt ettt ettt eat e et e ekt e ke ea et e st e et e et e ekt emteentesee e bt e s st enteeneeneeeaeas 172

Pulse Generator (Firmware OPion) ...ccceeeeeecccceeeneccseeeenccsceesscccscssssscsssssssecsssssssecsssssssesceee 174

GENEral INFOIMOIION ...ttt ettt et e ettt ettt ettt et eneeeeee 174

PrINCIPIE OF OPEIAHON i ittiii ettt ettt ettt ettt et ettt e e tt e ekt et e enb e e ab et e bt e st e b e esbeeat e bt e te e e enbeente e s 175

Setting up the Pulse Generatorcccoovivienieneen, 176

Enabling, disabling and resetting a pulse generator 176
Defining the basic pulse parameters...... 176
Delaying (phase shifting) the Outputs ... 177
Defining the trigger behaviorcccooviiiiiin. 177
Configuring the pulse generator’s trigQer SOUMCEiuiiiuiiieitieitie it ettt ettt ettt et ettt et ettt e st et ebe b e enseenaenaeese e 178
Configuring Multi Purpose lines to output generated pulSesoouiiiiiiiiiiiii e 180
PrOgramMmMING EXAMPIEo.viiiiiii ittt ettt ettt ettt et et e ettt et e ettt 181

8 (c) Spectrum Instrumentation GmbH

Table of Contents

Option Star-Hub (M3i and M4i only)ccceecceeeccnecsseccssecsseccsecssecsssesssessssssssssssessssssssssssecse 182

SHAF-HUD TNTOAUCHON ...ttt ettt ettt ettt et ettt ettt ettt e nees 182
] fo T] T Te Y=Y e TSP UPSSPR 182
Star-Hub clock engine 182

Software Interfacecoooooiiiviiiiii. 182

Star-Hub Initialization 182
Setup of Synchronization................. 184
Setup of Triggercccovvveviiieninne. 185
Run the synchronized cards 185
SH-Direct: using the Star-Hub clock directly without synchronization 186
ErrOr HANAIING ..ottt ettt e ettt e et e e tb et e e aeeeaee s 187

Mode Block Average (Firmware OPHon) ...ccceecceseeccsseeccssecsssecssssesssssssssssessssssssssssssssessssee 188
OVEIVIEW .ottt e oottt e oo ettt e e e ettt e e e ettt et e e ettt et e e e e e 188

General Information 188
Principle of operation 188
Simplified Block Diagram 189
Setting up the Acquisition 189

Recording modesccceeviieniennnee. 189
Standard Mode 189
FIFOMOdE ...t 190

Limits of pre trigger, post trigger, memory size 190
For cards with 12bit, 14bit and 16bit ADC resolution (firmware V14 and above):cc.oooiiiiiiiiiiceeeeee 191
For cards with 8bit ADC resolution, 32 bit data mode (firmware V14 and above):cccociiviiiiiiiiiiiecc e 191
For cards with 8bit ADC resolution, 16 bit data mode (firmware V14 and above:

Ll 1o LA TeTe PSPPSR PPUUPPPSTR

OUIPUE DAIA FOMMOE ...t et ettt ettt et e ettt e ettt e e sttt e e et e et e e e

Data organization

Programming examples

Mode Block Statistics (Firmware Option) cc.cceeeceseccseccseccsscscsecssecsssssssessssssssssssesssssssssssssscses 193

OVEIVIEW ..ttt ettt e ettt e e e e e ettt e e e e et eeeeeeeeneaes 193
General Information..........ccccceenen. 193
Waveform Block Statistics 193
Simplified Block Diagram 194
Setting up the Acquisition 194

RECOTAING MOTES ...ttt ettt ettt ettt e et e oot e o2kt e o2t e e e et e ea bt e e st eeab e e e na e e e s bt e enbeeenbeeenteeenneenenes 194
SHANAAIA MOE ... et 194
FIFO MOdE ...t 195

Limits of pre trigger, post trigger, memory size 195
For cards with 12bit, 14bit and 16bit ADC resolution: 196
For cards with 8bit ADC resolution:cccceevviiirnnene. 196

Trigger Modesccovveviiinieiieeee,

Information Set Format.....

Data organization

Programming examples

Option Embedded Server........iuiieeeiineeiinnnncineeccinnecsneessseccssnecccsnecssseccsssecssssecssssessasee 198
Accessing the Embedded Server 198
SSH Connectioncccoeviiiinne
OGN ettt e ettt e e e ettt e e e et e e e e et
Mounting network FOIENsoiiiiiii e e
Access to NTP (Network Time Protocol)
EIIOTS. ...t
INSEAIING PACKAGES -+ttt ettt ettt et ettt ekttt et e st e et e ettt et ettt
Programming..................
Accessing the cards ...
Examples........ccc......
Autostart............

APPENAIX ceorreuniereniornecnesnesesnecsssecssssecssssesssssessssasssssssssssesssssssssssessssesssssssssssessssssssssssssssess 20 1
T oo oSSR UPTRSPSOPN 201
Spectrum Knowledge Base
TEMPEIGIUTE SEMSOTS ...ttt ettt ettt h ekttt ettt e e e h et h et ettt e e ee et e et e et e e
TEMPETQIUrE FEAG-OUE FEGISTETSeevtiititittett ettt ettt ettt ettt ettt ekt e st eat et e ekt ekt e et eae e et et e ekt e et eneeeeeesee e st enteeneenneenaeas
Temperature hintsccccoceeiien.
22xx temperatures and limits
DN6 Temperature sensors
Details on M4i/M4x cards 1/O lines
Multi-Purpose 1/O Lines
Interfacing With Clock INPULiii ittt ettt ettt ettt
Interfacing With Clock OUIPUL..........i ittt ettt et et e et

(c) Spectrum Instrumentation GmbH 9

Table of Contents

AbbreViﬂﬁOnS...............u............u... 206
LiSf Of FigUl’eS 00 207

LiSf Of Tﬂbles 000 209

(c) Spectrum Instrumentation GmbH 10

Safety Instructions Symbols and Safety Labels

Safety Instructions

This chapter contains information about the following topics:

General safety information

Requirements for users and duties for operators
Intended use

Markings and Labelling

Symbols and Safety Labels

Table 1: Symbols and Safety Labels

Label Where Description

Cards ESD symbol

Parts can be damaged by electrostatic discharge. Follow these precautions:

Avoid touching pins, leads, or circuitry.

Always be properly grounded when touching a static-sensitive component or assembly.

NETBOX chassis GND symbol
To enhance the immunity of the equipment against conducted and radiated RF disturbance, sensitive electrical circuits are connected to the
chassis.

Protective Conductor Class |
This movable devices of protection class | is equipped with a cable with additional protective conductor and a protective contact plug. The
device may only be connected to the protective conductor system of the fixed electrical installation, which is at ground potential.

Products Labelling for CE conformity

European directives. The CE declaration of conformity for the product is available upon request.

Products Labelling for WEEE
The WEEE symbol on the product or its packaging indicates that the product must not be disposed of with other waste. The user is obliged
to collect the old devices separately and to make them available to the WEEE take-back system for recycling.

NETBOX chassis Labelling for battery disposal
Batteries must not be disposed of with household waste. You are legally obliged to return old batteries so that proper disposal can be guar-
anteed. You can dispose of used batteries at a municipal collection point or in local stores

Manual Important part of the manual with safety related content

c € Spectrum confirms with the CE marking affixed to the product or its packaging that the product complies with the product-specific applicable
I

Manual Additional information inside the manual which helps to understand a topic in more detail

General safety information

Carefully read the documentation (Installation manual and hardware manual) that belongs to the product prior to the start-up. Please observe
the product safety instructions and the following safety notices to avoid health issues or damage to the device.

The manufacturer does not assume any liability for damages resulting from improper handling, unintended use or non-observance of the safety
precautions.

Applicable regulations and laws governing the location and use of the product must be observed and all accident prevention and occupa-
tional safety regulations must be complied with.

Requirements for users and duties for operators

The product may be assembled, operated and maintained only if you have the necessary qualification and experience for this product. Im-
proper use or use by a user without sufficient qualification can lead to damages or injuries to one's health or damages to property. The as-
sembler of the system is responsible for the safety of any system incorporating the equipment.

General safety at work

The existing regulations for safety at work and accident prevention must be followed. All applicable regulations and statutes regarding op-
eration must be strictly followed when using this product.

(c) Spectrum Instrumentation GmbH 11

Safety Instructions Bringing the product info service

Bringing the product into service

The following steps need to be done when first bringing the product into service:

* Please check the content of the delivery against the above stated packing list upon first opening of the package

e Check the products before connecting them to any power source for any damages. Do not connect a damaged product to any power
source

Be sure to have the correct knowledge to install this product

Carefully read the installation manual and take the stated precautions

Follow the installation process step by step as described in this manual

The product relies on proper cooling as described in this manual. Make sure to avoid to restrict the airflow to any part. Do not cover or
block any cooling fans or cooling vents

Intended use

Application area of the product

The device has been developed for indoor use in controlled laboratory and industrial environments not exceeding an operating height of
2000 m and for an ambient temperature of 0°C to +40°C with non-condensing humidity up to 10% to 90%.

Requirements for the technical state of the product

The product is designed in accordance with state-ofthe-art technology and recognized safety rules. The product may be operated only in a
technically flawless condition and according to the infended purpose and with regard to safety and dangers as stated in the respective product
documentation. If the product is not used according to its intended purpose, the protection of the product may be impaired.

Requirements for operation

Use the product only according to the specifications in the corresponding User's Guide. With any deviating operation, the product safety is
no longer ensured.

The use of the product is permitted only in accordance with the specifications and information of the respective user manual. Product safety
is not guaranteed in the event of deviating use. Use in wet or humid environments or in potentially explosive areas is not permitted.

The installer is responsible for the safety of the system in which the device is installed.

Electrical safety and power supply

Observe the regulations applicable at the operating location concerning electrical safety as well as the laws and regulations concerning work
safety! Connect only current circuits with safety extra-low voltage in accordance with EN 61140 (degree of protection Ill) to the connections
of the module.

Ensure that the connection and setting values are being followed (see the information in the chapter “Technical data”). Do not apply any
voltages to the connections of the module that do not correspond to the specifications of the respective connection. When setting up the ap-
pliance, care must be taken to ensure that the power plug of the chassis is easily accessible and the power cable can be unplugged in the
event of an emergency shut-down.

Use only approved cables at the connections of the product. Adhere to the maximum permissible cable lengths! Do not use any damaged
cables! Never apply force to insert a plug into a socket. Ensure that there is no contamination in and on the connection, that the plug fits the
socket, and that you correctly aligned the plugs with the connection.

There is no danger from the device in case of power supply interruption or shut down.

Requirements for the location

The housing and the connectors of the module as well as the plug connectors of the cables meet the degree of protection IP20. Position the
module on a smooth, level and solid underground. The module or the module stack must always be securely fastened.

The functionality and safety of the device is only guaranteed at operation conditions of IP20 and contamination class Il up to a light contam-
ination by non-conductive materials.

Requirements on the ventilation

Keep the module away from heat sources and protect it against direct exposure to the sun. The free space above and behind the module
must be selected so that sufficient air circulation is ensured. During normal operation there are no hot surfaces that pose any danger to the
operator.

Maintenance

The product is maintenance-free.

(c) Spectrum Instrumentation GmbH 12

Safety Instructions Markings and Labelling

Repair/Service

In the event of a necessary repair, the product must be returned to the manufacturer. Before returning any good get in contact with the support
group and obtain a RMA code. The support group can be reached by email: Support@spec.de

Please ensure suitable packaging to avoid damage during transport.

World-wide service address is:
Spectrum Instrumentation GmbH
Ahrensfelder Weg 13-17
22927 Grosshansdorf
Germany

Cleaning the module housing (NETBOX devices, cables, amplifiers, systems only)

Use a dry or lightly moistened, soft cloth for cleaning the module housing. Do not user any sprays, solvents or abrasive cleaners which could
damage the housing. Ensure that no moisture enters the housing. Never spray cleaning agents directly onto the module.

Opening the module (NETBOX devices, amplifiers only)

Do not open or change the module housing! Work on the module housing may only be performed by the manufacturer.

Dismounting parts of the card (instrument card only)

Do not dismount any part of the card like modules, front plates or internal cable connections.

Markings and Labelling

The product complies with the current European directives on CE marking. A CE declaration of conformity is available on request.
The product complies with the current European Directives on the Use of Certain Hazardous Substances (RoHS-3) 2015/863/EU).

According to the European directive WEEE (Waste Electrical and Electronic Equipment), the user is obliged to return the product to the system
for collection, treatment and recycling of waste electronic equipment. Disposal via residual waste is not permitted.

Up-to-date information on notifiable substances according to REACH regulation (EC) No 1907 /2006 can be quoted on request.

(c) Spectrum Instrumentation GmbH 13

Packing list

Packing list

The following items are containing in the packing. Some of these items need to be ordered separately as an option.

Table 2: Packing List

Item Contained Description

digitizer/generator/hybridNETBOX Yes Ordered NETBOX type inside ESD safety bag with integrated power supply as ordered
Power Connection Cable Yes (AC version only) Matching your country power plugs

19" Rack Mounting kit Optional Two rack mounting extensions for self mounting

Manual Yes Printed Installation Manual

USB Stick Yes Containing drivers, software and programming manuals

Cables Optional Ordered cables, each packed in own bag

(c) Spectrum Instrumentation GmbH

Introduction Preface

Introduction

Preface

This manual provides detailed information on the hardware features of your Spectrum instrument. This information includes technical data,
specifications, block diagrams and a connector description.

In addition, this guide takes you through the process of installing and recognizing your hardware and also describes the installation of the
delivered driver package for each operating system.

Finally this manual provides you with the complete software information of the hardware and the related driver. The reader of this manual
will be able to control the instrument from any PC system with one of the supported operating systems and one of the supported operating
software packages.

Please note that this manual provides no description for specific driver parts such as those for IVI, LabVIEW or MATLAB. These driver manuals
are available on USB-Stick or on the Spectrum website.

For any new information on the board as well as new available options or memory upgrades please contact our website
www.spectrum-instrumentation.com. You will also find the current driver package with the latest bug fixes and new features on our site.

Please read this manual carefully before you install any hardware or software. Spectrum is not responsible
for any hardware failures resulting from incorrect usage. &

General Information

The DN2.22x series allows recording of up to 8 channels, the DN6.22x of up to 24 channels in the high speed high resolution segment Due
to the proven design a wide variety of 8 bit digitizerNETBOX products can be offered. These products are available in several versions and
different speed grades making it possible for the user to find a individual solution.

The digitizerNETBOX products can be used with maximum sample rates of up to 1.25 GS/s, 2.5 GS/s or 5 GS/s using either two, four or
eight (SE) channels with the DN2.22xx models and with 12, 16, 20 and 24 (SE) channels using the DNé.22x models. The installed memory
of 8 GSample per DN2 digitizer unit or up to 24 GSample per DNé digitizer unit will be used for fast data recording. It can completely be
used by the current active channels. If using slower sample rates the memory can be switched to a FIFO buffer and data will be transferred
online over Ethernet to the PC memory or to hard disk.

Application examples: Laboratory equipment, Super-sonics, LDA/PDA, Radar, Spectroscopy.

digitizerNETBOX Overview

The series of digitizerNETBOX products are remote powerful digitizer instru-
ments with GBit Ethernet connection following the LXI Core 2011 standard. The
proven internal digitizer modules, a stable chassis, an embedded remote con-
troller, sufficient air cooling and standard BNC connectors form an unique in-
strument that opens a lot of new application areas.

The digitizerNETBOX can be either directly connected to a PC or Laptop or it
can be connected to a company/institute LAN and can be accessed from any
PC within that LAN. Using the digitizerNETBOX offers the following benefits and
new possibilities compared to digitizer plug-in cards:

¢ Use a powerful digitizer without opening the PC and without mounting hard- Image 1: Spectrum portable netbox DN2, 16 channel model

ware inside the PC.

Share the digitizer within a group of engineers that only need the instrument from time to time.

* Place the digitizer directly near the signal sources and control it remotely from the desk.

® Use the instrument at different location without moving a complete system. One just needs the digitizerNETBOX, a few cables and a Lap-
top.

Use the digitizer as s mobile data acquisition device with the DC power option (DN2.xxx only).

Internal Digitizer Modules

The digitizerNETBOX products internally consist of either digitizer modules that are accessed and programmed in a similiar way as the Spec-
trum digitizer cards themselves.

Accessing the digitizerNETBOX by software therefore is nearly identical to accessing the same plug-in cards.
Throughout the manual all programming and software usage will be described for the internal digitizer mod- A
ules.

(c) Spectrum Instrumentation GmbH 15

Introduction

Internal Digitizer Modules

Differences between plain cards and digitizer modules inside the digitizerNETBOX

Feature

Trigger Input B

Timestamp
Reference Clock Input

Option BaseXIO
Option Star-Hub

Standard Memory

Maximum Memory

Feature
Option Star-Hub
Standard Memory

Maximum Memory

Feature
Option Star-Hub

Standard Memory
Maximum Memory

Plain M2i-Express Card

Only available as part of option BaseXIO
Only available as part of option BaseXIO

Option can be ordered with purchase

Option can be ordered and allows to connect
5 or 16 cards

512 MSamples/256 MSamples per card
(for 8bit / 16bit samples)

2 GSamples/1 GSamples per card
(for 8bit / 16bit samples)

Plain M4i-Express Card

Option can be ordered and allows to connect
8 cards

4 GSamples per card: M4i.22xx
2 GSamples per card: M4i.44xx

4 GSamples per card: M4i.22xx
2 GSamples per card: M4i.44xx

Plain M2p-Express Card

Option can be ordered and allows to connect
either 6 or 16 cards

512 MSamples per card
512 MSamples per card

Installed inside digitizerNETBOX
DN2.20x, DN2.46x, DN2.47x,
DN2.48x, DN2.49x

Available as standard
Available as standard

Not available

Option installed internally in all digitizerNETBOXes
with two internal modules

1 GSamples/512 MSamples per module
(for 8bit / 16bit samples)

2 GSamples/1 GSamples per module
(for 8bit / 16bit samples)

Installed inside digitizerNETBOX
DN2.22x and DN2.44x

Option installed internally in all digitizerNETBOXes
with two internal modules

4 GSamples per module in DN2.22x
2 GSamples per module in DN2.44x

4 GSamples per module in DN2.22x
2 GSamples per module in DN2.44x

Installed inside digitizerNETBOX
DN2.59x

Option installed internally in all models
with two internal modules

512 MSamples per module
512 MSamples per module

Installed inside digitizerNETBOX
DN6.20x, DN6.46x, DN6.49x

Available as standard
Available as standard

Not available
Option installed internally in all models

1 GSamples/512 MSamples per module
(for 8bit / 16bit samples)

2 GSamples/1 GSamples per module
(for 8bit / 16bit samples)

Installed inside digitizerNETBOX
DN6.22x and DN6.44x

Option installed internally in all models

4 GSamples per module in DN6.22x
2 GSamples per module in DN6.44x

4 GSamples per module in DN6.22x
2 GSamples per module in DN6.44x

Installed inside digitizerNETBOX
DN6.59x

Option installed internally in all models

512 MSamples per module
512 MSamples per module

Overview of digitizer modules inside the DN2.22x and DN6.22x digitizerNETBOX

Table 3: overview of digitizerNETBOX models and internal digitizer modules

digitizerNETBOX Resolution Single-Ended Max Speed Number of Digitizer Internal Aux signals Memory per Max memory
model Differential Modules Module Type Star-Hub on Module module per module
DN2
DN2.221-02 8 Bit 2 x SE 1.25 GS/s 1 module M4i.2211-x8 - INSTO 4 GSamples no option
DN2.221-04 8 Bit 4 x SE 1.25 GS/s 1 module M4i.2212-x8 - INSTO 4 GSamples no option
DN2.221-08 8 Bit 8 x SE 1.25 GS/s 2 modules M4i.2212-x8 yes INST1 4 GSamples no option
DN2.222-02 8 Bit 2 x SE 2.5GS/s 1 module M4i.2221-x8 - INSTO 4 GSamples no option
DN2.222-04 8 Bit 4 x SE 2.5GS/s 2 modules M4i.2221-x8 yes INST1 4 GSamples no option
DN2.223-02 8 Bit 2 x SE 5GS/s 2 modules M4i.2230-x8 yes INST1 4 GSamples no option
DN2.225-04 8 Bit 4 x SE 5.00 GS/s (1 Ch) 1 module M4i.2234-x8 - INSTO 4 GSamples no option
2.50 GS/s (2 Ch)
1.25GS/s (4 Ch)
DN2.225-08 8 Bit 8 x SE 5.00 GS/s (2 Ch) 2 modules M4i.2234x8 yes INST1 4 GSamples no option
2.50 GS/s (4 Ch)
1.25 GS/s (8 Ch)
DNé6
DNé6.221-12 8 Bit 12 x SE 1.25 GS/s 3 modules M4i.2212-x8 yes INSTO 4 GSamples no option
DN6.221-16 8 Bit 16 x SE 1.25 GS/s 4 modules M4i.2212-x8 yes INSTO 4 GSamples no option
DNé6.221-20 8 Bit 20 x SE 1.25 GS/s 5 modules M4i.2212-x8 yes INST1 4 GSamples no option
DN6.221-24 8 Bit 24 x SE 1.25 GS/s 6 modules M4i.2212-x8 yes INST2 4 GSamples no option
DN6.225-12 8 Bit 12 x SE 5.00 GS/s (3 Ch) 3 modules M4i.2234-x8 yes INSTO 4 GSamples no option
2.50 GS/s (6 Ch)
1.25GS/s (12 Ch)
DN6.225-16 8 Bit 16 x SE 5.00 GS/s (4 Ch) 4 modules M4i.2234-x8 yes INSTO 4 GSamples no option
2.50 GS/s (8 Ch)
1.25GS/s (16 Ch)
DN6.225-20 8 Bit 20 x SE 5.00 GS/s (5 Ch) 5 modules M4i.2234-x8 yes INST1 4 GSamples no option
2.50 GS/s (10 Ch)
1.25 GS/s (20 Ch)
DN6.225-24 8 Bit 24 x SE 5.00 GS/s (6 Ch) 6 modules M4i.2234x8 yes INST2 4 GSamples no option

2.50 GS/s (12 Ch)
1.25 GS/s (24 Ch)

As an example: a DN2.221-08 would be recognized and programmed inside the software as 2 cards of M4i.2212-x8 and 1 Star-Hub.

The auxiliary signals (such as clock, trigger, efc.) are connected to one card only, which is the one carrying the Internal Star-Hub. That device
must be addressed for any external clock, trigger, etc. related setup.

(c) Spectrum Instrumentation GmbH

Introduction Different models of the DN2.22x series

Different models of the DN2.22x series

The following overview shows the different available models of the DN2.22x series. They differ in the number of internally mounted digitizer
modules and the number of available channels.

e DN2.221-02
* DN2.222-02
e DN2.223-02

@SPECTRUM

digitizerNETBOX

X1 X2

Clock Clock Trigd Trigh X0
in Out In In 0 10

LAN Connected Am/Trig

e DN2.221-04
* DN2.222-04

digitizerNETBOX

X1 X2

Clock Clock Trigd Trigh X0
in Out In In 0 10

LAN Connected Am/Trig

e DN2.221-08

CHI CH2 CH3 CHe CHs CHe CH7

@SPECTRUM

digitizerNETBOX

Clock Clock Trig0 Trig1 1
In Out [In

LAN Connected Am/Trig X0 X X2
o 1o o

Additional options for DN2 products

19” Rack Mount Kit

The rack mount kit allows to mount the @ @ &
digitizerNETBOX/generatorNETBOX/hybridNETBOX into a : : C.D 2 g g g = o
standard 19” rack. The digitizerNETBOX/generatorNETBOX e

or hybridNETBOX DN2 recquires two height units of the 19“ ® Ois v @ ® LA N 9@ o
rack.

Image 2: 19" rack mount kit installed on DN2 netbox
Multiple digitizerNETBOX/generatorNETBOX/hybridNET-

BOX products can be mounted one on top of the other.

It is not possible to mount two digitizerNETBOX/generatorNETBOX/hybridNETBOX DN2 products side by side into one 19” slot.

DC Power Supply

The DC power supply option is factory mounted and allows the connection of a DC source directly to the digitizerNETBOX/generatorNETBOX
or hybridNETBOX.

(c) Spectrum Instrumentation GmbH 17

Introduction Different models of the DN6.22x series

Different models of the DN6.22x series

The following overview shows the different available models of the DN6.22x series. They differ in the number of internally mounted digitizer
modules and the number of available channels.

* DN6.221-12
¢ DN6.225-12
c0co0oo0o
* DN6.221-16
* DN6.225-16
" @" SPECTRUM
c0co0oo0o
DNé6.221-20
DN6.225-20
coco0oco0oo0
DN6.221-24
* DN6.225-24

Additional options for DN6 products

19 Rack Mount Kit

The rack mount kit allows to mount the
digitizerNETBOX/generatorNETBOX into a standard 19“ rack.

The device then requires three height units within the 19" rack.

Multiple digitizerNETBOX/generatorNETBOX products can be mount-

ed one on top of the other.
P Image 3: 19" NETBOX DN6 with installed 19" mounting handles

(c) Spectrum Instrumentation GmbH 18

Introduction AC Cable Options

AC Cable Options

The system is delivered with a connection cable meeting your countries power connection. Other power cables can be ordered separately
to connect your products with your local power connection system. A comprehensive list of all world-wide power plugs in use can be found
on the [EC (Interbational Electrotechnical Commission) website: http://www.iec.ch/worldplugs/

The following power cable options are available from Spectrum:

001: Universal Type for IEC Plug Type E and Type F
The power cable is suitable for Continental Europe, Korea and others.

Cab-Pwr-001: 180 cm cable to CEE 7/VII

002: IEC Plug Type B
The power cable complies to standards UL 62 and UL 1581 and is suitable for US, Canada, Taiwan and others.

Cab-Pwr-002: 180 cm cable for NEMA5-15P

003: IEC Plug Type G
The power cable is suitable for United Kingdom, Ireland, Hong Kong, Saudi Arabia and others.

Cab-Pwr-003: 180 cm cable to BS 1363A

004: IEC Plug Type J
The power cable is suitable for Switzerland and others.

Cab-Pwr-004: 180 cm cable for SEV type 12

005: IEC Plug Type |
The power cable is suitable for Mainland China, Australia, New Zealand, Argentina and others.

Cab-Pwr-005: 180 cm cable for AS 3112

006: IEC Plug Type M
The power cable is suitable for India, Singapore, South Africa and others.

Cab-Pwr-006: 180 cm cable for IEC 83-B

007: IEC Plug Type K
The power cable is suitable for Denmark and others.

Cab-Pwr-007: 180 cm cable for SR 107-2-D

008: IEC Plug Type H
The power cable is suitable for Israel.

Cab-Pwr-008: 180 cm cable for SI 32

009: IEC Plug Type B
The power cable complies to standard JIS C3306 and is suitable for Japan.

Cab-Pwr-009: 180 cm cable for NEMAS5-15P

010: IEC Plug Type L
The power cable is suitable for Italy, Chile and others.

Cab-Pwr-010: 180 cm cable for CEl 23-16

AnAGCGEEKIDAE

(c) Spectrum Instrumentation GmbH 19

Introduction The Spectrum type plate

The Spectrum type plate

N

y

=

DN2.496-16

~

Mem: 1 GS @[sN: 08085%
Options: (&

Board 1: SN 082256)| Board 2: SN 8226 @
Version: 1 @®| Prod. week: 18/2013©
MAC address: 00-03-2D-1E-8C-55 2

Image 4: Spectrum type plate with all information found there

A

The Spectrum type plate, which consists of the following components, can be found on the back of all netbox products. Please check whether
the printed information is the same as the information on your delivery note. All this information can also be read out by software:

®

O @ © ® ©© ®©

@

9

The digitizerNETBOX/generatorNETBOX type, consisting of the abbreviation for the digitizerNETBOX/generatorNETBOX chassis
type (DN2 in this example), the model type (496 in this example) and the number of channels (16 in this example)

The MAC address of the device. The MAX address is fixed and cannot be changed by the user. To check the MAC address by
software one can use the integrated web pages of the digitizerNETBOX/generatorNETBOX.

The installed complete data acquisition memory of the digitizerNETBOX/generatorNETBOX. As in our example there are two infer-
nal digitizer/generator modules installed the memory is shared between them. Each internal digitizer/generator module has

512 MSamples installed.

The serial number of the digitizerNETBOX/generatorNETBOX itself. This is the serial number also found on the delivery note.

Installed options of the digitizerNETBOX/generatorNETBOX.

The serial number of the first internal digitizer/generator module.

The serial number of the second internal digitizer/generator module.

The hardware version of the digitizerNETBOX/generatorNETBOX. The hardware and firmware versions of the installed

digitizer/generator modules are found using the Spectrum Control Center.

The date of production of the digitizerNETBOX/generatorNETBOX consisting of the calendar week and the year.

Please always supply us with the above information, especially the serial number in case of support request. That
allows us to answer your questions as soon as possible. Thank you.

(c) Spectrum Instrumentation GmbH 20

Introduction

Hardware information

Hardware information

Block diagram of digitizerNETBOX DN2.22x and DN6.22x:

CHO
CH1

CH2
CH3

o000

Clock In

Clock Out

Trig 0 In

Trig 1 In

X0 I/0
X11/0

0O00 0000

X21/0

CH ...

CH ...
CH

0000

CH Max

Oo: Analog Control gtcﬁrrglpress Embedded
O— Memory (R:enIOtﬁ O Ethernet
o— ontroller
Sync Embedded
Web Server
o— | r— 1 ——n
- : =
[T |: AN
O—[xi0 5 g A
o : -
'DN6 g
_______________________ - |8
OO: Analog Control = Internal
PCI E:
“ Memory ‘ Xpress
O_
Power
Sy r SHpplK ——O Power

Image 5: block diagram of internal digitizerNETBOX structure showing the auxiliary signal wiring

® The number of maximum channels and internal digitizer modules and existance of a synchronization Star-Hub is model dependent.
e The internal module to which the auxiliary I/O lines are connected is model dependent. Consult ,Internal Digitizer modules” chapter.

Block diagram of a single internal digitizer module:

Card Info
i Calibration Data Memory
] 1l N
| FPGA
cho
ot O (Analog ﬁ“%
@ Of e,) e
s O 7 Trigger Detection
J —
Channel ng Card
Trigger Clock Trigger
cxow @€ 2444 v s A
Clkin P>
=4
Comparators |_ %
g 0 Of> :Ih = Trg syme —>§
e — Y | starHi 5
Tiig Bxt1 (O>—e- I-f-\{- AND/OR (>1 module) e
[fokaH>
xo Of<t>—e{@ma] Digital Out
(o Async /O
xt OQp<t>-4-mal Marker Out
[oah Aux Trigger
x2 Of<tb>—e{ma]

Image 6: block diagram of internal digitizer module

(c) Spectrum Instrumentation GmbH

21

Introduction

Hardware information

DN2 / DN6 Technical Data

Analog Inputs

Resolution

Input Type

ADC Differential non linearity (DNL)
ADC Integral non linearity (INL)
ADC Bit Error Rate (BER)

Channel selection

Analog Input impedance

Input Ranges (standard ranges)
Input Ranges (Low Voltage Option)
Programmable Input Offset

Input Coupling

Max DC voltage if AC coupling active

Offset error (full speed)

Gain error (full speed)

Input offset error (full speed)

Offset temperature drift

Gain temperature drift

Crosstalk 20 MHz sine signal (standard ranges)
Crosstalk 20 MHz sine signal (standard ranges)
Crosstalk 100 MHz sine signal (standard ranges)
Crosstalk 100 MHz sine signal (standard ranges)

Over voltage protection (standard ranges)

Over voltage protection (low voltage option)

Calibration

Calibration

Trigger
Available trigger modes
Channel trigger level resolution
Trigger engines

Trigger edge
Trigger delay
Multi, ABA, Gate: re-arming time

Pretrigger at Multi, ABA, Gate, FIFO
Posttrigger

Memory depth

Multiple Recording/ABA segment size
Trigger accuracy (all sources)

Timestamp modes
Data format

Extra data
Size per stamp

External trigger

External trigger impedance
External trigger coupling

External trigger type

External input level

External trigger sensitivity
(minimum required signal swing)
External trigger level

External trigger maximum voltage
External trigger bandwidth DC

ADC only

ADC only

sampling rate 1.25 GS/s
software programmable
fixed

software programmable
software programmable
software programmable
software programmable

after warm-up and calibration
after warm-up and calibration
after warm-up and calibration
after warm-up and calibration
after warm-up and calibration
>+500 mV standard range
=200 mV standard range
>+500 mV standard range
= +200 mV standard range

8 Bit

Single-ended

+0.35 LSB

+0.9 LSB

10-16

1, 2, or 4 (maximum is model dependent)

50 Q

£200 mV, £500 mV, 1V, 2.5 V (programmable input offset at 0%)
+£40 mV, £100 mV, £200 mV, +500 mV (programmable input offset at 0%)
+200% of input range (allowing bi-polar ranges to become uni-polar)
AC/DC

+30V

<0.5% of programmed input range
<1% of input signal

<2.5% of programmed input offset
typical 5 ppm/°K

typical 45 ppm/°K

<-96 dB (all channel same input range)
< -88 dB (all channel same input range)
<-78 dB (all channel same input range)
< -65 dB (all channel same input range)

input range +200mV [£500 mV | =1V +2.5V
max. continuous input power 22.5dBm |27.0dBm |27.0 dBm | 27.0 dBm
max. peak input voltage +3V 7.5V =15V +30V
input range +40 mV £100mV | £200 mV | £500 mV
max. continuous input power 21.0dBm |27.0 dBm |22.5dBm | 27.0 dBm
max. peak input voltage +2.5V +6.25V [+£3V +7.5V

Internal

External

software programmable
software programmable

software programmable
software programmable

1.25 GS/s or below
2.5GS/s
5GS/s

software programmable
software programmable
software programmable
software programmable

software programmable

software programmable

software programmable

software programmable

software programmable

50Q
1kQ

Self-calibration is done on software command and corrects against the on-board

references. Self-calibration should be issued after warm-up time.”

External calibration calibrates the on-board references used in self-calibration. All

calibration constants are stored in non-volatile memory.
A yearly external calibration is recommended.

Channel Trigger, External, Software, Window, Re-Arm, Or/And, Delay, PXI (M4x only)

14 bit
1 engine per channel with two individual levels, 2 external triggers

Rising edge, falling edge or both edges
0 to (8GSamples - 32) = 8589934560 Samples in steps of 32 samples

80 samples (+ programmed pretrigger)
160 samples (+ programmed pretrigger)
320 samples (+ programmed pretrigger)

32 up to 8192 Samples in steps of 32

32 up to 16G samples in steps of 32 (defining pretrigger in standard scope mode)
64 up to [installed memory / number of active channels] samples in steps of 32
64 up to [installed memory / 2 / active channels] samples in steps of 32

1 sample

Standard, Startreset, external reference clock on X0 (e.g. PPS from GPS, IRIG-B)
Std., Startreset:

RefClock: 24 bit upper counter (increment with RefClock)

40 bit lower counter (increments with sample clock, reset with RefClock)
none, acquisition of X0/X1/X2 inputs at trigger time, trigger source (for OR trigger)

128 bit = 16 bytes

Ext0 Ext1

50Q /1 kQ 1kQ

AC or DC fixed DC

Window comparator Single level comparator

£10V (1kQ), 2.5V (50 Q), +10V

2.5% of full scale range 2.5% of full scale range = 0.5 V

£10 V in steps of 10 mV £10 V in steps of 10 mV
+30V +30V

DC to 200 MHz

n.a.
DC to 150 MHz DC to 200 MHz

64 bit counter, increments with sample clock (reset manually or on start)

i Only figures that are given with a maximum reading or with a tolerance reading are guaranteed specifications. All other figures are typical characteristics that are given for
5 _ information purposes only. Figures are valid for products stored for at least 2 hours inside the specified operating temperature range, after a 30 minute warm-up, after run-
e ning an on-board calibration and with proper cooled products. All figures have been measured in lab environment with an environmental temperature between 20°C and

25°C and an dltitude of less than 100 m.

(c) Spectrum Instrumentation GmbH

22

Introduction Hardware information

External trigger Ext0 Ext1
External trigger bandwidth AC 50Q 20 kHz to 200 MHz n.a.

Minimum external trigger pulse width > 2 samples > 2 samples

Clock
Clock Modes

Internal clock accuracy
Clock setup range

software programmable internal PLL, external reference clock, Star-Hub sync (M4i only), PXI Reference Clock (M4x only)
<20 ppm

all clock modes and all cards, single or synchronized by star-hub:

maximum sampling clock 5 GS/s or 2.5 GS/s or 1.25 GS/s (depending on type)

divider: maximum sampling rate divided by: 1, 2, 4, 8, 16, ... up to 262144

internal clock only, single cards only, digitizerNETBOX with one internal digitizer only:
maximum sampling clock 4 GS/s or 2 GS/s or 1 GS/s (depending on type)

divider: maximum sampling rate divided by: 1, 2, 4, 8, 16, ... up to 262144

> 10 MHz and < 1.25 GHz

standard mode
Clock setup range

special clock mode

External reference clock range software programmable

External reference clock input impedance 50 Q fixed
External reference clock input coupling AC coupling
External reference clock input edge Rising edge

External reference clock input type Single-ended, sine wave or square wave

0.3 V peak-peak up to 3.0 V peak-peak

1.0 V peak-peak up to 3.0 V peak-peak

+30 V (with max 3.0 V difference between low and high level)
45% to 55%

divider: maximum sampling rate divided by: 1, 2, 4, 8, 16, ... up to 262144
Single-ended, ACcoupled, LVPECL, 750 mVpp (typical)

2.5 GHz / 64 = 39.0625 MHz

Internal clock (standard clock mode only), External reference clock
16 up to (128k - 16) in steps of 16

< 60 ps (typical)

< 130 ps [typical, preliminary)

External reference clock input swing square wave

External reference clock input swing sine wave
External reference clock input max DC voltage
External reference clock input duty cycle requirement
Clock setup granularity when using reference clock
Internal reference clock output type

Internal reference clock output frequency

Star-Hub synchronization clock modes software selectable
ABA mode clock divider for slow clock software programmable
Channel to channel skew on one card

Skew between star-hub synchronized cards

M4i.223x / M4x.223x M4i.222x / M4x.222x M4i.221x / M4x.221x

DN2.223-xx DN2.222-xx DN2.221-xx

DN2.225xx DN6.221xx

DN6.225-xx
ADC Resolution 8 bit 8 bit 8 bit
max sampling clock 5GS/s 2.5GS/s 1.25GS/s
min sampling clock 4.768 kS/s 4.768 kS/s 4.768 kS/s
lower bandwidth limit (DC coupling) 0 Hz 0 Hz 0 Hz
lower bandwidth limit (AC coupling) < 30 kHz < 30 kHz < 30 kHz
-3 dB bandwidth (no filter active), Standard input ranges 1.5 GHz 1.5 GHz 500 MHz-
-3 dB bandwidth (no filter active), small input ranges, ir40m option installed 1.2 GHz 1.2 GHz 500 MHz-
-3 dB bandwidth (BW filter active) ~400 MHz ~400 MHz ~370 MHz

Firmware > V1.14 (since August 2015)

Firmware < V1.14

Data Mode (resulting sample width) software programmable 32 bit mode 16 bit mode 32 bit mode only
Minimum Waveform Length 64 samples 128 samples 64 samples
Minimum Waveform Stepsize 32 samples 64 samples 32 samples
Maximum Waveform Length 1 channel active 64 kSamples 128 kSamples 32 kSamples
Maximum Waveform Length 2 channels active 32 kSamples 64 kSamples 16 kSamples
Maximum Waveform Length 4 or more channels active 16 kSamples 32 kSamples 8 kSamples
Minimum Number of Averages 2 2 4

Maximum Number of Averages 16777216 (16M) 256 16777216 (16M)

Data Output Format fixed 32 bit signed integer 16 bit signed integer 32 bit signed integer

Re-Arming Time between waveforms 1.25 GS/s or below 80 samples (+ programmed pretrigger) 80 samples (+ programmed prefrigger)
Re-Arming Time between waveforms 2.5GS/s 160 samples (+ programmed pretrigger) 160 samples (+ programmed pretrigger)
Re-Arming Time between waveforms 5GS/s 320 samples (+ programmed pretrigger) 320 samples (+ programmed pretrigger)

Re-Arming Time between end of average to start of

next average

Depending on programmed segment length,

max 50 ps

Minimum Waveform Length

Minimum Waveform Stepsize
Maximum Waveform Length
Maximum Waveform Length
Data Output Format

Standard Acquisition
FIFO Acquisition
fixed

64 samples
32 samples

80/160/320 samples as above listed

2 GSamples / channels
2 GSamples
32 bytes statistics summary

Statistics Information Set per Waveform Average, Minimum, Maximum, Position Minimum, Position Maximum, Trigger Timestamp

Re-Arming Time between Segments
Re-Arming Time between Segments
Re-Arming Time between Segments

1.25 GS/s or below
2.5GS/s
5GS/s

80 samples (+ programmed pretfrigger)
160 samples (+ programmed pretrigger)
320 samples (+ programmed pretrigger)

(c) Spectrum Instrumentation GmbH

23

Introduction

Hardware information

Multi Purpose 1/0O lines (front-plate)

Number of multi purpose lines
Input: available signal types
Input: impedance

Input: maximum voltage level
Input: signal levels

Input: bandwith

Output: available signal types
Output: impedance

Output: signal levels

Output: type

Output: drive strength

Output: update rate

Output: update rate

Option M4i.xxxx-PulseGen

Number of internal pulse generators
Number of pulse generator output lines
Time resolution of pulse generator

Programmable output modes
Programmable trigger sources
Programmable trigger gate
Programmable length (frequency)
Programmable width (duty cycle)
Programmable delay

Programmable loops

Output level of digital pulse generators

Connectors

Analog Channels
Clock Input
Clock Output
TrgO Input

Trg1 Input

X0/Trigger Output/Timestamp Reference Clock

X1
X2

Connection Cycles

software programmable

software programmable

14bit or 16 bit ADC resolution
7 bit or 8 bit ADC resolution

programmable direction
programmable direction
programmable direction

three, named X0, X1, X2

Asynchronous Digital-n, Synchronous Digitaln, Timestamp Reference Clock
10kQt0 3.3V

0.5Vto+4.0V

3.3 VIVTTL (low < 0.8 V, High > 2.0 V)

125 MHz

Asynchronous Digital-Out, Trigger Output, Run, Arm, PLL Refclock, System Clock
50 Q

3.3 VVTTL

3.3V LVTTL, TTL compatible for high impedance loads

Capable of driving 50 Q loads, maximum drive strength +48 mA

sampling clock

Current sampling clock < 1.25 GS/s : sampling clock
Current sampling clock > 1.25 GS/s and < 2.50 GS/s : 2 sampling clock
Current sampling clock > 2.50 GS/s and < 5.00 GS/s : V4 sampling clock

4
3 (Existing multi-purpose outputs XO to X2)

Pulse generator’s sampling rate is derived from instrument's sampling rate and value can be read

out. Maximum possible pulse generator update rate is
22xx: 156.25 MS/s (6.4 ns)
23xx: 156.25 MS/s (6.4 ns)
44xx: 125.00 MS/s (8.0 ns)
66xx: 156.25 MS/s (6.4 ns)

Single-shot, multiple repetitions on trigger, gated
Software, Card Trigger, Other Pulse Generator, XIO lines.
None, ARM state, RUN state

2 to 4G samples in steps of 1 (32 bit)

1 to 4G samples in steps of 1 (32 bit)

0 to 4G samples in steps of 1 (32 bit)

0 to 4G samples in steps of 1 (32 bit) - O = infinite
Please see section of multi-purpose 1/O lines

SMA female (one for each single-ended input) CableType: Cab-3mA-xx-xx

SMA female Cable-Type: Cab-3mA-xx-xx
SMA female Cable-Type: Cab-3mA-xx-xx
SMA female Cable-Type: Cab-3mA-xx-xx
SMA female Cable-Type: Cab-3mAxx-xx
SMA female Cable-Type: Cab-3mA-xx-xx
SMA female Cable-Type: Cab-3mA-xx-xx
SMA female Cable-Type: Cab-3mA-xx-xx

All connectors have an expected lifetime as specified below. Please avoid to exceed the specified connection cycles or use connector savers

SMA connector
Power connecctor
LAN connector

Option digitizerNETBOX/generatorNETBOX embedded

500 connection cycles
500 connection cycles
500 connection cycles

server (DN2.xxx-Emb, DN6.xxx-Emb

CPU

System memory

System data storage
Development access
Accessible Hardware
Integrated operating system

Intel Quad Core 2 GHz

4 GByte RAM

Internal 128 GByte SSD

Remote Linux command shell (ssh), no graphical interface (GUI) available
Full access to Spectrum instruments, LAN, front panel LEDs, RAM, SSD
OpenSuse 12.2 with kernel 4.4.7.

Internal PCle connection DN2.20, DN2.46, DN2.47, DN2.49, DN2.59, DN2.60, DN2.65 PCle x1, Gen1
DN6.46, DN6.49, DN6.59, DN6.65, DN2.80, DN2.81
DN2.22, DN2.44, DN2.66 PCle x1, Gen2
DN6.22, DN6.44, DN6.66, DN2.82
(c) Spectrum Instrumentation GmbH 24

Introduction

Hardware information

Ethernet specific details

LAN Connection
LAN Speed
LAN IP address

Sustained Streaming speed

Used TCP/UDP Ports

programmable

Standard RJ45

Auto Sensing: GBit Ethernet, 100BASE-T, 10BASE-T

DHCP (IPv4) with AutolP fall-back (169.254.x.y), fixed IP (IPv4)
DN2.20, DN2.46, DN2.47, DN2.49, DN2.60 up to 70 MByte/s
DN6.46, DN6.49

DN2.59, DN2.65, DN2.22, DN2.44, DN2.66
DN6.59, DN6.65, DN6.22, DN6.44, DN6.66

Webserver: 80 mDNS Daemon: 5353
VISA Discovery Protocol: 111, 9757 UPNP Daemon: 1900
Spectrum Remote Server: 1026, 5025

up to 100 MByte/s

AC Power connection details (default configuration)

Mains AC power supply
AC power supply connector
Power supply cord

Input voltage: 100 to 240 VAC, 50 to 60 Hz
IEC 60320-1-C14 (PC standard coupler)
power cord included for Schuko contact (CEE 7/7)

DC 24 V Power supply details (option DN2.xxxx-DC24)

Input Voltage
Power supply connector
Power supply cord

18Vto 36V
screw terminal
no cord included

Serial connection details (DN2.xxx with hardware > V11)

Serial connection (R$232)

Certification, Compliance, Warranty

For diagnostic purposes only. Do not use, unless being instructed by a Spectrum support agent.

EN 17050-1:2010

2014/30/EU
2014/35/EU
2011/65/EU
2006/1907/EC
2012/19/EU

EN 61010-1: 2010
EN 61187:1994
EN 61326-1:2021
EN 61326-2-1:2021

Conformity Declaration
EU Directives

Compliance Standards

General Requirements
EMC - Electromagnetic Compatibility

LVD - Electrical equipment designed for use within certain voltage limits
RoHS - Restriction of the use of certain hazardous substances in electrical and electronic equipment
REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals
WEEE - Waste from Electrical and Electronic Equipment

Safety regulations for electrical measuring, control, regulating and laboratory devices - Part 1: General requirement
Electrical and electronic measuring equipment - Documentation

Electrical equipment for measurement, control and laboratory use
EMC requirements - Part 1: General requirements

EMC requirements - Part 2-1: Particular requirements - Test configurations, operational conditions and performance cri-
teria for sensitive test and measurement equipment for EMC unprotected applications

ENIEC 63000:2018

ardous substances

Product warranty

Software and firmware updates Lifetime, free of charge

5 years starting with the day of delivery

Dynamic Parameters

M4i.223x, M4x.223x and DN2.223-xx, DN2.225-xx and DN6.225-xx, 8 Bit 5 GS/s
Input Path DC or AC coupled, fixed 50 Ohm
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz
Input Range +200 mV_ +500mV__ +1V +2.5V | +200 mV +1V +200 mV +1V +200 mV +1V +200 mV +1V
THD (typ) (dB <60.2dB <60.3dB <60.3dB <60.3dB| <589dB <58.2dB| <58.8dB <-58.0dB <-54.0 dB <-54.0 dB <-45.0 dB <-46.3 dB
SNR (typ) [dB) >44.5 dB >44.8 dB >44.8 dB >44.5 dB >44.7 dB >44.7 dB >44.3 dB >44.3 dB >42.9 dB >42.9 dB >40.3 dB >40.2 dB
SFDR (typ), excl. harm. (dB) || >53.7dB >54.9d8 >549dB >542dB| >503dB >50.8dB| >50.2dB >497dB| >49.4dB >49.5dB| >443dB >44.6dB
SFDR (typ), incl. harm. (dB) >53.7 dB >54.7 dB >54.8 dB >54.2 dB >50.3 dB >50.8 dB >50.2 dB >49.7 dB >49.4 dB >49.5 dB >44.3 dB >44.6 dB
SINAD/THD+N (typ) (dB) >44.4 dB >44.7 dB >44.7 dB >44.4 dB >44.5 dB >44.4 dB >44.2 dB >44.1 dB >42.6 dB >42.6 dB >39.1dB >39.3dB
ENOB based on SINAD (bit) >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.0 bit >6.8 bit >6.8 bit >6.2 bit >6.2 bit
ENOB based on SNR (bit) >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >6.9 bit >6.9 bit >6.4 bit >6.4 bit
M4i.222x, M4x.222x and DN2.222-xx, 8 Bit 2.5 GS/s
Input Path DC or AC coupled, fixed 50 Ohm
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz
Input Range 200 mV _+500 mV +]V 1—_2.5 V 200 mV =1V 200 mV +1V x_ZOO mV +1V 200 mV +1V
THD (typ) (dB >562dB <563dB <56.5dB <564dB| <559dB <559dB| <54.9dB <553dB <53.9dB <-53.4dB <-43.9 dB <45.2 dB
SNR (typ) (dB) >456d8 >458dB >456dB >455d8 | >447d8 >449dB| >445d8 >446dB| >43.9dB >440dB| >421dB >41.9dB
SFDR (typ), excl. harm. (dB) >57.2 dB >57.3 dB >55.7 dB >55.1dB >50.9 dB >50.5 dB >50.9 dB >50.6 dB >49.8 dB >49.0 dB >46.3 dB >45.2 dB
SFDR (typ), incl. harm. (dB) >565d8 >56.3dB >55.1dB >545dB| >509dB >50.5dB| >50.9dB >50.6dB >49.8 dB >49.0 dB >45.2 dB >45.2 dB
SINAD/THD+N (typ) (dB) >45.2 dB >45.4 dB >45.3 dB >45.2 dB >44.4 dB >44.4 dB >44.2 dB >44.3 dB >43.5 dB >43.5 dB >39.9 dB >40.2 dB
ENOB based on SINAD (bit) >7.2 bit >7.3 bit >7.2 bit >7.2 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >6.9 bit >6.9 bit >6.3 bit >6.4 bit
ENOB based on SNR (bit) >7.3 bit >7.3 bit >7.3 bit >7.3 bit >7.1 bit >7.1 bit >7.1 bit >7.1 bit >7.0 bit >7.0 bit >6.7 bit >6.7 bit
M4i.221x, M4x.221x, DN2.221 and DN6.221-xx, 8 Bit 1.25 GS/s - standard input ranges
Input Path DC or AC coupled, fixed 50 Ohm
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz
Input Ranae 200 mV +500 mV +]V 1—_2.5 \ 200 mV +1V 1—_200 mV +1V x_ZOO mV +1V

Technical documentation for the assessment of electrical and electronic products with respect to the restriction of haz-

(c) Spectrum Instrumentation GmbH

25

Introduction

Hardware information

M4i.221x, M4x.221x, DN2.221 and DN6.221-xx, 8 Bit 1.25 GS/s - standard input ranges

Input Path DC or AC coupled, fixed 50 Ohm

THD (typ) (dB <59.0dB <.58.9dB <58.9dB <59.0dB | <53.6dB <53.2dB | <54.4dB <54.6dB <52.1dB <-52.4 dB

SNR (typ) (dB) >46.9 dB >47.0 dB >47.0 dB >47.0 dB >46.8 dB >47.0 dB >47.0 dB >47.0 dB >46.1 dB >46.2 dB

SFDR (typ), excl. harm. (dB) >62.1dB >62.1dB >62.2 dB >62.0 dB >58.2 dB >59.8 dB >62.2 dB >61.9 dB >59.5dB >58.5 dB

SFDR (typ), incl. harm. (dB) >60.7d8 >604dB >60.5dB >60.4dB| >56.1dB >56.2dB| >57.7dB >57.6dB >52.5 dB >52.7 dB

SINAD/THD+N (typ) (dB) >466dB >467dB >467dB >467dB| »>460dB >46.1dB| »463dB >463dB| >45.1dB >45.3dB

ENOB based on SINAD (bit) >7.5 bit >7.5 bit >7.5 bit >7.5 bit >7.4 bit >7.4 bit >7 .4 bit >7 .4 bit >7.2 bit >7.2 bit

ENOB based on SNR (bit) >7.5 bit >7.5 bit >7.5 bit >7.5 bit >7.5 bit >7.5 bit >7.5 bit >7.5 bit >7.3 bit >7.4 bit
M4i.221x, M4x.221x and DN2.221-xx, 8 Bit 1.25 GS/s - low voltage input ranges

Input Path DC or AC coupled, fixed 50 Ohm

Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz

Input Range 40 mV__+100mV_=+200mV__+500 vV | +40mV__+100mV | +40mV__+100mV | _+40mV___+100 mV

THD (typ) (dB <570dB <57.0dB <57.1dB <.57.2dB

SNR (typ) (dB) >440dB >449dB >44.9dB >44.9dB

SFDR (typ), excl. harm. (dB) || >62.1dB >62.1dB >62.1dB >62.2dB

SFDR (typ), incl. harm. (dB) >60.1dB >60.2dB >60.2dB >60.4 dB

SINAD/THD+N (typ) (dB) >440d8 >448d8 >448d8 >448dB

ENOB based on SINAD (bit) >7.0 bit >7.2 bit >7.2 bit >7.2 bit

ENOB based on SNR (bit) >7.0 bit >7.2 bit >7.2 bit >7.2 bit

Dynamic parameters are measured at +1 V input range (if no other range is stated) and 50Q2 termination with the samplerate specified in the table. Measured parameters are averaged
20 times to get typical values. Test signal is a pure sine wave generated by a signal generator and a matching bandpass filter. Amplitude is >99% of FSR. SNR and RMS noise parameters
may differ depending on the quality of the used PC. SNR = Signal to Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range, SINAD = Signal Noise and Dis-
tortion, ENOB = Effective Number of Bits.

RMS Noise Level (Zero Noise)

M4i.223x, M4x.223x and DN2.223-xx, DN2.225-xx, DN6.225-xx, 8 Bit 5 GS/s

Input Range +200 mV +500 mV +1 2.5V
Voltage resolution (1 LSB) 1.6 mV 3.9mV 7.8mV 19.5 mV
DC, fixed 50 L, typical <0.3 156 05 mV <0.3 1B T2 mV <0.3 196 <23 mV <0.3 156 5.0 mV
DC, fixed 50 Q, maximum <0.6 LSB <0.9 mV <0.6 LSB <23 mV <0.5 LSB <4.7 mV <0.5 LSB <11.7mV

M4i.222x, M4x.222x and DN2.222-xx, 8 Bit 2.5 GS/s
Input Range +200 mV +500 mV =1 +2.5V
Voltage resolution (1 LSB) 1.6mV 3.9mV 7.8mV 19.5 mV
DC, fixed 50 Q, typica| <0.3 LSB <0.5 mV <0.3 LSB <1.2mV <0.3 LSB <23 mV <0.3 LSB <59 mV
DC, fixed 50 O, maximum <0.6 LB <0.9 mV <0.7 1B <27 mv <0.515B <47 mV <0.5 B <7 mv
Standard Version M4i.221x, M4x.221x and DN2.221-xx, 8 Bit 1.25 GS/s
Input Range +200 mV +500 mV +1 2.5V
Voltage resolution (1 LSB) 1.6 mV 3.9mV 7.8mV 19.5 mV
DC, fixed 50 L, typical <0.2 156 <03 mV 0.2 1B 0.8 mV <0.2 156 1o mV <0.2 156 3.0 mV
DC, fixed 50 Q, maximum <0.31SB <0.5mV <0.3 LSB <1.2mV <0.3LSB <2.3mV <0.3 LSB <5.9 mV
Low Voltage Version M4i.221x, M4x.221x and DN2.221-xx, 8 Bit 1.25 GS/s
Input Range +40 mV +100 mV +200 mV +500 mV
Voltage resolution (1 LSB) 0.3mV 0.8 mV 1.6 mV 39mV
DC, fixed 50 (2, fypical <0.4 158 02 mV <0.4 158 <03 mv <04 158 0.6 my <0.4 1SB ST6my
DC, fixed 50 O, maximum <0.5 LB <0.2mV <0.515B <0.4mV <0.5 5B <0.8 mV <0.5 LB <2.0mV

(c) Spectrum Instrumentation GmbH 26

Introduction

Hardware information

DN2 specific Technical Data

Environmental and Physical Details DN2.xxx

Dimension of Chassis without connectors or bumpers L x W x H
Dimension of Chassis with 19" rack mount option LxWxH
Weight (1 internal acquisition/generation module)

Weight (2 internal acquisition/generation modules)

Warm up time

Operating temperature

Storage temperature

Humidity

Dimension of packing (single DN2) Lx W xH
Volume weight of Packing (single DN2)

Power Consumption

366 mm x 267 mm x 87 mm

366 mm x 482.6 mm x 87 mm (2U height)
6.3 kg, with rack mount kit: 6.8 kg

6.7 kg, with rack mount kit 7.2 kg

20 minutes

0°C to 40°C

-10°C to 70°C

10% to 90%

470 mm x 390 mm x 180 mm

7.0kg

230 VAC 12 VDC
(obsolete)

2 channel versions
4 channel versions
8 channel versions

MTBF
MTBF

DN6 specific Technical Data

033A 72W TBD TBD
033A 73W TBD TBD
0.50A 110W |10.8A |130W

100000 hours

Environmental and Physical Details DN6.xxx

Dimension of Chassis without connectors or bumpers L x W x H
Dimension of Chassis with 19" rack mount option LxWxH
Weight (3 internal acquisition/generation modules)

Weight (4 internal acquisition/generation modules)

Weight (5 internal acquisition/generation modules)

Weight (6 internal acquisition/generation modules)

Warm up time

Operating temperature

Storage temperature

464 mm x 431 mm x 131 mm

464 mm x TBD mm x 131 mm (3U height)
12.1 kg, with rack mount kit: 12.7 kg
12.5 kg, with rack mount kit: 13.2 kg
12.9 kg, with rack mount kit: 13.6 kg
13.4 kg, with rack mount kit: 14.0 kg

10 minutes

0°C to 40°C

-10°C to 70°C

Humidity 10% to 90%
Dimension of packing (single DN6) LxWxH 580 mm x 580 mm x 280 mm
Volume weight of Packing (single DN6) 19.0 kg
Power Consumption
230 VAC
12 channel versions TBD TBD
16 channel versions TBD TBD
20 channel versions TBD TBD
24 channel versions 1.09A 247 W

MTBF
MTBF

100000 hours

(c) Spectrum Instrumentation GmbH

27

Introduction

DN2 Order Information

DN2 Order Information

The digitizerNETBOX is equipped with a large internal memory for data storage and supports standard acquisition (Scope), FIFO acquisition

(streaming), Multiple Recording, Gated Sampling, ABA mode and Timestamps. Operating system drivers for Windows/Linux 32 bit and

64 bit, drivers and examples for C/C++, IVI (Scope and Digitizer class), LabVIEW (Windows), MATLAB (Windows and Linux), .NET, Delphi,
Java, Python, Julia and a Professional license of the oscilloscope software SBench 6 are included.

The system is delivered with a connection cable meeting your countries power connection. Additional power connections with other standards
are available as option.

digitizerNETB

X DN2 - Ethernet/LXI Interface

Order no. A/D Bandwidth Bandwidth 1 Channel 2 Channels 4 Channels 8 Channels Installed
Resolution Snﬂrd ir40r2 Option Memory
DN2.221-02 8 Bit 500 MHz 500 MHz 1.25 GS/s 1.25 GS/s 1x4GS
DN2.221-04 8 Bit 500 MHz 500 MHz 1.25GS/s 1.25 GS/s 1.25 GS/s 1x4GS
DN2.221-08 8 Bit 500 MHz 500 MHz 1.25GS/s 1.25 GS/s 1.25GS/s 1.25GS/s 2x 4GS
DN2.222-02 8 Bit 1.5 GHz 1.2 GHz 2.5GS/s 2.5GS/s 1x4GS
DN2.222-04 8 Bit 1.5 GHz 1.2 GHz 2.5GS/s 2.5GS/s 2.5GS/s 2x 4GS
DN2.223-02 8 Bit 1.5 GHz 1.2 GHz 5GS/s 5GS/s 2x4GS
DN2.225-04 8 Bit 1.5 GHz 1.2 GHz 5GS/s 2.5GS/s 1.25GS/s 1x4GS
DN2.225-08 8 Bit 1.5 GHz 1.2 GHz 5GS/s 5GS/s 2.5GS/s 1.25 GS/s 2x4GS
Options
Order no. Option

M4i.22xx-ir40m

Low voltage input range option for 22xx series. 4 Input ranges with +40 mV, 100 mV, £200 mV, +500 mV, bandwidth limited. One option

is required for each internal digitizer module.

Options
Order no. Option
DN2.xxx-Rack 19" rack mounting set for self mounting
DN2.xxx-Emb Extension to Embedded Server: CPU, more memory, SSD. Access via remote Linux secure shell (ssh)

DN2.xxx-DC24
DN2.xxx-BTPWR

24 VDC infernal power supply. Replaces AC power supply. Accepts 18 V to 36 V DC input. Screw terminals
Boot on Power On: the digitizerNETBOX/generatorNETBOX/hybridNETBOX automatically boots if power is switched on.

Firmware Options

Order no.

I Option

DN2.xxx-spavg
DN2.xxx-spstat
Mdi xxxx-PulseGen

Services

Order no. Option
DN2.xxx-Recal

Standard SMA Cables
The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz and 0.5 dB/m at

Signal Processing Firmware Option: Block Average (later installation by firmware - upgrade available)
Signal Processing Firmware Option: Block Statistics/Peak Detect (later installation by firmware - upgrade available)

Firmware Option: adds 4 freely programmable digital pulse generators that use the XIO lines for output (later installation by firmware -

upgrade available)

Recalibration of complete digitizerNETBOX/generatorNETBOX/hybridNETBOX DN2 including calibration protocol

250 MHz. For high speed signals we recommend the low loss cables series CHF.

for Connections

All
All
Probes (short)

Low Loss SMA Cables

Connection
SMA male
SMA male
SMA male

Length
80 cm
200 cm
5cm

to BNC male | to BNC femcile | to SMB femcﬂe | to MMCX mgle | to SMA mcile

Cab-3mA-9m-80 Cab-3mA-9£-80 Cab-3-3mA-80 Cab-1m-3mA-80 Cab-3mA-3mA-80

Cab-3mA9m-200 | Cab-3mA-9£200 Cab-3£3mA-200 Cab-Tm-3mA-200 | Cab-3mA-3mA-200
Cab-3mA9F5

The low loss adapter cables are based on MF141 cables and have an attenuation of 0.3 dB/m at 500 MHz and 0.5 dB/m at 1.5 GHz.
They are recommended for signal frequencies of 200 MHz and above.

Order no.

I Option

CHF-3mA-3mA-200
CHF-3mA-9m-200

Low loss cables SMA male to SMA male 200 cm
Low loss cables SMA male to BNC male 200 cm

(c) Spectrum Instrumentation GmbH

28

Introduction

DNé Order Information

DN6 Order Information

The digitizerNETBOX is equipped with a large internal memory for data storage and supports standard acquisition (Scope), FIFO acquisition

(streaming), Multiple Recording, Gated Sampling, ABA mode and Timestamps. Operating system drivers for Windows/Linux 32 bit and

64 bit, drivers and examples for C/C++, IVI (Scope and Digitizer class), LabVIEW (Windows), MATLAB (Windows and Linux), .NET, Delphi,
Java, Python, Julia and a Professional license of the oscilloscope software SBench 6 are included.

The system is delivered with a connection cable meeting your countries power connection. Additional power connections with other standards
are available as option.

digitizerNETB

X DN6 - Ethernet/LXI Interface

Order no. A/D Resolution Bandwidth Channels @ Scmelins Rate Insta_lled Memory
DN6.221-12 8 Bit 500 MHz 12ch @ 1.25GS/s 3 x4 GS
DN6.221-16 8 Bit 500 MHz 16 ch @ 1.25GS/s 4x4GS
DN6.221-20 8 Bit 500 MHz 20 ch @ 1.25 GS/s 5x4GS
DN6.221-24 8 Bit 500 MHz 24 ch @ 1.25GS/s 6x4GS
DN6.225-12 8 Bit 1.5 GHz 12 ch @ 1.25GS/s 6ch@2.5GS/s 3ch@5GS/s 3x4GS
DN6.225-16 8 Bit 1.5 GHz 16 ch @ 1.25GS/s 8ch@2.5GS/s 4ch@5GS/s 4x4GS
DN6.225-20 8 Bit 1.5 GHz 20 ch @ 1.25 GS/s 10ch @ 2.5 GS/s 5ch@5GS/s 5x4GS
DN6.225-24 8 Bit 1.5 GHz 24 ch @ 1.25GS/s 12ch@2.5GS/s 6ch@5GS/s 6x4GS
Options
Order no. Option

M4i.22xx-ird0m

Low voltage input range option for 22xx series. 4 Input ranges with +40 mV, £100 mV, +200 mV, £500 mV, bandwidth limited. One option

is required for each internal digitizer module.

Options
Order no. Option
DN6.xxx-Rack 19 rack mounting set for self mounting
DN6.xxx-Emb Extension to Embedded Server: CPU, more memory, SSD. Access via remote Linuxs secure shell (ssh)

DN6.xxx-BTPWR

Boot on Power On: the digitizerNETBOX/generatorNETBOX/hybridNETBOX automatically boots if power is switched on.

Firmware Options

Order no.

O&tion

DN2.xxx-spavg
DN2.xxx-spstat
M4 xxxx-PulseGen

Calibration
Order no.

upgrade available)

I Option

Signal Processing Firmware Option: Block Average (later installation by firmware - upgrade available)
Signal Processing Firmware Option: Block Statistics/Peak Detect (later installation by firmware - upgrade available)

Firmware Option: adds 4 freely programmable digital pulse generators that use the XIO lines for output (later installation by firmware -

DN6.xxx-Recal

Standard SMA Cables

The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz and 0.5 dB/m at
250 MHz. For high speed signals we recommend the low loss cables series CHF.

for Connections

All
All
Probes (short)

Connection Length
SMA male 80 cm
SMA male 200 cm

SMA male 5cm

Low Loss SMA Cables

The low loss adapter cables are based on MF141 cables and have an attenuation of 0.3 dB/m at 500 MHz and 0.5 dB/m at 1.5 GHz.
They are recommended for signal frequencies of 200 MHz and above.

Order no.

I Option

| Recalibration of complete digitizerNETBOX,/generatorNETBOX DN including calibration protocol

to BNC male to BNC female to SMB female | to MMCX male | to SMA m_ole |

Cab-3mA-9m-80 Cab-3mA-9£-80 Cab-3f-3mA-80 Cab-1m-3mA-80 Cab-3mA-3mA-80

Cab-3mA-9m-200 | Cab-3mA-9f-200 Cab-3f-3mA-200 Cab-1m-3mA-200 | Cab-3mA-3mA-200
Cab-3mA-9Ff-5

CHF-3mA-3mA-200
CHF-3mA-9m-200

Low loss cables SMA male to SMA male 200 cm
Low loss cables SMA male to BNC male 200 cm

(c) Spectrum Instrumentation GmbH

29

Hardware Installation Warnings

Hardware Installation

Warnings

ESD Precautions

The digitizerNETBOX, generatorNETBOX or hybridNETBOX products internally contain electronic components that can be damaged by elec-
trostatic discharge (ESD). The grounded chassis itself gives a very good protection against ESD.

Before installing the board in your system or protective conductive packaging, discharge yourself by touching
a grounded bare metal surface or approved anti-static mat before picking up this ESD sensitive product. &

Opening the Chassis

There are no components inside the chassis that need any operating by the user. In contrary there are a lot of components that may be harmed
when not operated properly by a user.

As Spectrum only gives a warranty on the complete instrument, opening the chassis will make you loose the
warranty. f ' E

Cooling Precautions

The high performance digitizers/generators of the digitizerNETBOX/generatorNETBOX/hybridNETBOX operate with components having
very high power consumption. Therefore the devices have sufficient cooling fans.

Make sure that the air inlets and air outlets are free and uncovered and in case of a DN6 ensure that the installed filters at the inlet are cleaned
regularly.

DNZ2 airflow:

Air outlet

Air inlet
(Fan)

Image 7: airflow in DN2 chassis

DNG6 airflow:

Air inlet\

Air outlet
(Fan)

Image 8: airflow in DN6 chassis

Sources of noise

The digitizerNETBOX/generatorNETBOX/hybridNETBOX is using electrical components with very high resolution and high sensitivity. The
signal inputs will acquire your signals with a high quality but will also collect spurious noise signals from various sources - especially if using
the inputs in high impedance mode. To minimize this effect the cabling must be made with care.

Keep away the cables from any sources that may inject noise into the signals like other instruments, crossing
or even worse running in parallel with other cables with high frequency signals on them. If possible use dif- A
ferential signalling to minimize the effects of injected noise.

A standard GND screw on the back of the chassis allows to connect the metal chassis to measurementground ..
to reduce noise based on ground loops and ground level differences. 19

(c) Spectrum Instrumentation GmbH 30

Hardware Installation Installing 19" rack mount option for DN2

Installing 19” rack mount option for DN2

This option has to be ordered separately. It can be ordered together with the digitizerNETBOX/generatorNETBOX/hybridNETBOX at the
time of purchase or it can be ordered later on, if it is becoming necessary to mount the device into a 19 rack. In any case the digitizerNET-
BOX/generatorNETBOX/hybridNETBOX comes pre<configured as a standalone unit, which has then to manually be converted to the rack-
mount configuration by the user.

Step 1
The rack-mount option comes with the required Torx T20 size screw driv-
er to un-mount the default screws holding the bumper feet.

Unscrew these 8 Torx T20 screws with the provided screw driver and
keep them together with the un-mounted bumpers for possible later use
in case the rack-mount option shall be un-mounted again in the future.

Image 9: Un-mounting the bumper feet to prepare for19” rack-mount kit

Step 2

Mount the 19 rack mount extension using the four Phillips-head screws
that are also provided with each rack mount extension. Two screws are
required for each rack mounting bracket.

Care should be taken to not over-tighten the screws.

Image 10: Mounting the 19" rack-mount kit to a DN2 chassis

Installing 19” rack mount option for DN6

Installing the rack mount extension for the DN6 series follows the same
principles as for the DN2 models shown above.

Step 1

Unscrew the existing bumper corner pieces with the provided screw driv-
er and keep them together with the un-mounted bumpers for possible lat-
er use in case the rack-mount option shall be un-mounted again in the
future.

Sa

Step 2

Mount the 19” rack mount extension using the four Phillips-head screws
that are also provided with each rack mount extension. Two screws are
required for each rack mounting bracket. Care should be taken to not

over—tigh’ren the screws. Image 11: Mounting the 19" rack-mount kit to a DN6 chassis

In addition to using the provided rack mount extension for fastening the DN6 device within the 19” rack, the
A user must take additional measures, suitable for the used rack, to provide adequate mechanical support at
the backside of the device.

This support is required for DN6 devices due to their higher weight compared to DN2 devices.

(c) Spectrum Instrumentation GmbH 31

Hardware Installation Setup of digitizerNETBOX/generatorNETBOX

Setup of digitizerNETBOX/generatorNETBOX

Connections
First of all the digitizerNETBOX/generatorNETBOX needs to be connected to both power line and LAN environment:

Power

Connect the power line cable to a matching power source. First connect the cable to the digitizerNETBOX/generatorNETBOX, second con-
nect the cable to the power plug. Please check the technical data section to see the requirements for the power supply.

If using a DC power option please be sure to have the external DC power source switched off while connect-
ing the power lines. Only switch on the power supply after all connections have been done and are checked.

Ethernet

Connect the digitizerNETBOX/generatorNETBOX to either your company LAN or directly to your PC. Please use a standard Cat-5 or better
Ethernet cable for the connection.

Back Side DN2

The right hand picture
shows the back side of
one DN2 device with . : 5
standard AC power sup- : DN2.438-02
ply. The different power = —
supply options are de-
scribed later in this chap-
ter. The picture is taken
from a

digitizerNETBOX hard-
ware revision V11. Older
versions do look different-

ly.

12780

8 < 35/18
0C-C4-7A-83-9F-AE

Please see the table below
for a description of the dif-

ferent marked areas: Image 12: location of connectors and labels on the back-side of a DN2 chassis

Table 4: Connector and label description on back-side of DN2 chassis

Area Name Description
Power Label The label shows the power specification in detail. Please check the listed specification before connecting the power line
Power Connector (AC) Standard three pole power connector. A matching power cable is included in the delivery. Separate power cables for other country standards are
available upon request.
GND Screw This screw is directly connected to Chassis ground and can be used to add a low resistance ground connection fo the system
Type plate The type plate shows exact type, option, serial number, versions and production week. A more detailed description of the type plate is found in a

separate chapter of the manual

Debug Port (DSUB) This port is for debug purposes only. Please only connect a cable when asked by the Spectrum support group. The debug connector is a feature of
hardware revision V11 and is not available on earlier versions

LAN Connection A standard Ethernet port. Please connect the device with your PC/Laptop or company LAN before start

CRICRICRIORIONC]

(c) Spectrum Instrumentation GmbH 32

Hardware Installation

Setup of digitizerNETBOX/generatorNETBOX

Front Panel DN2 digitizerNETBOX/generatorNETBOX

The righthand drawing
gives you an overview on
one digitizerNETBOX
DN2 front panel.
Depending on the version
of the digitizerNETBOX or
generatorNETBOX you
have the area 7 may differ
in terms of number of chan-
nels or grouping of the
channels.

In area 8 a version with
4 BNC connectors is
shown. Other versions with
5 SMA, 6 BNC or 7 SMA

connectors are also availa-

0 00 00 O
© 0 O

1) @23@6)

-digitizerNETBOX

o

Image 13: location of connectors on a frontpanel of a DN2 chassis

ble. Please see the table below for the different connections.

Table 5: Connector and LED description on frontside of DN6 chassis

Area Name Status Description
Power On/Off press while device stopped digitizerNETBOX/generatorNETBOX is started
@ short press while device is running digitizerNETBOX/generatorNETBOX is closing the embedded controller and is going into standby mode
long press while device is running digitizerNETBOX/generatorNETBOX is aborted and is going into standby. Please only use this stop method
if the digitizerNETBOX/generatorNETBOX is not responding
Power LED LED off no power connected to the device
@ LED orange power is connected, device is in standby mode
LED green device has started and is working
LAN LED LED off Only off during boot up, turning to either red or green afterwards. If permanently off, contact support.
@ LED red Error while trying to get a LAN connection
LED green Device is connected to LAN.
LED green flashing Device is connected to LAN. Flashing indicates LAN ID (see webserver)
Connected LED LED off Device is not in use
@ LED green Device is in use by other PC
Arm/Trigger LED off No frigger detected, device is waiting for trigger event, or not armed at all
@ LED green Trigger detected, acquisition is running or already finished
LAN Reset press once Does a reset of the LAN settings to default state. The reset button needs to be pressed for 4 second:s to issue
@ the reset. The reset command is then issued immediately independent of the current run state of the device.
Signal Connections Connect your input signals here. For differential connections use even channels for positive phase and odd
@ channels for negative phase.
Control Connections Trig-A 1/O Trigger A with programmable input or output. This is the main external trigger
(4 BNC connector Trig-B In Trigger B, input only. This trigger is referenced in the manual as TRIG_XIOO
version, for M2i module . .
based products) Clock 1/0 Clock with programmable input or output
TS-Ref In Timestamp Reference Clock Input
Control Connections Clock In External clock input
(5 SMA connector Clock Out External clock output
\ézr:;znérfgéllj\é\g]l]module Trig-A In Trigger A, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
TrigB 1/O Trigger B/Multi Purpose XO with programmable direction. The connection is referenced in the manual as X0
TS_Ref In Timestamp Reference Clock Input
Control Connections Clock In External clock input
(6 BNC connector Trig In Trigger, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
\éeor:éznéfgémiﬂ module X0 Out Multi Purpose X0, output only. Clock output available. The connection is referenced in the manual as X0
X11/0 Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X21/0 Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2
X31/0 Multi Purpose X3 with programmable direction. The connection is referenced in the manual as X3
Control Connections Clock In External clock input
% SMA connector Clock Out External clock output
\ézr:elznérfsé:;\é)l]modde Trig0 In Trigger O, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
Trig1 In Trigger 1, input only. This is the secondary external trigger. This line is reference in the manual as EXT1
X0 1/0 Multi Purpose XO with programmable direction. The connection is referenced in the manual as X0
X11/0 Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X21/0 Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2

(c) Spectrum Instrumentation GmbH 33

Hardware Installation

Setup of digitizerNETBOX/generatorNETBOX

Front Panel DN2 hybridNETBOX DN2.80x and DN2.81x

The righthand drawing
gives you an overview on
one hybridNETBOX DN2
front panel, for versions
that provide BNC connec-
tors.

Depending on the version
of the hybridNETBOX you
have, the areas 7 and 8
may differ in terms of num-
ber of analog channels
and auxiliary 1/0O signals.

OO
© O

& specTRUM

OOQO\OO\QO
OOOO\OO\OO
000000

hybridNETBOX

ngcted Armg(Trig

Image 14: location of connectors on a frontpanel of a DN2 chassis

Table 6: Connector and LED description on front-side of DN2 chassis

Area Name

Status

Description

Power On/Off

@

press while device stopped
short press while device is running
long press while device is running

hybridNETBOX is started
hybridNETBOXis closing the embedded controller and is going into standby mode

hybridNETBOXis aborted and is going into standby. Please only use this stop method if the hybrid NETBOX
is not responding

Power LED LED off no power connected to the device
@ LED orange power is connected, device is in standby mode
LED green device has started and is working
LAN LED LED off Only off during boot up, turning to either red or green afterwards. If permanently off, contact support.
@ LED red Error while trying to get a LAN connection
LED green Device is connected to LAN.

LED green flashing

Device is connected to LAN. Flashing indicates LAN ID (see webserver)

Connected LED LED off Device is not in use
@ LED green Device is in use by other PC
Arm/Trigger LED off No trigger detected, device is waiting for trigger event, or not armed at all
@ LED green Trigger detected, acquisition is running or already finished
@ LAN Reset press once Does a reset of the LAN settings to default state. The reset button needs to be pressed for 4 seconds to issue

the reset. The reset command is then issued immediately independent of the current run state of the device.

Signal and Control
connections of the
generator part

@

-

Output Channels ChO...Ch7
Clock In

Trig In

X0 Out

X11/0

X21/0

X31/0

Provides output signals here.

External clock input

Trigger, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
Multi Purpose X0, output only. Clock output available. The connection is referenced in the manual as X0
Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1

Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2

Multi Purpose X3 with programmable direction. The connection is referenced in the manual as X3

Signal and Control
connections of the
digitizer part

Input Channels ChO...Ch7

Clock In
Trig In
X0 Out

X11/0
X2 1/0
X31/0

Connect your input signals here. For differential connections use even channels for positive phase and odd
channels for negative phase.

External clock input
Trigger, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO

Multi Purpose XO, output only. Clock output available. The connection is referenced in the manual as XO.
This line is not available for the digitizer part on DN2.80x-08 and DN2.81x-08 models.

Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1.
Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2.

Multi Purpose X3 with programmable direction. The connection is referenced in the manual as X3.
This line is not available for the digitizer part on DN2.80x-08 and DN2.81x-08 models.

(c) Spectrum Instrumentation GmbH 34

Hardware Installation

Setup of digitizerNETBOX/generatorNETBOX

Front Panel DN2 hybridNETBOX DN2.82x

The righthand drawing
gives you an overview on
one hybridNETBOX DN2
front panel, for versions
that provide SMA connec-
tors.

Depending on the version
of the hybridNETBOX you
have, the areas 7 and 8
may differ in terms of num-
ber of analog channels
and auxiliary 1/0O signals.

CHO

o o

CH2 cH3

Table 7: location of connectors on a frontpanel of a DN2 chassis

Table 8: Connector and LED description on front-side of DN2 chassis

Area Name Status Description
Power On/Off press while device stopped hybridNETBOX is started
@ short press while device is running hybridNETBOXis closing the embedded controller and is going into standby mode
long press while device is running hybridNETBOXis aborted and is going into standby. Please only use this stop method if the hybridNETBOX
is not responding
Power LED LED off no power connected to the device
@ LED orange power is connected, device is in standby mode
LED green device has started and is working
LAN LED LED off Only off during boot up, turning to either red or green afterwards. If permanently off, contact support.
@ LED red Error while trying to get a LAN connection
LED green Device is connected to LAN.

LED green flashing

Device is connected to LAN. Flashing indicates LAN ID (see webserver)

Connected LED LED off Device is not in use
@ LED green Device is in use by other PC
Arm/Trigger LED off No trigger detected, device is waiting for trigger event, or not armed at all
@ LED green Trigger detected, acquisition is running or already finished
@ LAN Reset press once Does a reset of the LAN settings to default state. The reset button needs to be pressed for 4 seconds to issue

the reset. The reset command is then issued immediately independent of the current run state of the device.

Signal and Control
connections of the
generator part

®

Output Channels ChO...Ch3
Clock In

Clock Out

Trig0 In

Trig1 In

X01/0

X11/0

X21/0

Provides output signals here.

External clock input

External clock output

Trigger O, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
Trigger 1, input only. This is the secondary external trigger. This line is reference in the manual as EXT1
Multi Purpose XO with programmable direction. The connection is referenced in the manual as X0

Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1

Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2

Signal and Control
connections of the
digitizer part

Input Channels ChO...Ch3
Clock In

Clock Out

Trig0 In

Trig1 In

X01/0

X11/0

X21/0

Connect your input signals here.

External clock input

External clock output

Trigger O, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
Trigger 1, input only. This is the secondary external trigger. This line is reference in the manual as EXT1
Multi Purpose XO with programmable direction. The connection is referenced in the manual as X0

Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1

Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2

(c) Spectrum Instrumentation GmbH 35

Hardware Installation

Setup of digitizerNETBOX/generatorNETBOX

Front Panel DN6 digitizerNETBOX or generatorNETBOX

The righthand drawing
gives you an overview on
one digitizerNETBOX
DN6 front panel.
Depending on the version
of the digitizerNETBOX
or generatorNETBOX
you have, the area 7 may
differ in terms of number
of channels or grouping
of the channels.

In area 8 a version with
4 BNC connectors is
shown. Other versions
with 5 SMA, 6 BNC or
7 SMA connectors are
also available. Please

see the table below for the different connections.

Table 9: Connector and LED description on front-side of DNé chassis

Image 15: location of connectors on a frontpanel of a DNé chassis

Area Name Status Description
Power On/Off press while device stopped digitizerNETBOX/generatorNETBOX is started
@ short press while device is running digitizerNETBOX/generatorNETBOX is closing the embedded controller and is going into standby mode
long press while device is running digitizerNETBOX/generatorNETBOX is aborted and is going into standby. Please only use this stop method
if the digitizerNETBOX/generatorNETBOX is not responding
Power LED LED off no power connected fo the device
@ LED orange power is connected, device is in standby mode
LED green device has started and is working
LAN LED LED off Only off during boot up, turning to either red or green afterwards. If permanently off, contact support.
@ LED red Error while trying to get a LAN connection.
LED green Device is connected to LAN.

LED green flashing

Device is connected to LAN. Flashing indicates LAN ID (see webserver).

Connected LED LED off Device is not in use
@ LED green Device is in use by other PC
Arm/Trigger LED off No trigger detected, device is waiting for trigger event, or not armed at all
@ LED green Trigger detected, acquisition is running or already finished
LAN Reset press once Does a reset of the LAN settings to default state. The reset button needs to be pressed for 4 second:s to issue
@ the reset. The reset command is then issued immediatley independent of the current run state of the device.
Signal Connections Connect your input signals here. For differential connections use even channels for positive phase and odd
@ channels for negative phase.
Control Connections Trig-A 1/O Trigger A with programmable input or output. This is the main external trigger
(4 BNC connector Trig-B In Trigger B, input only. This trigger is referenced in the manual as TRIG_XIOO
version, for M2i module Clock /0 Clock with ble inout tout
based products) loc ock with programmable input or outpu
TSRef In Timestamp Reference Clock Input
Control Connections Clock In External clock input
(6 BNC ?0”':‘/\92‘5'” aul Trig In Trigger, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
\ézrsselcén[;rgcrzluctsﬁ Mo %0 Out Multi Purpose X0, output only. Clock output available. The connection is referenced in the manual as X0
X11/0 Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X21/0 Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2
X31/0 Multi Purpose X3 with programmable direction. The connection is referenced in the manual as X3
Control Connections Clock In External clock input
% SMA ?°”;\‘;:"°’ ol Clock Out External clock output
\ézrsselzn[;rséluctsll moduie Trig0 In Trigger O, input only. This is the main external trigger. The trigger line is reference in the manual as EXTO
Trig1 In Trigger 1, input only. This is the secondary external trigger. This line is reference in the manual as EXT1
X01/0 Multi Purpose XO with programmable direction. The connection is referenced in the manual as X0
X11/0 Multi Purpose X1 with programmable direction. The connection is referenced in the manual as X1
X21/0 Multi Purpose X2 with programmable direction. The connection is referenced in the manual as X2

Ethernet Default Settings
The digitizerNETBOX/generatorNETBOX/hybridNETBOX is started with the following Ethernet configuration:

Setting
DHCP

Auto IP
Host Name

Default Setup
enabled
enabled
Default hostname as netbox type + serial number

Example: DN2_465-08_sn8085

(c) Spectrum Instrumentation GmbH 36

Hardware Installation Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX

Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX

Before accessing the digitizerNETBOX/generatorNETBOX/hybridNETBOX one has to determine the IP address of the device. Normally that
can be done using one of the two methods described below:

Discovery Function

The digitizerNETBOX/generatorNETBOX/hybridNETBOX responds to the VISA described Discovery function. The next chapter will show
how to install and use the Spectrum control center to execute the discovery function and to find the Spectrum hardware. As the discovery
function is a standard feature of all LXI devices there are other software packages that can find the device using the discovery function:

Spectrum control center (limited to Spectrum remote products)

free LXI System Discovery Tool from the LXI consortium (www.Ixistandard.org)
Measurement and Automation Explorer from National Instruments (NI MAX)
Keysight Connection Expert from Keysight Technologies

Additionally the discovery procedure can also be started from ones own specific application:

#define TIMEOUT_DISCOVERY 5000 // timeout value in ms
const uint32 dwMaxNumRemoteCards = 50;

char* pszVisa[dwMaxNumRemoteCards]
char* pszIdn[dwMaxNumRemoteCards]

= { NULL };
= { NULL };
const uint32 dwMaxIdnStringLen

const uint32 dwMaxVisaStringLen

2i56};
50;
// allocate memory for string list
for (uint32 i1 = 0; 1 < dwMaxNumRemoteCards; i++)
{
pszVisa[i] = new char [dwMaxVisaStringLen];
pszIdn[i] = new char [dwMaxIdnStringLen];
memset (pszVisa[i], 0, dwMaxVisaStringLen) ;
memset (pszIdn[i], 0, dwMaxIdnStringLen) ;
}

// first make discovery - check if there are any LXI compatible remote devices
dwError = spcm _dwDiscovery ((char**)pszVisa, dwMaxNumRemoteCards, dwMaxVisaStringLen, TIMEOUT DISCOVERY) ;

// second: check from which manufacturer the devices are
spcm_dwSendIDNRequest ((char**)pszIdn, dwMaxNumRemoteCards, dwMaxIdnStringLen) ;

// Use the VISA strings of these devices with Spectrum as manufacturer
// for accessing remote devices without previous knowledge of their IP address

Finding the digitizerNETBOX/generatorNETBOX/hybridNETBOX in the network

As the digitizerNETBOX/generatorNETBOX/hybridNETBOX is a standard network device it has its own IP address and host name and can
be found in the computer network. The standard host name consist of the model type and the serial number of the device. The serial number
is also found on the type plate on the back of the digitizerNETBOX/generatorNETBOX/hybridNETBOX chassis.

As default DHCP (IPv4) will be used and an IP address will be automatically set. In case no DHCP server is found, an IP will be obtained
using the AutolP feature. This will lead to an IPv4 address of 169.254.x.y (with x and y being assigned to a free IP in the network) using a
subnet mask of 255.255.0.0.

The default IP setup can also be restored, by using the ,LAN Reset” button on the device.

If a fixed IP address should be used instead, the parameters need to be set according to the current LAN requirements.

(c) Spectrum Instrumentation GmbH 37

Hardware Installation

Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX

Windows 7, Windows 8, Windows 10

and Windows 11

Under Windows 7, Windows 8, Windows 10
and Windows 11 the digitizerNETBOX, genera-
torNETBOX and hybridNETBOX devices are list-
ed under the ,other devices” tree with their given
host name.

A right click on the digitizerNETBOX or
generatorNETBOX device opens the properties
window where you find further information on the
device including the IP address.

From here it is possible to go the website of the

device where all necessary information are found
to access the device from software.

Troubleshooting

[=1==]
@Qvl‘l‘? » Network » ~ [44 |[Search tetwork 2|
Organize ¥ Networkand Sharing Center Add aprinter Add a wireless device e 0O @
't Favorites
B Desktop - _ DN2_465-08_sn080S Properti =]
SPECTRUM-PC R < R
J8 Downloads .
] Recent Places Nebrosk Dvice
‘L SRY-DCOL 7
= DN2_465-08_sn08085
= Libraries s ~ - ="
=] Documents 2 ' Device Details
o Music ‘L SRV-MAILOL
. s Manufacturer:
& Pictures w spectrum-instrumentation. com
B videos P |
SRV-SRCOL Mode!:
e
% Computer
= Model number:
&, Local Disk (C:) ‘L SRY-TS02
e—

58 Tmp (\SRV-NAS0L)

€l Network

—

4 Other Devices (3)

-
N
-

DN2_465-08_sn08085

5MC0025802CDC40

4 Printers (1)

.

NPILF42B3 (HP Laserlet
=

- ‘ DN2_465-08_sn08085

Categories: Other Devi
Network location: spectrum.local

Device webpage:

Troubleshoating Information

Serial number: 8085

MAC address: 00:03:2d:2Lizeae
Unique identifier:

IP address: 192.168.169.14

uuid:c470bBb3-64fa-4eec-99f3-05f3380695ba

=3

If the above methods do not work please try one of the following steps:

Image 16: Windows screenshot: finding a remote Spectrum device like digitizerNETBOX

e Ask your network administrator for the IP address of the digitizerNETBOX/generatorNETBOX and access it directly over the IP address.
e Check your local firewall whether it allows access to the device and whether it allows to access the ports listed in the technical data sec-

tion.

¢ Check with your network administrator whether the subnet, the device and the ports that are listed in the technical data section are acces-
sible from your system due to company security settings.

(c) Spectrum Instrumentation GmbH

38

Software Driver Installation Required Software for operation

Software Driver Installation

Before using the digitizerNETBOX/generatorNETBOX/hybridNETBOX a software package and the appropriate APl drivers must be installed
that matches the operating system. The installation is done in different ways depending on the used operating system. The driver that is on
USB-Stick supports all products of the digitizerNETBOX/generatorNETBOX/hybridNETBOX family as well as all cards of the
M2i/M3i/M4i/M4x/M2p series. That means that you can use the same driver for all products of these families.

Required Software for operation

The digitizerNETBOX/generatorNETBOX/hybridNETBOX comes fully installed and ready to start. However to operate the device from the
client PC there need to be some software packages to be installed there:

Spectrum driver API
The Spectrum APl is installed automatically under Windows when installing the Card Control Center. Under Linux it is necessary to install the
matching driver APl for your Linux client system before installing the Card Control Center.

Spectrum Card Control Center

This software is the maintenance tool for all Spectrum products. In here the digitizerNETBOX/generatorNETBOX/hybridNETBOX can be
searched inside the LAN (Discovery function), all hardware information is found, updates and product tests can be done. The Card Control
Center and all of its functions are explained in greater detail later on in this manual.

The card control center is available for Windows and Linux, both 32 bit and 64 bit (Windows 32 bit version also runs on WOW64)

SBench 6

SBench 6 allows to operate the device in all hardware modes, displays data, streams to hard disk and allows to make calculations and
exports. The digitizerNETBOX/generatorNETBOX/hybridNETBOX is equipped with a full SBench 6 Professional license. Even if you want to
operate the device from your self written software it is recommended that you install SBench é to do first hardware tests and to validate your
own software results with the software from the hardware manufacturer. For SBench 6 a dedicated manual is installed with the software pack-
age.

SBench 6 is available for Windows and Linux, both 32 bit and 64 bit (Windows 32 bit version also runs on WOW64)
Examples and Drivers

If you intend to control the device with a self written program, be it IVl based, C++, C#, LabVIEW, MATLAB or something else, it is necessary
to install the matching drivers and examples for the platform you want to run.

Location

The needed software for operating the digitizerNETBOX/generatorNETBOX/hybridNETBOX can be found on three different locations. Please
choose the one most convenient for you.

Install software packages from USB-Stick
The USB-Stick that is delivered together with the digitizerNETBOX/generatorNETBOX/hybridNETBOX contains the complete software and
documentation package that is available for your device. You find the software packages at the following locations on the USB-Stick:

Software Package Operating System Location

Card Control Center Windows \Instal\Win

SBench 6 Windows \Instal\Win

LabVIEW, MATLAB, VI Windows \Instal \Win

C++, C#, VB.NET, Delphi, Python, Java, LabWindows/CVI... Windows \Examples\...

Driver API Linux /Driver/linux/install_libonly.sh
Card Control Center Linux /Install/linux/SBenché

SBench 6 Linux /Install/linux/spcm_control_center
MATLAB (64bit only) Linux /Install/linux

C++, Python, Java Linux /Examples/...

Install software packages from the internet
All software packages are found on the download section under www.spectrum-instrumentation.com

Inhere the latest versions and updates are available.

Install software packages from the digitizerNETBOX/generatorNETBOX/hybridNETBOX

For easy installation or for installation on machines that don’t have access to a USB thumb drive, all software packages are also available
for download directly from the digitizerNETBOX/generatorNETBOX/hybridNETBOX itself.

Please go to the download page of the integrated webserver and download and execute the software packages.

(c) Spectrum Instrumentation GmbH 39

Software Driver Installation Windows

Windows

Please install the package (installer exe-file) you want to use from one of the above mentioned locations. The Windows driver library is auto-
matically installed with all Windows software packages. For own programming it is recommended to install the Control Center and the Ex-
amples.

Linux

Overview

The Spectrum M2i/M3i/M4i/M4x/M2p/M5i cards and digitizerNETBOX/generatorNETBOX or
hybridNETBOX products are delivered with Linux drivers suitable for Linux installations based on kernel 2.6,
3.x, 4.x or 5.x, single processor (non-SMP) and SMP systems, 32 bit and 64 bit systems. As each Linux
distribution contains different kernel versions and different system setup it is in nearly every case necessary,
to have a directly matching kernel driver for card level products to run it on a specific system.

For digitizerNETBOX/generatorNETBOX or hybridNETBOX products the library is sufficient and no kernel
driver has to be installed.

Spectrum delivers pre-compiled kernel driver modules for a number of common distributions with the cards.
You may try to use one of these kernel modules for different distributions which have a similar kernel version.
Unfortunately this won’t work in most cases as most Linux system refuse to load a driver which is not exactly
matching. In this case it is possible to get the kernel driver sources from Spectrum. Please contact your local
sales representative to get more details on this procedure.

The Standard delivery contains the pre-compiled kernel driver modules for the most popular Linux distributions, like Suse, Debian, Fedora and
Ubuntu. The list with all pre-compiled and readily supported distributions and their respective kernel version can be found under:
https://spectrum-instrumentation.com/support/knowledgebase/software/Supported Linux_Distributions.php or via the shown QR code.

The Linux drivers have been tested with all above mentioned distributions by Spectrum. Each of these distributions has been installed with the
default setup using no kernel updates. A lot more different distributions are used by customers with self compiled kernel driver modules.

Driver Installation with Installation Script

The driver is delivered as installable kernel modules together with libraries to access the kernel driver. The installation script will help you with
the installation of the kernel module and the library.

This installation is only needed if you are operating real locally installed cards. For software emulated demo ..,

cards, remotely installed cards or for digitizerNETBOX/generatorNETBOX/hybridNETBOX products it is only i,@:*
necessary to install the libraries without a kernel as explained further below. |

Login as root
It is necessary to have the root rights for installing a driver.

Call the install.sh <install path> script
This script will try to use the package management of the system to install the kernel module and user-space driver library packages:

e the kernel driver package is called ,spcm” (M2i, M3i) or ,spcm4” (M4i, Mdx, M2p, M5i)
e the driver library package is called ,1ibspcm 1inux”

Udev support
Once the driver is loaded it automatically generates the device nodes under /dev. The cards are automatically named to /dev/spcmo,
/dev/spcml,...

You may use all the standard naming and rules that are available with udev.

Start the driver

The kernel driver should be loaded automatically when the system boots. If you need to load the kernel driver manually use the ,modprobe”
command (as root or using sudo):

For M2i and M3i cards:

modprobe spcm

For M5i, M4i, M4x and M2p cards:

modprobe spcmé

(c) Spectrum Instrumentation GmbH 40

Software Driver Installation Linux

Get first driver info

After the driver has been loaded successfully some information about the installed boards can be found in the matching /proc/ file as shown
below. Some basic information from the on-board EEProm is listed for every card.

For M2i and M3i cards:

cat /proc/spcm_cards

For M5i, M4i, M4x and M2p cards:

cat /proc/spcmé4_cards

Stop the driver

You can unload the kernel driver using the ,modprobe -r* command (as root or using sudo):

For M2i and M3i cards:

modprobe -r spcm

For M5i, M4i, M4x and M2p cards:

modprobe -r spcmé4

Standard Driver Update

A driver update is done with the same commands as shown above. Please make sure that the driver has been stopped before updating it.
To stop the driver you may use the proper “modprobe -r” command as shown above.

Compilation of kernel driver sources (optional and local cards only)

The driver sources are only available for existing customers upon special request. Please send an email to Support@spec.de to receive the
kernel driver sources. The driver sources are not part of the standard delivery. The driver source package contains only the sources of the
kernel module, not the sources of the library.

Please do the following steps for compilation and installation of the kernel driver module:

Login as root
It is necessary to have the root rights for installing a driver.

Call the compile script
The compile script depends on the type of card that you have installed:

e for M2i and M3i cards: make_spcm_linux_kerneldrv.sh
e for M5i, M4i, M4x and M2p cards: make_spcm4_linux_kerneldrv.sh

This script will examine the type of system you use and compile the kernel with the correct settings. The compilation of the kernel driver modules
requires the kernel sources of the running kernel. These are normally available as a package with a name like kernel-devel, kernel-dev, kernel-
source and need to match the running kernel.

The compiled driver module will be copied to the module directory of the kernel (/1ib/modules/$ (uname -r)/kernel/drivers/),
and will be loaded automatically at the next boot. To load or unload the kernel driver module manually use the modprobe command as
explained above in “Start the driver” and “Stop the driver”.

Update of a self compiled kernel driver

If the kernel driver has changed, one simply has to perform the same steps as shown above and recompile the kernel driver module. However
the kernel driver module isn’t changed very often.

Normally an update only needs new libraries. To update the libraries only you can either download the full Linux driver
(spem_linux_drv_v123b4567) and only use the libraries out of this or one downloads the library package which is much smaller and doesn't
contain the pre-compiled kernel driver module (spem_linux_lib_v123b4567).

The update is done with a dedicated script which only updates the library file. This script is present in both driver archives:

sh install libonly.sh

(c) Spectrum Instrumentation GmbH 41

Software Driver Installation Linux

Installing the library only without a kernel (for remote devices)

The kernel driver module only contains the basic hardware functions that are necessary to access locally installed card level products. The
main part of the driver is located inside a dynamically loadable library that is delivered with the driver. This library is available in two different
versions:

® spcm_linux_32bit_stdc++6.50 - supporting libstdc++.50.6 on 32 bit systems
® spcm_linux_64bit_stdc++6.s0 - supporting libstdc++.50.6 on é4 bit systems

The matching version is installed automatically in the “/usr/1ib” or “/usr/1ib64/”or “/usr/1ib/x86 64-linux-gnu” directory
(depending on your Linux distribution) by the kernel driver install script for card level products. The library is renamed for easy access to
libspem_linux.so.

For digitizerNETBOX/generatorNETBOX/hybridNETBOX products and also for evaluating or using only the software simulated demo cards
the library is installed with a separate install script:

sh install libonly.sh

To access the driver library one must include the library in the compilation:

gcc -o test prg -lspcm linux test.cpp

To start programming the cards under Linux please use the standard C/C++ examples which are all running under Linux and Windows.

Installation from Spectrum Repository

The driver library, Spectrum Control Center and SBenché can be easily installed and updated from our online repositories.Adding the repos-
itory to the system and installing software differs depending on the package format used by the Linux distribution.

DEB based distributions (like Debian, Ubuntu and derived distributions

Execute the following commands to get the Spectrum repository key and convert it for local use:

wget http://spectrum-instrumentation.com/dl/repo-key.asc
gpg --dearmor -o repo-key.gpg repo-key.asc
cp repo-key.gpg /etc/apt/spectrum-instrumentation.gpg

To add the repository create a new file /etc/apt/sources.list.d/spectrum-instrumentation.list with this content. Please note that there is a man-

datory blank between URL and “./":

deb [signed-by=/etc/apt/spectrum-instrumentation.gpg] http://spectrum-instrumentation.com/dl/ ./

Alternatively this line can be added to /etc/apt/sources.list

Then run

sudo apt update

to update the repository information.

To install the software (e.g. SBenché) run

sudo apt install sbenché6

An overview of DEB based distributions can be found here: https://en.wikipedia.org/wiki/Category:Debian-based_distributions

RPM based distributions
On distributions using Zypper (such as openSUSE, SLES, ...) to add the repository run:

sudo zypper ar --repo http://spectrum-instrumentation.com/dl/spectrum instrumentation.repo

The repository information will be updated automatically.

To install the software (e.g. SBenché) run

sudo zypper install SBenché6

(c) Spectrum Instrumentation GmbH 42

Software Driver Installation Linux

On distributions using DNF (such as Fedora, CentOS Stream, RHEL, ...) to add the repository run

sudo dnf config-manager --add-repo http://spectrum-instrumentation.com/dl/spectrum instrumentation.repo

The repository information will be updated automatically.

To install the software (e.g. SBenché) run

sudo dnf install SBenché6

An overview of RPM based distributions can be found here: https://en.wikipedia.org/wiki/Category:RPM-based_Linux_distributions

Control Center

The Spectrum Control Center is also available for Linux and needs to be installed sep-
arately. The features of the Control Center are described in a later chapter in deeper [& R e N e

detail. The Control Center has been tested under all Linux distributions for which Spec- ot [——— b
trum delivers pre-compiled kernel modules. The following packages need to be in- S e I
stalled to run the Control Center: v-Remore i e
v~ DN2.465-08 sn 01234
HW Version 7
L] X-Server FW Version 40
° Production Date Week 1 of 2013
e)(F>Ot >~ Installed Netbox Featur... 00000004
] Freefype Custom 0 Updates
° Fonfconflg andle name [1]::192.168.169.20::inst0:...
° ||bpng on-board Memory 1024 MByte
. S ling Rate 3.00 MS/:
e libspcm_linux (the Spectrum Linux driver library) A,
Quarz 2 not installed
) Calibration
Production Date Week 42 of 2012
> Installed Card Featu... 0000818b Calibration

Installed Extended ... none (0)

VersionBase Card 91.24 Tests and Manitoring

Modules 2
Channels 8 Transfer Speed Test
2 ExtTrig O Features 00000017 Memory Test
? Ext Clock 0 Features 00000017
0 ? Timestamp Features 00011707 Identification
Use the supplied packages in either *.deb or *.rpm format found in the driver section LT
oftware License
of the USB stick by double clicking the package file root rights from a X-Windows win- L erysicatocaion Mo e
doW' P 192.168.169.20 Netbox Discovery

VISA TCPIP[1)::192.168.169.20zinst0:..
Add Netbox manually

The Control Center is installed under KDE, Gnome or Unity in the system/system tools
section. It may be located directly in this menu or under a ,More Programs” menu. The
final location depends on the used Linux distribution. The program itself is installed as
/usr/bin/spcmcontrol and may be started directly from here. qui

1

Image 17: Device Manager showing a new Spectrum card

Manual Installation
To manually install the Control Center, first extract the files from the rpm matching your distribution:

rpm2cpio spcmcontrol-{Version}.rpm > ~/spcmcontrol-{Version}.cpio
cd ~/
cpio -id < spcmcontrol-{Version}.cpio

You get the directory structure and the files contained in the rpm package. Copy the binary spcmcontrol to /usr/bin. Copy the .desktop
file to /usr/share/applications. Run Idconfig to update your systems library cache. Finally you can run spemcontrol.

Troubleshooting
If you get a message like the following after starting spcmcontrol:

spcm_control: error while loading shared libraries: libz.so.l: cannot open shared object file: No such file
or directory

(c) Spectrum Instrumentation GmbH 43

Software Driver Installation Linux

Run Idd spcm_control in the directory where spcm_control resides to see the dependencies of the program. The output may look like this:

libXext.so.6 => /usr/X11R6/1ib/libXext.so.6 (0x4019e000)
1ibX11l.s0.6 => /usr/X11R6/1ib/1ibX11.s0.6 (0x401ad000)
libz.so.l => not found

libdl.so.2 => /lib/libdl.so.2 (0x402ba000)
libpthread.so.0 => /lib/tls/libpthread.so.0 (0x402be000)
libstdc++.s0.6 => /usr/lib/libstdc++.s0.6 (0x402d0000)

As seen in the output, one of the libraries isn’t found inside the library cache of the system. Be sure that this library has been properly installed.
You may then run Idconfig. If this still doesn’t help please add the library path to /etc/1d.so.conf and run ldconfig again.

If the libspcm_linux.so is quoted as missing please make sure that you have installed the card driver properly before. If any other library is
stated as missing please install the matching package of your distribution.

(c) Spectrum Instrumentation GmbH 44

Software Software Overview

Software

This chapter gives you an overview about the structure of the drivers and the software, where to find and how fo use the examples. It shows
in detail, how the drivers are included using different programming languages and deals with the differences when calling the driver functions
from them.

This manual only shows the use of the standard driver APL. For further information on programming drivers f

for third-party software like LabVIEW, MATLAB, IVI or SCAPP an additional manual is required that is avail-
able on the USB stick or by download from our homepage.

Software Overview

Text based Languages 3rd Party Measurement SW
Visual| C++ | Gnu | .NET based : ; SBench 6 LabVIEW | MATLAB | VI
c++ |Builder | cic++| c# vB.NET | Julia [Python| Delphi | Java Driver Driver |Driver

R

Common Library (DLL) with a common interface on all supported platforms

— Windows 32 Bit Windows 64 Bit Linux

etwork Interface Kernel Driver Kernel Driver Kernel Driver
NETBOX By .. SEwindowsTo || Fedora
NETBOX || M5y ~ @ Windows8 gg . . S e o
NETBOX Wi mm Windows 11 ebian B Ubuntu

Remote Devices Windows 32 Bit Windows 64 Bit Linux 32/64 Bit

Image 18: Spectrum Kernel Driver, API Library and Software structure

The Spectrum drivers offer you a common and fast API for using all of the board hardware features. This APl is the same on all supported
operating systems. Based on this APl one can write own programs using any programming language that can access the driver API. This
manual describes in detail the driver API, providing you with the necessary information to write your own programs.

The drivers for third-party products like LabVIEW or MATLAB, IVl or SCAPP are also based on this API. The special functionality of these

drivers is not subject of this document and is described with separate manuals available on the USB stick or on the website.

Card Control Center

§8) Spectrum Control Center 141 Setup e

A special Card Control Center is available on the USB stick and from the internet for
all Spectrum M2i/M3i/M4i/M4x/M2p/M5i cards and for all digitizerNETBOX,
generatorNETBOX or hybridNETBOX products. Windows users find the Control
Center installer on the USB stick under ,Install\win\spcmcontrol_install.exe”.

Welcome to the Spectrum Control
Center 1.41 Setup Wizard

ll This wizard will quide you through the installation of
% Spectrum Cantral Center 141,

d Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
j relevant system files without having to reboat your

| computer.

Linux users find the versions for the different stdc++ libraries under /Install/linux/sp- -

cm_control_center/ as RPM packages.)
Click Next to continue.

When using a digitizerNETBOX/generatorNETBOX/hybridNETBOX the Card Con- i

trol Center installers for Windows and Linux are also directly available from the in-
tegrated webserver.

The Control Center under Windows and Linux is available as an executive program. o |
Under Windows it is also linked as a system control and can be accessed directly
from the Windows control panel. Under Linux it is also available from the KDE Sys Image 19: Spectrum Control Center Installer

tem Settings, the Gnome or Unity Control Center. The different functions of the Spectrum Card Control Center are explained in detail in the
following passages.

~, To install the Spectrum Control Center you will need to be logged in with administrator rights for your oper-

Q‘ ating system. On all Windows versions, starting with Windows Vista, installations with enabled UAC will ask
) you to start the installer with administrative rights (run as administrator).

(c) Spectrum Instrumentation GmbH 45

Software

Card Control Center

Discovery of Remote Cards, digitizerNETBOX/generatorNETBOX/hybridNETBOX products

The Discovery function helps you to find and identify the Spectrum LXI
instruments like digitizerNETBOX, generatorNETBOX or
hybridNETBOX available to your computer on the network. The Dis-
covery function will also locate Spectrum card products handled by
an installed Spectrum Remote Server somewhere on the network. The
function is not needed if you only have locally installed cards.

Please note that only remote products are found that are currently not
used by another program. Therefore in a bigger network the number
of Spectrum products found may vary depending on the current usage
of the products.

Execute the Discovery function by pressing the ,Discovery” button.
There is no progress window shown. After the discovery function has
been executed the remotely found Spectrum products are listed under
the node Remote as separate card level products. Inhere you find all
hardware information as shown in the next topic and also the needed
VISA resource string to access the remote card.

Please note that these information is also stored on your system and
allows Spectrum software like SBench é to access the cards directly
once found with the Discovery function.

After closing the control center and re-opening it the previously found
remote products are shown with the prefix cached, only showing the
card type and the serial number. This is the stored information that al-
lows other Spectrum products to access previously found cards. Using
the ,Update cached cards” button will try to re-open these cards and
gather information of it. Afterwards the remote cards may disappear
if they're in use from somewhere else or the complete information of
the remote products is shown again.

Spectrum Control Center V1.74 (Lib V3.33) (Loglevel 1) [DEV11-WINT64] =
Card | DeviceMapping | Suppart | About/Versians |
Details Information Demo cards
e
MM 223458 sn D00D1 kd Democerd
4 Remote
4 DN2.465-08 sn 01234

HW Version
FW Version
Production Date
Installed Metbox Features
Custom
4 Remote M2i4652-Exp
handle name

Timestamp Features
+ Firmware versions

Module Information
+ Software License

7

40

Week 1 of 2013

00000004

0

sn 00665
TCPIP[0]::192.168.169.20::inst0:INSTR

00011707

on-bosrd Memaory 1024 MByte
max Sampling Rate 300 Ms/s
Quarz1 24,000 MHz Calibration
Quarz2 netinstalled ——
Production Date Week 42 of 2012 [colbraton |

- Installed Card Features 0000818b
Installed Bxtended Card... none (0) Tests and Monitoring
Version Base Card 91.24 T
Madules 2 [[zransfer speed Test |
Channels 3 e
Bxt Trig 0 Festures 00000017

© Bt Clock0 Features 00000017

Identification

Netbox / Remote Server

4 Physical Location [|
P 192,168.169.20 -
VISA TCPIP[0]:192.168.169.20:iinst0:INSTR

Add Netbox manually

I

Quit

Image 20: Spectrum Control Center showing detail card information

Enter IP Address of digitizerNETBOX/generatorNETBOX/hybridNETBOX manually

If for some reason an automatic discovery is not suitable, such as the case where the remote
device is located in a different subnet, it can also be manually accessed by its type and IP ad-

dress.

Netbox type
oNz v |. (203 ~|-|o2 -

1P address

Add Netbox manually | % |[mZs]

Memory Test
Identification
Monitor

Netbox / Remote Server

Netbox Discovery
Add Namnr manually

Quit

Image 21: Spectrum Control Center - entering an IP ad-
dress for a NETBOX

Wake On LAN of digitizerNETBOX/generatorNETBOX/hybridNETBOX

Cached digitizerNETBOX/generatorNETBOX/hybridNETBOX products that are currently in
standby mode can be woken up by using the ,Wake remote device” entry from the context

menu.

Spectrum Control Center V1.74 (Lib V3,33 (Loglevel 1) [DEVI1-

Card | DeviceMapping | Support | About /Versions |

Details

4 Local

Information

The Control Center will broadcast a standard Wake On LAN ,Magic Packet”, that is sent to the

device's MAC address.

It is also possible to use any other Wake On LAN software to wake e.g. a digitizerNETBOX by
sending such a ,Magic Packet” to the MAC address, which must be then entered manually.

It is also possible to wake a remote device from your own application software by using the SP-
C_NETBOX_WAKEONLAN register. To wake a digitizerNETBOX, generatorNETBOX or
hybridNETBOX with the MAC address ,00:03:2d:20:48", the following command can be is-

sued:

> M4i.2234-48
4 Remote
4 192168.169.20
Cached M2i4™"""

sn 00001

Add demo card

Transfer Speed Test

Netbox Discovery
Open Web Interface
Start Netbox Menitor

Wake remote device
Map remote device

Update cached card
Delete cached card

spcm_dwSetParam i64 (NULL, SPC_ NETBOX WAKEONLAN,

0x00032d2048ec) ;

Refresh

Image 22: Spectrum Control Center: wake on LAN
for a cached card

(c) Spectrum Instrumentation GmbH

46

Software Card Control Center

Netbox Monitor

The Netbox Monitor permanently monitors whether the digitizerNETBOX/generatorNETBOX/hybridNETBOX is still available through LAN.
This tool is helpful if e.g. the digitizerNETBOX is located somewhere in the company LAN or located remotely or directly mounted inside
another device. Starting the Netbox Monitor can be done in two different ways:

e Starting manually from the Spectrum Control Center using the context menu as shown above

e Starting from command line. The Netbox Monitor program is automatically installed together with the Spectrum Control Center and is
located in the selected install folder. Using the command line tool one can place a simple script into the autostart folder to have the Net-
box Monitor running automatically after system boot. The command line tool needs the IP address of the

digitizerNETBOX/generatorNETBOX/hybridNETBOX to monitor:

NetboxMonitor 192.168.169.22

The Netbox Monitor is shown as a small window with the type of digitizerNETBOX/generatorNETBOX in the title and the IP ad- .o
dress under which it is accessed in the window itself. The Netbox Monitor runs completely independent of any other software and
can be used in parallel to any application software. The background of the IP address is used to display the current status of the

device. Pressing the Escape key or alt + F4 (Windows) terminates the Netbox Monitor permanently.

After starting the Netbox Monitor it is also displayed as a tray icon under Windows. The tray icon itself shows the

status of the digitizerNETBOX/generatorNETBOX/hybridNETBOX as a color. Please note that the tray icon may N ——
be hidden as a Windows default and need to be set to visible using the Windows tray setup. F3

TV Show Status Messages
Left clicking on the tray icon will hide/show the small Netbox Monitor status window. Right clicking on the tray Open Webinterface |1
icon as shown in the picture on the right will open up a context menu. In here one can again select to hide/show Quit [

the Netbox Monitor status window, one can directly open the web interface from here or quit the program (includ-
ing the tray icon) completely.

Image 23: Netbox Monitor ac-
The checkbox ,Show Status Message” controls whether the tray icon should emerge a status message on status ~ fivation
change. If enabled (which is default) one is notified with a status message if for example the LAN connection to
the digitizerNETBOX/generatorNETBOX/hybridNETBOX is lost.

The status colors:

Green: digitizerNETBOX/generatorNETBOX/hybridNETBOX available and accessible over LAN

Cyan: digitizerNETBOX/generatorNETBOX/hybridNETBOX is used from my computer

Yellow: digitizerNETBOX/generatorNETBOX/hybridNETBOX is used from a different computer

Red: LAN connection failed, digitizerNETBOX/generatorNETBOX/hybridNETBOX is no longer accessible

Device identification

Pressing the Identification button helps to identify a certain device in either a remote location, such as inside

a 19" rack where the back of the device with the type plate is not easily accessible, or a local device installed Netbox D ==

in a certain slot. Pressing the button starts flashing a visible LED on the device, until the dialog is closed, for: "0' The Netbox LAN LED is blinking.

* On a digitizerNETBOX/generatorNETBOX/hybridNETBOX: the LAN LED light on the front plate of the
device

® On local or remote M5i, M4i, M4x or M2p card: the indicator LED on the card’s bracket

This feature is not available for M2i/M3i cards, either local or remote, other than inside a digitizerNETBOX or generatorNETBOX.

(c) Spectrum Instrumentation GmbH 47

Software

Card Control Center

Hardware information

Through the Control Center you can easily get the main information
about all the installed Spectrum hardware. For each installed card
there is a separate tree of information available. The picture shows the
information for one installed card by example. This given information
contains:

* Basic information as the type of card, the production date and its
serial number, as well as the installed memory, the hardware revi-
sion of the base card, the number of available channels and
installed acquisition modules.

® Information about the maximum sampling clock and the available
quariz clock sources.

e The installed features/options in a sub-tree. The shown card is
equipped for example with the option Multiple Recording, Gated
Sampling, Timestamp and ABA-mode.

L]

Detailed Information concerning the installed acquisition modules.
In case of the shown analog acquisition card the information con-
sists of the module’s hardware revision, of the converter resolution
and the last calibration date as well as detailed information on the
available analog input ranges, offset compensation capabilities
and additional features of the inputs.

Spectrum Contrel Center V1.74 (Lib ¥3.33) (Loglevel 1) [DEVI1-WIN7G4]

Cord | Device Mapping | Support | About/ versions |

Details
4 Local
4 [MMi2238-8
handle name
on-board Memory
max Sampling Rate
Quarz1
Quarz2
Production Date
> Installed Card Features
Custom Modification

Version Base Card
Modules
Channels
> Ext Trig 0 Features
Ext Trig 1 Features
> Ext Clock 0 Features
Timestamp Features

> Firmware versions

.

Module Information
Version Module A
Resolution

Analog Input Paths
4 Input Ranges
Range 0
Rangel
Range 2
Range 3
+ Programmable Offsets
> Analog Input Features
+ Software License
> Physical Location
4 Remote
4 192.168.169.20
Cached M2.4652-Exp

Installed Extended Card Fea...

Calibration Date (Facto...

Information

sn 00001
Jdev/spem0
4096 MByte
1250.00 MS/s
not installed
not installed
Week 24 of 2017
0000008F
00000000

none (0)

9.28

0

0

0000011F
00000116
00000019
00091707

40

8 Bit

Week 0 of 2000

1

4

-200 mV to0 200 mV
500 mV t 500 mV
-1000 mV to 1000 mV
-2500 m to 2500 mV

sn 00665

Demo cards

Add Democard

Edit Democard
Delete Democard
Updates
Eirmware Upgrade

Install SW License

Install Feature

Calibration

Calibration

Transfer Speed Test
Memory Test
Identification

Monitor

g
=
H
]
i
F 4
g
g
g
-
2

Netbox / Remote Server
Netbox Discovery

Add Netbox manually

a
&

a
a

Update cac

Delete cached card

Quit

Image 24: Spectrum Control Center: detailed hardware information on installed card

Firmware information

E5

Demo cards

Add Democard
Edit Democard
Delete Democard
Updates
Firmware Upgrade
Install SW License

Install Feature

Calibration

Calibration

Transfer Speed Test
Memory Test
Identfication

Manitor

a
2
&
M
]
a
=
5
ES
g
|
3

Metbox f Remote Server

Metbox Discovery

Add Netbox manually

Update cached card

Delete cached card

Spectrum Control Center V1.74 (Lib ¥3.33) (Loglevel 1) [DEVI1-WIN7G4]
Another sub-ree is informing about the cards firmware ver- e e e
sion. As all Spectrum cards consist of several programmable = =
. . . etails nformation
components, there is one firmware version per component. + Loca
4 M4i2234-8 sn 00001
. handle name fdev/speml
Nearly all of the components .flrmware can bg updotgd by i ey il
software. The only exception is the configuration device, max Sampling Rate 125000 MS/s
B B Quarz1 not installed
which only can receive a factory update. e not s e
Production Date Week 24 of 2017
The procedure on how to update the firmware of your Spec- pEDI s T
. . . > Custom Modification 00000000
trum card with the help of the card control center is described Installed Extended Card Fes... none (0)
in a dedicated section later on. Hesion e Card .
Modules 0
Channels 0
The procedure on how to update the firmware of your e posebi
. e . . > rig 1 Features
digitizerNETBOX/generatorNETBOX/hybridNETBOX with i 00000019
the help of the infegrated Webserver is described in a dedi- + Timestamp Features 00091707
1’ d h " I i‘ 4 |Firmware versions
carea c QP er lafer on. Main Control Standard 1.28
Main Control Golden 2.28
Currently used 1.28 (Standard)
Power 1.08
> Module Information
> Software License
> Physical Location
> Remote
[Quit

Image 25: Spectrum Control Center - showing firmware information of an installed card

(c) Spectrum Instrumentation GmbH

48

Software Card Control Center

Monitor

. . . : -
Software License information 4 Mzpasyd i
handle name /dev/spem0 Edit Democard
. g P . H H i on-board Memeory 1024 MByte
This sub-tree is informing about installed possible software li o i i e T
censes. Quarzl not installed
Quarz 2 not installed Updates
Production Date Week 17 of 2018 5
As a default all cards come with the demo professional li- Installed Card Features ~ 0000008F
cense of SBenché, that is limited to 30 starts of the software ? Custom Modmication 00000000
R . Installed Extended Card Fea... none (0)
with all professional features unlocked. Version Base Card 21
PCB Base Card 11
Modules 1 Calibration
The number of demo starts left can be seen here. Channele 1 _
» Ext Trig 0 Features 00000117
» Ext Clock 0 Features 00000217
» Timestamp Features 00091707 Tests and Monitoring
> Multi Purpose /O
IrMware versions
> Module Information
4 |Software License
s Locair B

» Physical Location
Netbox / Remote Server
Metbox Discovery

Add Netbox manually

Update cached card

Delete cached card

[Quit

Image 26: Spectrum Control Center - showing firmware information of an installed card

Driver information

Spectrum Control Center V174 (Lib V3.33) (Loglevel 1) [DEVI1-WINTG4]

i

The Spectrum card control center also offers a way to
gather information on the installed and used Spectrum
driver.

| Card | Device Mapping I Support | About [Versions |

The information on the driver is available through a

dedicated tab, as the picture is showing in the example. S P E C T R U

The provided informoﬁon informs ObOUT the used type, INSTRUMENTATION
distinguishing between Windows or Linux driver and the

32 bit or 64 bit type. Spectrum Control Center

(c) Spectrum GmbH, 2006 - 2016

. Version 1.74 build 13723
It also gives direct information about the version of the

installed Spectrum kernel driver, separately for M2i/ M3i
cards and M4i/M4x/M2p/M>5i cards and the version of
the library (which is the *.dIl file under Windows).

Spcm Driver Version
Library Version Version 3.33 Build 13869

The information given here can also be found under Kemel VersonMZMS |not avatzble

Windows using the device manager form the Kerel Version M4 Version 1.01Buid 12200
control panel. For details in driver defails within the con- Type Windows WOWIS#

trol panel please stick to the section on driver installation

in your hardware manual.
[chedk on startup

Image 27: Spectrum Control Center - showing driver information details

(c) Spectrum Instrumentation GmbH 49

Software

Card Control Center

Installing and removing Demo cards

With the help of the card control center one can install
demo cards in the system. A demo card is simulated by the

T2 Adda Spectrum demo card

Card Netbox

Spectrum driver including data production for acquisition
cards. As the demo card is simulated on the lowest driver
level all software can be tested including SBench, own ap-
plications and drivers for third-party products like Lab-
VIEW. The driver supports up to 64 demo cards at the
same time. The simulated memory as well as the simulated
software options can be defined when adding a demo
card to the system.

Please keep in mind that these demo cards are only meant
to test software and to show certain abilities of the soft-
ware. They do not simulate the complete behavior of a
card, especially not any timing concerning trigger, record-
ing length or FIFO mode notification. The demo card will
calculate data every time directly after been called and
give it fo the user application without any more delay. As
the calculation routine isn’t speed optimized, generating
demo data may take more time than acquiring real data
and transferring them to the host PC.

Installed demo cards are listed together with the real hard-
ware in the main information tree as described above. Ex-
isting demo cards can be deleted by clicking the related
button. The demo card details can be edited by using the
edit button. It is for example possible to virtually install ad-
ditional feature to one card or to change the type fo test

Demao Card Selection

M4-x8 7| |44xx ¥ | M4i.4451-%8 - 4x500 MS/s AD 14Bit

Card Details

Memory 4GB i

Features
Features

Multiple Recording Timestamp [] star-Hub 8 Cards

Gated Sampling ABA Mode Star-Hub 16 Cards

Amplifier Card 10v Amplifier

Digital Inputs /Outputs [pigital /0 (sMA) Digital I/0 (FX2)
M System Star-Hub Master 5 5

[1 remote Server

Extended Features

[Block Averaging [Block Statistics Boxcar Averaging
[Pulse Generators

Custom Modification Hardware Modification Quartz 2

0 v Default <

Dema Sync Group

Single card -

Cancel

with a different number of channels.

Image 28: Spectrum Control Center - adding a demo card to the sysstem

For installing demo cards on a system without

real hardware simply run the Control Center installer. If the installer is not detecting the necessary driver files

normally residing on a system with real hardware, it will simply install the Spem_driver.

Feature upgrade

All optional features of the M2i/M3i/M4i/M4x/M2p/M5i cards that do not re-

quire any hardware modifications can be installed on fielded cards. After Spec- Feature Update for M3i.4142 sn 08025

trum has received the order, the customer will get a personalized upgrade code.
Just start the card control center, click on ,install feature” and enter that given code.

X

Please enter the feature update code as it's written in the update licence

After a short moment the feature will be installed and ready to use. No restart of |

the host system is required.

For details on the available options and prices please contact your local Spectrum

distributor.

Software License upgrade

The software license for SBench 6 Professional is installed on the

ing a software license for a card that has already been delivered you will get an up-

grade code to install that software license. The upgrade code will

particular card with the serial number given in the license. To install the software Ii-
cense please click the ,Install SW License” button and type in the code exactly as

given in the license.

Performing card calibration (A/D only)

The card control center also provides an easy way to access the
automatic card calibration routines of the Spectrum A/D convert-
er cards. Depending on the used card family this can affect offset
calibration only or also might include gain calibration. Please re-
fer to the dedicated chapter in your hardware manual for details.

This function is not available for D/A cards (AWG) or digital /O
cards

[o

] [Cancel

]

Image 29: Spectrum Control Center - feature update, code entry

hard I ord @ SW License Update for M3i.4142 sn 08025
araware. Ir oraer-

X

Please enter the license update code as it's written in the update licence

only match for that S93afesefs

OK

] l Cancel

Image 30: Spectrum Control Center - software license installe

Calibration M3i.4142 sn 08025

? [|

Please press the start button to start the automatic offset and gain calibration

Calibration running ...
-IR = 200mV CH = 0x0003 5R = 250,000 MS/s Setup 2 - Gain Calibration
-IR = 200mV CH =0x0003 SR = 250,000 M5fs Setup 2 - Offset Calibration

L
Start Loop Cancel [| 4% Quit

%

Image 31: Spectrum Control Center - running an on-board calibration

(c) Spectrum Instrumentation GmbH

50

Software Card Control Center

Mw Memory Test M2i.4142 sn 08025 [EA)
The complete on-board memory of the Spectrum
M2i/M3i/M4i/M4x/M2p/M5i cards can be tested by the memory test includ-
ed with the card control center.

Press the Start button to start the Memory Test of this card
Testing 256 MByte of memory -
Random Start Pattern: 0x165467b4

When starting the test, randomized data is generated and written to the on- S daia et

board memory. After a complete write cycle all the data is read back and com-
pared with the generated pattern.

Reading test data from card...

Depending on the amount of installed on-board memory, and your computer’s
performance this operation might take a while. Start Loop Cancel | 7% il

%

Image 32: Spectrum Control Center - performing memory test

Transfer speed test

The control center allows to measure the bus transfer } .
speed of an installed Spectrum card. Therefore different [€] Speed Test M3i4142 sn 08025 (-2 [
setup is run multiple times and the overall bus transfer
speed is measured. To get reliable results it is necessary

Press the Start button to start the Speed Test of this card
interface with full speed. The resulting speed depends on the selected notification size as a small notify |«

ThOf you disoble debug |ogging as shown below. Itis CI|SO size generates very many interrupts and status reads that disturbs the continuous data transfer, The

hlghly recommended thlf no ther soﬁ‘wore or time-con- card can only be tested for FIFO mode matching the card direction,

suming background threads are running on that system. For performance reasons buffer size = 4 = Notifysize.

The speed test program runs the following two fests: Notifysize: 1024 kByte Read 110.7 MB/s Continuous memory used

. Repeﬁﬁve Memory Tronsfers: single DMA data trans- Notifysize: 2048 kByte Read 110.7 MB/s Continuous memory used [EP
fers are repeated and measured. This test simulates St S Gl | — les% [oat |

the measuring of pulse repetition frequency when
doing multiple single-shots. The test is done using dif-
ferent block sizes. One can estimate the transfer in
relation to the transferred data size on multiple single-
shots.

® FIFO mode streaming: this test measures the streaming speed in FIFO mode. The test can only use the same direction of transfer the card
has been designed for (card to PC=read for all DAQ cards, PC to card=write for all generator cards and both directions for 1/O cards).
The streaming speed is tested without using the front-end to measure the maximum bus speed that can be reached.
The Speed in FIFO mode depends on the selected notify size which is explained later in this manual in greater detail.

%

Image 33: Spectrum Control Center - running a transfer speed test of one card

The results are given in MB/s meaning MByte per second. To estimate whether a desired acquisition speed is possible to reach one has to
calculate the transfer speed in bytes. There are a few things that have to be put into the calculation:

12, 14 and 16 bit analog cards need two bytes for each sample.

16 channel digital cards need 2 bytes per sample while 32 channel digital cards need 4 bytes and 64 channel digital cards need 8
bytes.

® The sum of analog channels must be used to calculate the total transfer rate.

¢ The figures in the Speed Test Utility are given as MBytes, meaning 1024 * 1024 Bytes, 1 MByte = 1048576 Bytes

As an example running a card with 2 14 bit analog channels with 28 MHz produces a transfer rate of [2 channels * 2 Bytes/Sample *
28000000] = 112000000 Bytes/second. Taking the above figures measured on a standard 33 MHz PCl slot the system is just capable of
reaching this transfer speed: 108.0 MB/s = 108 * 1024 * 1024 = 113246208 Bytes/second.

Unfortunately it is not possible to measure transfer speed on a system without having a Spectrum card installed.

Debug logging for support cases

For answering your support questions as fast as possible, the

Spectrum Control Center V1,74 (Lib V3.33) (Loglevel 1) [DEVI1-WINTG4]

setup of the card, driver and firmware version and other in- | card | DeviceMapping | Support | About/Versions |
formation is very helpful. Debug Logaing
Therefore the card control center provides an easy way to logleve immchmem
gather all that information automatically. LogPath CilUserstbjoern}
[Append Logging to file File Name spcmdry_debug. tet E
Different debug log levels are available through the graphi-
cal interface. By default the log level is set to ,no logging” for Kernel Registry Settings
maximum performonce. Continuous Memory Allocation Per Card (MB) 0

The customer can select different log levels and the path of
the generated ASCII text file. One can also decide fo delete
the previous log file first before creating a new one automat-
ically or to append different logs to one single log file.

Image 34: Spectrum Control Center - activate debug logging for support cases

For maximum performance of your hardware, please make sure that the debug logging is set to ,no log-
A ging” for normal operation. Please keep in mind that a detailed logging in append mode can quickly gener-
ate huge log files.

(c) Spectrum Instrumentation GmbH 51

Software

Accessing the hardware with SBench 6

Device mapping

Within the ,Device mapping” tab of the Spectrum Control Center, one can ena-
ble the re-mapping of Spectrum devices, be it either local cards, remote instru-

ments such as a digitizerNETBOX, generatorNETBOX, hybridNETBOX or even

cards in a remote PC and accessed via the Spectrum remote server option.

In the left column the re-mapped device name is visible that is given to the device
in the right column with its original un-mapped device string.

In this example the two local cards ,specm0” and ,,spcm1” are re-mapped to ,,sp-
cm1” and ,specmO” respectively, so that their names are simply swapped.

The remote digitizerNETBOX device is mapped to spcm?2.

The application software can then use the re-mapped name for simplicity instead
of the quite long VISA string.

Changing the order of devices within one group [either local cards or remote
devices) can simply be accomplished by dragging&dropping the cards to their

===

Spectrum Control Center V1.68 (Lib V3.23) (Loglevel 3) [DEV13-WIN764]

Card | Device Mapping (active) | Support | About / Versions
/] Enabled

Local Devices:

spem0 speml / M4i.6622-48 S 666
specml spem0 / M3i4142 SN 41

Remote Devices:

spcm2 TCPIP[0]::192.168.169.3%:inst0:INSTR / M2i4652-Exp SN 1

desired position in the same table.

Add Remote Devices ... Remove

(Quit

Image 35: Spectrum Control Center - using device mapping

Accessing the hardware with SBench 6

8| -[olx|
=18 x|

Qsgench 6.0 buld 2337

owasiess e]

8 x

5 F 69 1)) [B)

o
o acht
o Achz | o
o achy o v

hennels [Codk | _Trigger

Info

EE

XEEHE

W) =7.327 0
()= 549451 He

Image 36: SBench 6 overview of main functionality with demo data

After the installation of the cards and the drivers it can be useful fo first test the
card function with a ready to run software before starting with programming. If
accessing a digitizerNETBOX/generatorNETBOX a full SBench 6 Professional
license is installed on the system and can be used without any limitations. For
plug-in card level products a base version of SBench 6 is delivered with the card
on USB stick also including a 30 starts Professional demo version for plain card
products. If you already have bought a card prior to the first SBench 6 release
please contact your local dealer to get a SBench 6 Professional demo version.
All digitizerNETBOX/generatorNETBOX products come with a pre-installed full
SBench 6 Professional.

SBench 6 supports all current acquisition and generation cards and
digitizerNETBOX/generatorNETBOX products from Spectrum. Depending on
the used product and the software setup, one can use SBench as a digital stor-
age oscilloscope, a spectrum analyzer, a signal generator, a pattern generator,
a logic analyzer or simply as a data recording front end. Different export and
import formats allow the use of SBench 6 together with a variety of other pro-
grams.

On the USB stick you'll find an install version of SBench 6 in the directory ,/In-
stall/SBenché”.

The current version of SBench 6 is available free of charge directly from the Spectrum website: www.spectrum-instrumentation.com. Please

go to the download section and get the latest version there.

SBench 6 has been designed to run under Windows 7, 8, 10 and Windows 11 as well as Linux using KDE, Gnome or Unity Desktop.

C/C++ Driver Interface

C/C++ is the main programming language for which the drivers have been designed for. Therefore the interface to C/C++ is the best match.
All the small examples of the manual showing different parts of the hardware programming are done with C. As the libraries offer a standard
inferface it is easy fo access the libraries also with other programming languages like Delphi, Basic, Python or Java . Please read the following

chapters for additional information on this.

(c) Spectrum Instrumentation GmbH 52

Software C/C++ Driver Interface

Header files

The basic task before using the driver is to include the header files that are delivered on USB stick together with the board. The header files
are found in the directory /Driver/c_header. Please don’t change them in any way because they are updated with each new driver version
to include the new registers and new functionality.

Table 10: list of C/C++ header files in driver

dlityp.h Includes the platform specific definitions for data types and function declarations. All data types are based on these definitions. The use of this type definition
file allows the use of examples and programs on different platforms without changes to the program source. The header file supports Microsoft Visual C++, Bor-
land C++ Builder and GNU C/C++ directly. When using other compilers it might be necessary to make a copy of this file and change the data types accord-
ing to this compiler.

regs.h Defines all registers and commands which are used in the Spectrum driver for the different boards. The registers a board uses are described in the board spe-
cific part of the documentation. This header file is common for all cards. Therefore this file also contains a huge number of registers used on other card types
than the one described in this manual. Please stick to the manual to see which registers are valid for your type of card.

spcm_drv.h Defines the functions of the used SpcM driver. All definitions are taken from the file dlltyp.h. The functions themselves are described below.

spcerr.h Contains all error codes used with the Spectrum driver. All error codes that can be given back by any of the driver functions are also described here briefly. The
error codes and their meaning are described in detail in the appendix of this manual.

Example for including the header files:

1) ===== driver includes -----

#include "dlltyp.h" // 1lst include
#include "regs.h" // 2nd include
#include "spcerr.h" // 3rd include
#include "spcm drv.h" // 4th include

Please always keep the order of including the four Spectrum header files. Otherwise some or all of the func-
A tions do not work properly or compiling your program will be impossible!

General Information on Windows 64 bit drivers

| After installation of the Spectrum 64 bit driver there are two general ways to access the hardware and to de-
velop applications. If you're going to develop a real 64 bit application it is necessary to access the 64 bit
driver dll (spcm_win64.dll) as only this driver dll is supporting the full 64 bit address range.

[32 it Application | [64 Bt Applicatio

[s2BiDrverp | [64Bit Diver o |

But it is still possible to run 32 bit applications or to develop 32 bit applications even under Windows 64 bit.
e Therefore the 32 bit driver dll (spcm_win32.dll) is also installed in the system. The Spectrum SBench5 software
is for example running under Windows 64 bit using this driver. The 32 bit dll of course only offers the 32 bit
address range and is therefore limited to access only 4 GByte of memory. Beneath both drivers the 64 bit ker-
| Hardware | nel driver is running.

Mixing of 64 bit application with 32 bit dll or vice versa is not possible.

Microsoft Visual C++ 6.0, 2005 and newer 32 Bit

Include Driver

The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win32_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the CD in the path /examples/c_cpp/c_header. Please include the library file in your Visual
C++ project as shown in the examples. All functions described below are now available in your program.

Examples

Examples can be found on CD in the path /examples/c_cpp. This directory includes a number of different examples that can be used with
any card of the same type (e.g. A/D acquisition cards, D/A acquisition cards). You may use these examples as a base for own programming
and modify them as you like. The example directories contain a running workspace file for Microsoft Visual C++ 6.0 (*.dsw) as well as project
files for Microsoft Visual Studio 2005 and newer (*.vcproj) that can be directly loaded or imported and compiled.

There are also some more board type independent examples in separate subdirectory. These examples show different aspects of the cards
like programming options or synchronization and can be combined with one of the board type specific examples.

As the examples are build for a card class there are some checking routines and differentiation between cards families. Differentiation aspects
can be number of channels, data width, maximum speed or other details. It is recommended to change the examples matching your card
type to obtain maximum performance. Please be informed that the examples are made for easy understanding and simple showing of one
aspect of programming. Most of the examples are not optimized for maximum throughput or repetition rates.

Microsoft Visual C++ 2005 and newer 64 Bit

Depending on your version of the Visual Studio suite it may be necessary to install some additional 64 bit components (SDK) on your system.
Please follow the instructions found on the MSDN for further information.

Include Driver

The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win64_msvepp.lib that is delivered together
with the drivers. The library file can be found on the CD in the path /examples/c_cpp/c_header. All functions described below are now
available in your program.

(c) Spectrum Instrumentation GmbH 53

Software Driver functions

Linux Gnu C/C++ 32/64 Bit

Include Driver
The interface of the linux drivers does not differ from the windows interface. Please include the “libspem_linux.so” library in your makefile

using the below shown “L1Bs = -1spcm linux” line, to have access to all driver functions. A makefile may look like this:
COMPILER = gcc
EXECUTABLE = test_prg
LIBS = -lspcm linux
OBJECTS = test.o\
test2.0

all: $(EXECUTABLE)

$ (EXECUTABLE) : $ (OBJECTS)
$ (COMPILER) $(CFLAGS) -o $(EXECUTABLE) $(LIBS) $(OBJECTS)

%$.0: $.cCpp
$ (COMPILER) $(CFLAGS) -o $*.0 -c $*.cpp

Examples
The Gnu C/C++ examples share the source with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. Each example directory contains a makefile for the Gnu C/C++ examples.

C++ for .NET

Please see the next chapter for more details on the .NET inclusion.

Other Windows C/C++ compilers 32 Bit

Include Driver

To access the driver using a compiler such as e.g. MinGW or Borland, the driver functions must be loaded from the 32 bit driver DLL. Most
compilers offer special tools to generate a matching library (e.g. Borland offers the implib tool that generates a matching library out of the
windows driver DLL). If such a tool is available it is recommended to use it. Otherwise the driver functions need to be loaded from the dll
using standard Windows functions. There is one example in the example directory /examples/c_cpp/dll_loading that shows the process.

Example of function loading:

hDLL = LoadLibrary ("spcm win32.d11"); // Load the 32 bit version of the Spcm driver
pfn_spcm hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, ”_spcm_hOpen@4");
pfn_spcm vClose = (SPCM VCLOSE*) GetProcAddress (hDLL, " spcm vClose@4");

Other Windows C/C++ compilers 64 Bit

Include Driver

To access the driver using a compiler such as e.g. MinGW or Borland, the driver functions must be loaded from the 64 bit the driver DLL.
Most compilers offer special tools to generate a matching library (e.g. Borland offers the implib tool that generates a matching library out of
the windows driver DLL). If such a tool is available it is recommended to use it. Otherwise the driver functions need to be loaded from the dll
using standard Windows functions. There is one example in the example directory /examples/c_cpp/dIl_loading that shows the process for
32 bit environments. The only line that needs to be modified is the one loading the DLL:

Example of function loading:

hDLL = LoadLibrary ("spcm win64.d11l"); // Modified: Load the 64 bit version of the Spcm driver here
pfn_spcm hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, "spcm_hOpen");
pfn spcm vClose = (SPCM VCLOSE*) GetProcAddress (hDLL, "spcm vClose");

Driver functions

The driver contains seven main functions to access the hardware.

Own types used by our drivers

To simplify the use of the header files and our examples with different platforms and compilers and to avoid any implicit type conversions we
decided to use our own type declarations. This allows us to use platform independent and universal examples and driver interfaces. If you
do not stick to these declarations please be sure to use the same data type width. However it is strongly recommended that you use our defined

(c) Spectrum Instrumentation GmbH 54

Software Driver functions

type declarations to avoid any hard to find errors in your programs. If you're using the driver in an environment that is not natively supported
by our examples and drivers please be sure to use a type declaration that represents a similar data width

Table 11: C/C++ type declarations for drivers and examples
Declaration Type Declaration Type
int8 8 bit signed integer (range from -128 to +127) uint8 8 bit unsigned integer (range from O to 255)
int16 16 bit signed integer (range from -32768 to 32767) uint1é 16 bit unsigned integer (range from O to 65535)
int32 32 bit signed integer (range from -2147483648 to 2147483647) uint32 32 bit unsigned integer (range from 0 to 4294967295)
int64 64 bit signed integer (full range) uint64 64 bit unsigned integer (full range)
drv_handle handle to driver, implementation depends on operating system platform

Notation of variables and functions

In our header files and examples we use a common and reliable form of notation for variables and functions. Each name also contains the
type as a prefix. This notation form makes it easy to see implicit type conversions and minimizes programming errors that result from using
incorrect types. Feel free to use this notation form for your programs also-

Table 12: C/C++ type naming convention throughout drivers and examples

Declaration Notation Declaration Notation

int8 byName (byte) uint8 cName (character)

int16 nName uint16 wName (word)

int32 IName (long) uint32 dwName (double word)

int64 [IName (long long) vint64 qwName (quad word)

int32* pIName (pointer to long) char szName (string with zero termination)

Function spcm hOpen

This function initializes and opens an installed card supporting the new SpcM driver interface, which at the time of printing, are all cards of
the M2i/M3i/M4i/M4x/M2p/M5i series and the related digitizerNETBOX/generatorNETBOX/hybridNETBOX devices. The function re-
turns a handle that has to be used for driver access. If the card can’t be found or the loading of the driver generated an error the function
returns a NULL. When calling this function all card specific installation parameters are read out from the hardware and stored within the
driver. It is only possible to open one device by one software as concurrent hardware access may be very critical to system stability. As a
result when trying o open the same device twice an error will be raised and the function returns NULL.

Function spcm_hOpen (const char* szDeviceName):

drv_handle _stdcall spcm hOpen (// tries to open the device and returns handle or error code
const char* szDeviceName) ; // name of the device to be opened

Under Linux the device name in the function call needs to be a valid device name. Please change the string according to the location of the
device if you don’t use the standard Linux device names. The driver is installed as default under /dev/spcmO, /dev/spcm1 and so on. The
kernel driver numbers the devices starting with O.

Under Windows the only part of the device name that is used is the trailing number. The rest of the device name is ignored. Therefore to keep
the examples simple we use the Linux notation in all our examples. The trailing number gives the index of the device to open. The Windows

kernel driver numbers all devices that it finds on boot time starting with O.

Example for local installed cards

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("/dev/spcm0"); // open the first card (spcm0) and get a handle to this card
if (!hDrv)

printf (“open of driver failed\n”);

Example for digitizerNETBOX/generatorNETBOX and remote installed cards

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTO0::INSTR");
if (!hDrv)

printf (“open of driver failed\n”);

If the function returns a NULL it is possible to read out the error description of the failed open function by simply passing this NULL to the error
function. The error function is described in one of the next topics.

Function spcm_vClose

This function closes the driver and releases all allocated resources. After closing the driver handle it is not possible to access this driver any
more. Be sure to close the driver if you don’t need it any more to allow other programs to get access to this device.

Function spcm_vClose:

void _stdcall spcm_vClose (// closes the device
drv_handle hbDevice); // handle to an already opened device

(c) Spectrum Instrumentation GmbH 55

Software Driver functions

Example:

spcm_vClose (hDrv);

Function spcm dwSetParam

All hardware settings are based on software registers that can be set by one of the functions specm_dwSetParam. These functions set a register
to a defined value or execute a command. The board must first be initialized by the spcm_hOpen function. The parameter IRegister must have
a valid software register constant as defined in regs.h. The available software registers for the driver are listed in the board specific part of
the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what is
zero.

Function spcm_deerPorom

uint32 _stdcall spcm dwSetParam i32 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be modified
int32 1lvalue) ; // the value to be set

uint32 _stdcall spcm dwSetParam i64m (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be modified
int32 1lvalueHigh, // upper 32 bit of the value. Containing the sign bit !
uint32 dwValueLow) ; // lower 32 bit of the value.

uint32 _stdcall spcm_dwSetParam 164 (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be modified
inte64 11value) ; // the value to be set

uint32 _stdcall spcm_dwSetParam_dé64 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be modified
double dvalue) ; // the value to be set

uint32 _stdcall spcm_dwSetParam ptr (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be modified
void* pvValue, // pointer for the return value
unite64 qwlen) ; // length of the buffer behind the pvValue

The functions spcm_dwSetParam_dé4 and spcm_dwSetParam_ptr have been added with driver release V 7.00

Example:

if (spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, 16384) != ERR OK)
printf (“Error when setting memory size\n”);

This example sets the memory size to 16 kSamples (16384). If an error occurred the example will show a short error message

Function spcm_dwGetParam

All hardware settings are based on software registers that can be read by one of the functions spcm_dwGetParam. These functions read an
internal register or status information. The board must first be initialized by the spcm_hOpen function. The parameter IRegister must have a
valid software register constant as defined in the regs.h file. The available software registers for the driver are listed in the board specific part
of the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what
is zero.

(c) Spectrum Instrumentation GmbH 56

Software Driver functions

Function spcm_dwGetParam

uint32 _stdcall spcm_dwGetParam i32 (// Return value is an error code

drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be read out
int32% plvalue) ; // pointer for the return value

uint32 _stdcall spcm_dwGetParam i64m (// Return value is an error code

drv_handle hDevice, // handle to an already opened device

int32 1Register, // software register to be read out

int32%* plvalueHigh, // pointer for the upper part of the return value
uint32* pdwValueLow) ; // pointer for the lower part of the return value

uint32 _stdcall spcm_dwGetParam_i64 (// Return value is an error code

drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be read out
int64* pllvalue) ; // pointer for the return value

uint32 _stdcall spcm_dwGetParam dé64 (// Return value is an error code

drv_handle hDevice, // handle to an already opened device
int32 lRegister, // software register to be modified
double* dvalue) ; // pointer for the return value

uint32 _stdcall spcm_dwGetParam ptr (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be modified
void* pvValue, // pointer for the return value
unité64 gwlen) ; // length of the buffer behind the pvValue

The functions spcm_dwGetParam_d64 and spcm_dwGetParam_ptr have been added with driver release V 7.00

Example:

int32 lSerialNumber;
spcm_dwGetParam i32 (hDrv,
printf (“Your card has serial number:

SPC_PCISERIALNO, &lSerialNumber) ;
$05d\n”, lSerialNumber) ;

The example reads out the serial number of the installed card and prints it. As the serial number is available under all circumstances there is
no error checking when calling this function.

Different call types of spcm_dwSetParam and spcm_dwGetParam: i32, i64, i64m, d64

The four functions only differ in the type of the parameters that are used to call them. As some of the registers can exceed the 32 bit integer
range (like memory size or post trigger) it is recommended to use the _i64 function to access these registers. However as there are some
programs or compilers that don’t support 64 bit integer variables there are two functions that are limited to 32 bit integer variables. In case
that you do not access registers that exceed 32 bit integer please use the _i32 function. In case that you access a register which exceeds 64
bit value please use the _i64m calling convention. Inhere the 64 bit value is split into a low double word part and a high double word part.
Please be sure to fill both parts with valid information.

As some registers need to be read/written in double precision and can’t be read/written as integer values, two additional new functions for
accessing double values have been added with the suffix _d64.

If accessing 64 bit registers with 32 bit functions the behaviour differs depending on the real value that is currently located in the register.
Please have a look at this table to see the different reactions depending on the size of the register:

Table 13: Spectrum driver APl functions overview and differentiation between 32 bit and 64 bit registers

Internal register read/write Function type Behavior

32 bit register read spcm_dwGetParam_i32 value is returned as 32 bit integer in plValue

32 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer in pllValue

32 bit register read spcm_dwGetParam_ié4m value is returned as 64 bit integer, the lower part in plValuelow, the upper part in plValueHigh. The upper part can
be ignored as it's only a sign extension

32 bit register read spcm_dwGetParam_d64 value is returned as 64 bit double in pdValue

32 bit register write spcm_dwSetParam_i32 32 bit value can be directly written

32 bit register write spcm_dwSetParam_i64 64 bit value can be directly written, please be sure not to exceed the valid register value range

32 bit register write spcm_dwSetParam_ié4m 32 bit value is written as [IValuelow, the value [IValueHigh needs to contain the sign extension of this value. In case
of IIValuelow being a value >= 0 IIValueHigh can be 0, in case of [IValuelow being a value < 0, lIValueHigh has to
be -1.

32 bit register write spcm_dwSetParam_dé64 32 bit value needs to converted to double. Please make sure no to exceed the valid register range

64 bit register read spcm_dwGetParam_i32 If the internal register has a value that is inside the 32 bit integer range (-2G up to (2G - 1)) the value is returned
normally. If the internal register exceeds this size an error code ERR_EXCEEDSINT32 is returned. As an example:
reading back the installed memory will work as long as this memory is < 2 GByte. If the installed memory is >= 2
GByte the function will return an error.

64 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer value in pllValue independent of the value of the internal register.

64 bit register read spcm_dwGetParam_ié4m the internal value is split into a low and a high part. As long as the internal value is within the 32 bit range, the low
part plValuelow contains the 32 bit value and the upper part plValueHigh can be ignored. If the internal value
exceeds the 32 bit range it is absolutely necessary to take both value parts into account.

64 bit register read spcm_dwGetParam_d6é4 value is returned as 64 bit double in pdValue. Please note that double values are limited to 2248. Any larger value
is not returned with full precision.

64 bit register write spcm_dwSetParam_i32 the value to be written is limited to 32 bit range. If a value higher than the 32 bit range should be written, one of

the other function types need to used.

(c) Spectrum Instrumentation GmbH

57

Software Driver functions

Table 13: Spectrum driver APl functions overview and differentiation between 32 bit and 64 bit registers

Internal register read/write Function type Behavior

64 bit register write spcm_dwSetParam_i64 the value has to be split into two parts. Be sure to fill the upper part [ValueHigh with the correct sign extension even
if you only write a 32 bit value as the driver every time interprets both parts of the function call.

64 bit register write spcm_dwSetParam_ié4m the value can be written directly independent of the size.

64 bit register write spcm_dwSetParam_d64 the value need to be converted to double. Any value up to 2248 can be written directly. Larger values need to be

written using the _i64 function

Function spcm dwGetContBuf

This function reads out the internal continuous memory buffer in bytes, in case one has been allocated. If no buffer has been allocated the

function returns a size of zero and a NULL pointer. You may use this buffer for data transfers. As the buffer is continuously allocated in memory
the data transfer will speed up by up to 15% - 25%, depending on your specific kind of card. Please see further details in the appendix of
this manual.

uint32 _stdcall spcm_dwGetContBuf 164 (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF XXXX
void** ppvDataBuffer, // address of available data buffer
uint64* pgwContBuflLen) ; // length of available continuous buffer

uint32 _stdcall spcm dwGetContBuf i64m (// Return value is an error code

drv_handle hbDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to read as listed above under SPCM BUF XXXX
void** ppvDataBuffer, // address of available data buffer

uint32* pdwContBufLenH, // high part of length of available continuous buffer

uint32* pdwContBufLenl) ; // low part of length of available continuous buffer

These functions have been added in driver version 1.36. The functions are not available in older driver ver-
sions.

j These functions also only have effect on locally installed cards and are neither useful nor usable with any

digitizerNETBOX or generatorNETBOX products, because no local kernel driver is involved in such a setup.
For remote devices these functions will return a NULL pointer for the buffer and 0 Bytes in length.

Function spcm_dwDefTransfer

The spcm_dwDefTransfer function defines a buffer for a following data transfer. This function only defines the buffer, there is no data transfer
performed when calling this function. Instead the data transfer is started with separate register commands that are documented in a later
chapter. At this position there is also a detailed description of the function parameters.

Please make sure that all parameters of this function match. It is especially necessary that the buffer address is a valid address pointing to
memory buffer that has at least the size that is defined in the function call. Please be informed that calling this function with non valid param-
efers may crash your system as these values are base for following DMA transfers.

The use of this function is described in greater detail in a later chapter.

Function spcm_dwDefTransfer

uint32 _stdcall spcm dwDefTransfer i64m(// Defines the transfer buffer by 2 x 32 bit unsigned integer

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to define as listed above under SPCM BUF XXXX
uint32 dwDirection, // the transfer direction as defined above

uint32 dwNotifySize, // no. of bytes after which an event is sent (0O=end of transfer)
void* pvDataBuffer, // pointer to the data buffer

uint32 dwBrdOffsH, // high part of offset in board memory (zero when using FIFO mode)
uint32 dwBrdOffsL, // low part of offset in board memory (zero when using FIFO mode)
uint32 dwTransferLenH, // high part of transfer buffer length

uint32 dwTransferLenLl) ; // low part of transfer buffer length

uint32 stdcall spcm dwDefTransfer i64 (// Defines the transfer buffer by using 64 bit unsigned integer values

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to define as listed above under SPCM BUF XXXX
uint32 dwDirection, // the transfer direction as defined above

uint32 dwNotifySize, // no. of bytes after which an event is sent (O=end of transfer)
void* pvDataBuffer, // pointer to the data buffer

uinté64 qwBrdOffs, // offset for transfer in board memory (zero when using FIFO mode)
uint64 gwTransferlen) ; // buffer length

This function is available in two different formats as the spcm_dwGetParam and spcm_dwSetParam functions are. The background is the
same. As long as you're using a compiler that supports 64 bit integer values please use the _i64 function. Any other platform needs to use
the _ié4m function and split offset and length in two 32 bit words.

Example:
intl6* pnBuffer = (intl6*) pvAllocMemPageAligned (16384);
if (spcm_dwDefTransfer_ i64 (hDrv, SPCM_BUF_ DATA, SPCM DIR CARDTOPC, 0, (void*) pnBuffer, 0, 16384) != ERR_OK)

printf (“DefTransfer failed\n”);

(c) Spectrum Instrumentation GmbH 58

Software Delphi (Pascal) Programming Interface

The example defines a data buffer of 8 kSamples of 16 bit integer values = 16 kByte (16384 byte) for a transfer from card to PC memory.
As notify size is set to O we only want to get an event when the transfer has finished.

Function spcm_dwinvalidateBuf

The invalidate buffer function is used to tell the driver that the buffer that has been set with spcm_dwDefTransfer call is no longer valid. It is
necessary to use the same buffer type as the driver handles different buffers at the same time. Call this function if you want to delete the buffer
memory after calling the spcm_dwDefTransfer function. If the buffer already has been transferred after calling spcm_dwDefTransfer it is not
necessary to call this function. When calling specm_dwDefTransfer any previously defined buffer of this type is automatically invalidated.

Function spcm_dwlinvalidateBuf

uint32 _stdcall spcm_dwInvalidateBuf (// invalidate the transfer buffer
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType) ; // type of the buffer to invalidate as

// listed above under SPCM BUF_XXXX

Function spcm dwGetErrorinfo

The function returns complete error information on the last error that has occurred. The error handling itself is explained in a later chapter in
greater detail. When calling this function please be sure to have a text buffer allocated that has at least ERRORTEXTLEN length. The error text
function returns a complete description of the error including the register/value combination that has raised the error and a short description
of the error details. In addition it is possible to get back the error generating register/value for own error handling. If not needed the buffers
for register/value can be left to NULL.

Note that the timeout event (ERR_TIMEOUT) is not counted as an error internally as it is not locking the driver
but as a valid event. Therefore the GetErrorinfo function won’t return the timeout event even if it had occurred
in between. You can only recognize the ERR_TIMEOUT as a direct return value of the wait function that was
called.

Function spcm_dwGetErrorinfo

// for reading errors that occur during hOpen(), leave the drv handle parameter NULL

uint32 _stdcall spcm_dwGetErrorInfo i32 (

drv_handle hbDevice, // handle to an already opened device

uint32* pdwErrorReg, // address of the error register (can be NULL if not of interest)
int32* plErrorValue, // address of the error value (can be NULL if not of interest)
char pszErrorTextBuffer [ERRORTEXTLEN]); // text buffer for text error

uint32 _stdcall spcm_dwGetErrorInfo i64 (

drv_handle hbDevice, // handle to an already opened device

uint32* pdwErrorReg, // address of the error register (can be NULL if not of interest)
inte64* pllErrorValue, // address of the error value (can be NULL if not of interest)
char pszErrorTextBuffer [ERRORTEXTLEN]); // text buffer for text error

uint32 _stdcall spcm_dwGetErrorInfo dé4 (

drv_handle hbDevice, // handle to an already opened device

uint32* pdwErrorReg, // address of the error register (can be NULL if not of interest)
double* pdErrorValue, // address of the error value (can be NULL if not of interest)
char pszErrorTextBuffer [ERRORTEXTLEN]); // text buffer for text error

The function spcm_dwGetErrorinfo_i64 and spcm_dwGetErrorinfo_d64 have been added with driver release V 7.00

Example:

char szErrorBuf [ERRORTEXTLEN] ;
if (spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, -1))
{
spcm_dwGetErrorInfo_i64 (hDrv, NULL, NULL, szErrorBuf);
printf (“Set of memsize failed with error message: %$s\n”, szErrorBuf);

}

Delphi (Pascal) Programming Interface

Driver interface

The driver interface is located in the sub-directory d_header and contains the following files. The files need to be included in the delphi project
and have to be put into the ,uses” section of the source files that will access the driver. Please do not edit any of these files as they're regularly
updated if new functions or registers have been included.

(c) Spectrum Instrumentation GmbH 59

Software Delphi (Pascal) Programming Interface

file spem win32.pas

The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library
are similar to the above explained standard driver functions:

/] ===== device handling functions -----
function spcm hOpen (strName: pchar): int32; stdcall; external 'spcm win32.dll' name ' spcm hOpen@4';
procedure spcm vClose (hDevice: int32); stdcall; external 'spcm win32.dll' name ' spcm vClose@4';

function spcm dwGetErrorInfo_ i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32;
stdcall; external 'spcm win32.dll' name ' spcm dwGetErrorInfo i32@16'

function spcm_dwGetErrorInfo_i64 (hDevice: int32; var plErrorReg: int32; var pllErrorValue: int64; strError:
PAnsiChar): uint32; stdcall; external 'spcm win32.dll' name ' spcm dwGetErrorInfo i64Q@16'

function spcm_dwGetErrorInfo_d64 (hDevice: int32; var plErrorReg: int32; var pdErrorValue: double; strError:
PAnsiChar): uint32; stdcall; external 'spcm win32.dll' name ' spcm dwGetErrorInfo d64@16'

[/ —==== register access functions -----
function spcm dwSetParam i32 (hDevice, lRegister, 1lValue: int32): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwSetParam i32@12';

function spcm dwSetParam i64 (hDevice, lRegister: int32; llValue: int64): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwSetParam 1i64Q@16';

function spcm dwSetParam dé64 (hDevice, 1lRegister: int32; dvValue: double): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwSetParam d64@16';

function spcm dwGetParam 132 (hDevice, lRegister: int32; var plValue: int32): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwGetParam i32@12';

function spcm dwGetParam 164 (hDevice, lRegister: int32; var pllValue: inté64): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwGetParam 1i64@12';

function spcm dwGetParam dé64 (hDevice, lRegister: int32; var pdValue: double): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwGetParam d64@12';

/] === data handling -----

function spcm_dwDefTransfer i64 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer;
11BrdOffs, 1llTransferLen: int64): uint32;

stdcall; external 'spcm win32.dl11' name ' spcm dwDefTransfer i164@36';

function spcm dwInvalidateBuf (hDevice, 1Buffer: int32): uint32;
stdcall; external 'spcm win32.dl1l' name ' spcm dwInvalidateBuf@8';

The file also defines types used inside the driver and the examples. The types have similar names as used under C/C++ to keep the examples
more simple to understand and allow a better comparison.

(c) Spectrum Instrumentation GmbH 60

Software

Delphi (Pascal) Programming Interface

file spem winé4.pas

The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library

are similar to the above explained standard driver functions:

/] ===== device handling functions -----

function spcm hOpen (strName: pchar): int32; stdcall; external 'spcm win32.dll' name ' spcm hOpen@4';
procedure spcm vClose (hDevice: int32); stdcall; external 'spcm win32.dll' name ' spcm vClose@4';

function spcm dwGetErrorInfo_ i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32;
stdcall; external 'spcm win32.dll' name ' spcm dwGetErrorInfo i32@16'

function spcm_dwGetErrorInfo_i64 (hDevice: int32; var plErrorReg: int32; var pllErrorValue: int64; strError:
PAnsiChar): uint32; stdcall; external 'spcm win32.dll' name ' spcm dwGetErrorInfo i64Q@16'

function spcm_dwGetErrorInfo_d64 (hDevice: int32; var plErrorReg: int32; var pdErrorValue: double; strError:
PAnsiChar): uint32; stdcall; external 'spcm win32.dll' name ' spcm dwGetErrorInfo d64@16'

[/ —==== register access functions -----

function spcm dwSetParam i32 (hDevice, lRegister, 1lValue: int32): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwSetParam i32@12';

function spcm dwSetParam i64 (hDevice, lRegister: int32; llValue: int64): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwSetParam 1i64Q@16';

function spcm dwSetParam dé64 (hDevice, 1lRegister: int32; dvValue: double): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwSetParam d64@16';

function spcm dwGetParam 132 (hDevice, lRegister: int32; var plValue: int32): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwGetParam i32@12';

function spcm dwGetParam 164 (hDevice, lRegister: int32; var pllValue: inté64): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwGetParam 1i64@12';

function spcm dwGetParam dé64 (hDevice, lRegister: int32; var pdValue: double): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwGetParam d64@12';

[===== data handling -----

function spcm_dwDefTransfer i64 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer;
11BrdOffs, 1llTransferLen: int64): uint32;

stdcall; external 'spcm win32.dl11' name ' spcm dwDefTransfer i164@36';

function spcm dwInvalidateBuf (hDevice, 1Buffer: int32): uint32;

stdcall; external 'spcm win32.dl1l' name ' spcm dwInvalidateBuf@8';

file SpcRegs.pas

The SpcRegs.pas file defines all constants that are used for the driver. The constant names are the same names as used under the C/C++
examples. All constants names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is

recommended to only use these constant names for better visibility of the programs:

(including writesetup) }

const SPC_M2CMD = 100; { write a command }
const M2CMD_CARD_RESET = $00000001; { hardware reset }
const M2CMD_CARD_WRITESETUP = $00000002; { write setup only }
const M2CMD_CARD_START = $00000004; { start of card

const M2CMD_CARD_ ENABLETRIGGER = $00000008; { enable trigger engine }

file SpcErr.pas
The SpeErr.pas file contains all error codes that may be returned by the driver.

Including the driver files

To use the driver function and all the defined constants it is necessary to include the files into the project as
shown in the picture on the right. The project overview is taken from one of the examples delivered on the
USB stick. Besides including the driver files in the project it is also necessary to include them in the uses
section of the source files where functions or constants should be used:

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls,
SpcRegs, SpcErr, spcm win32;

Examples

Examples for Delphi can be found on the USB stick in the directory /examples/delphi. The directory contains

Projektverwaltung =] #

[K [

MNeu Ertfermen | Akfivierer

Drateien |

SpCm_scope.exe
@ SpcEn.paz
SPCM_$COpe_main

B spom_scope_main pas

@ spom_windZ. pas

Image 37: Structure of the Delphi ex-
maples

the above mentioned delphi header files and a couple of universal examples, each of them working with a certain type of card. Please feel

free to use these examples as a base for your programs and to modify them in any kind.

(c) Spectrum Instrumentation GmbH

61

Software .NET programming languages

spcm_scope

The example implements a very simple scope program that makes single acquisitions on button pressing. A fixed setup is done inside the
example. The spcm_scope example can be used with any analog data acquisition card from Spectrum. It covers cards with 1 byte per sample
(8 bit resolution) as well as cards with 2 bytes per sample (12, 14 and 16 bit resolution)

The program shows the following steps:

Initialization of a card and reading of card information like type, function and serial number
Doing a simple card setup

Performing the acquisition and waiting for the end interrupt

Reading of data, re-scaling it and displaying waveform on screen

.NET programming languages

Libra
For using the driver with a .NET based language Spectrum delivers a special library that encapsulates the driver in a .NET object. By adding
this object to the project it is possible to access all driver functions and constants from within your .NET environment.

There is one small console based example for each supported .NET language that shows how to include the driver and how to access the
cards. Please combine this example with the different standard examples to get the different card functionality.

Declaration
The driver access methods and also all the type, register and error declarations are combined in the object Spcm and are located in one of
the two DLLs either SpcmDrv32.NET.dIl or SpcmDrv64.NET.dIl delivered with the .NET examples.

~o. For simplicity, either file is simply called ,SpcmDrv.NET.dIl” in the following passages and the actual file
Q‘ name must be replaced with either the 32bit or 64bit version according to your application.

-

Spectrum also delivers the source code of the DLLs as a C# project. These sources are located in the directory SpcmDrv.NET.

namespace Spcm
{
public class Drv
{
[DllImport ("spcm win32.d11l") Jpublic static extern IntPtr spcm hOpen (string szDeviceName) ;
[DllImport ("spcm win32.d11")]public static extern void spcm vClose (IntPtr hDevice);

public class CardType
{
public const int TYP_M2I12020 = unchecked ((int)0x00032020) ;
public const int TYP_M2I2021 unchecked ((int)0x00032021);
public const int TYP M2I2025 = unchecked ((int)0x00032025) ;

public class Regs

{

public const int SPC_M2CMD = unchecked ((int)100);

public const int M2CMD CARD_RESET = unchecked ((int)0x00000001) ;

public const int M2CMD_CARD WRITESETUP = unchecked ((int)0x00000002)
Using C#

The SpcmDrv.NET.dIl needs to be included within the Solution Explorer in the References section. Please use right mouse and select
+AddReference”. After this all functions and constants of the driver object are available.

Please see the example in the directory CSharp as a start:

/) ===== open card -----
hDevice = Drv.spcm hOpen ("/dev/spcm0") ;
if ((int)hDevice == 0)

{
Console.WriteLine ("Error: Could not open card\n");
return 1;

/] === get card type -----
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCITYP, out lCardType);
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC PCISERIALNR, out lSerialNumber);

(c) Spectrum Instrumentation GmbH 62

Software .NET programming languages

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

[/ —==== open remote card -----
hDevice = Drv.spcm hOpen ("TCPIP::192.168.169.14::INSTO: :INSTR") ;

(c) Spectrum Instrumentation GmbH 63

Software .NET programming languages

Using Managed C++/CLI

The SpcmDrv.NET.dII needs to be included within the project options. Please select ,Project” - ,Properties” - ,References” and finally
,Add new Reference”. After this all functions and constants of the driver object are available.

Please see the example in the directory CppCIR as a start:

/] === open card -----
hDevice = Drv::spcm_hOpen ("/dev/spcm0") ;
if ((int)hDevice == 0)

{

Console::WritelLine ("Error: Could not open card\n");
return 1;

4 ===== get card type -----
dwErrorCode = Drv::spcm dwGetParam i32 (hDevice, Regs::SPC_PCITYP, l1CardType);
dwErrorCode = Drv::spcm dwGetParam i32 (hDevice, Regs::SPC_PCISERIALNR, lSerialNumber);

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

[/ —=—== open remote card -----
hDevice = Drv::spcm hOpen ("TCPIP::192.168.169.14::INST0::INSTR");

Using VB.NET

The SpcmDrv.NET.dII needs to be included within the project options. Please select ,Project” - ,Properties” - ,References” and finally
,Add new Reference”. After this all functions and constants of the driver object are available.

Please see the example in the directory VB.NET as a start:

't open card -----
hDevice = Drv.spcm_hOpen ("/dev/spcm0")

If (hDevice = 0) Then
Console.WritelLine ("Error: Could not open card\n")
Else

U oosoo get card type -----
dwError = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCITYP, 1CardType)
dwError = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_ PCISERIALNR, lSerialNumber)

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

't open remote card -----
hDevice = Drv.spcm_hOpen ("TCPIP::192.168.169.14::INSTO0::INSTR")

Using J#
The SpcmDrv.NET.dIl needs to be included within the Solution Explorer in the References section. Please use right mouse and select ,AddRef-
erence”. After this all functions and constants of the driver object are available.

Please see the example in the directory JSharp as a start:

1 ===== open card -----
hDevice = Drv.spcm hOpen ("/dev/spcm0") ;

if (hDevice.ToInt32() == 0)
System.out.println ("Error: Could not open card\n");
else
{
7y ===== get card type -----
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCITYP, lCardType);
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCISERIALNR, lSerialNumber);

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

' open remote card -----
hDevice = Drv.spcm hOpen ("TCPIP::192.168.169.14::INSTO: :INSTR")

(c) Spectrum Instrumentation GmbH 64

Software Python Programming Interface and Examples

Python Programming Interface and Examples

Driver interface

The driver interface contains the following files. The files need to be included in the python project. Please do not edit any of these files as
they are regularly updated if new functions or registers have been included. To use pyspcm you need either python 2 (2.4, 2.6 or 2.7) or
python 3 (3.x) and ctype, which is included in python 2.6 and newer and needs to be installed separately for Python 2.4.

file pyspcm.py
The file contains the interface to the driver library and defines some needed constants. All functions of the python library are similar to the
above explained standard driver functions and use ctypes as input and refurn parameters:

fh oooos Windows -----
Load DLL into memory.

use windll because all driver access functions use _stdcall calling convention under windows
if (bIs64Bit == 1):

spcmDll = windll.LoadLibrary ("spcm win64.dl11")
else:

spcmDl11l = windll.LoadLibrary ("spcm win32.d11")

load spcm_hOpen
if (bIs64Bit):

spcm_hOpen = getattr(spcmbDll, "spcm hOpen")
else:

spcm_hOpen = getattr(spcmDll, " spcm hOpen@4")
spcm_hOpen.argtype = [c_char p]
spcm_hOpen.restype = drv_handle

load spcm _vClose
if (bIs64Bit):

spcm_vClose = getattr(spcmDll, "spcm vClose")
else:

spcm_vClose = getattr(spcmDll, " spcm vClose@4")
spcm_vClose.argtype = [drv_handle]
spcm_vClose.restype = None

load spcm_dwGetErrorInfo 132
if (bIs64Bit):

spcm_dwGetErrorInfo i32 = getattr(spcmDll, "spcm dwGetErrorInfo i32")
else:

spcm_dwGetErrorInfo_ i32 = getattr(spcmDll, "_spcm_dwGetErrorInfo_i32Q@16")
spcm_dwGetErrorInfo i32.argtype = [drv_handle, uptr32, ptr32, c char p]
spcm_dwGetErrorInfo i32.restype = uint32

file regs.py

The regs.py file defines all constants that are used for the driver. The constant names are the same names compared to the C/C++ examples.
All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is recommended
to only use these constant names for better readability of the programs:

write a command

hardware reset

write setup only

start of card (including writesetup)
enable trigger engine

SPC_M2CMD = 1001

M2CMD_CARD_RESET = 0x000000011

M2CMD CARD WRITESETUP = 0x000000021
M2CMD_CARD_START = 0x000000041
M2CMD_CARD_ENABLETRIGGER = 0x000000081

P e e

file spcerr.py
The spcerr.py file contains all error codes that may be returned by the driver.

Examples

Examples for Python can be found on the USB stick in the directory /examples/python. The directory contains the above mentioned header
files and some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs
and to modify them in any kind.

When allocating the buffer for DMA transfers, use the following function to get a mutable character buffer:
ctypes.create_string_buffer(init_or_size[, size]) &

(c) Spectrum Instrumentation GmbH 65

Software Java Programming Inferface and Examples

Java Programming Interface and Examples

Driver interface

The driver interface contains the following Java files (classes). The files need to be included in your Java project. Please do not edit any of
these files as they are regularly updated if new functions or registers have been included. The driver interface uses the Java Native Access
(UNA) library.

This library is licensed under the LGPL (https://www.gnu.org/licenses/Igpl-3.0.en.html) and has also to be included to your Java project.

To download the latest jna.jar package and to get more information about the JNA project please check the projects GitHub page under:
https://github.com/java-native-access/jna

The following files can be found in the ,SpcmDrv” folder of your Java examples install path.

SpcmDrv32.java / SpemDrvé4.java

The files contain the interface to the driver library and defines some needed constants. All functions of the driver interface are similar to the
above explained standard driver functions. Use the SpcmDrv32.java for 32 bit and the SpecmDrvé4.java for 64 bit projects:

public interface SpcmWin64 extends StdCalllLibrary {
SpcmWiné4 INSTANCE = (SpcmWiné64)Native.loadLibrary (("spcm win64"), SpcmWiné4.class);

long spcm_hOpen (String sDeviceName) ;

void spcm_vClose (long hDevice);

int spcm dwSetParam 164 (long hDevice, int lRegister, long 1llValue);

int spcm_dwGetParam i64 (long hDevice, int 1lRegister, LongByReference pllValue);

int spcm_dwSetParam ptr (long hDevice, int 1lRegister, Pointer pValue, long llLen);

int spcm dwGetParam ptr (long hDevice, int lRegister, Pointer pValue, long llLen);

int spcm_dwSetParam d64 (int hDevice, int lRegister, double dvalue);

int spcm_dwGetParam d64 (int hDevice, int 1lRegister, DoubleByReference pdValue);

int spcm dwDefTransfer i64 (long hDevice, int 1BufType, int 1Direction, int 1NotifySize, Pointer pDataBuffer,
long 11BrdOffs, long llTransferLen);

int spcm dwlInvalidateBuf (long hDevice, int 1BufType);

int spcm dwGetErrorInfo i32 (long hDevice, IntByReference plErrorReg, IntByReference plErrorValue, Pointer sEr-—
rorTextBuffer) ;

int spcm_dwGetErrorInfo i64 (long hDevice, IntByReference plErrorReg, LongByReference pllErrorValue, Pointer
sErrorTextBuffer) ;

int spcm_dwGetErrorInfo dé64 (long hDevice, IntByReference plErrorReg, DoubleByReference pdErrorValue, Pointer
sErrorTextBuffer) ;
}

SpcmRegs.java

The SpcmRegs class defines all constants that are used for the driver. The constants names are the same names compared to the C/C++
examples. All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better readability of the programs:

public static final int SPC_M2CMD = 100;

public static final int M2CMD_CARD_RESET = 0x00000001;

public static final int M2CMD_CARD WRITESETUP = 0x00000002;
public static final int M2CMD CARD START = 0x00000004;

public static final int M2CMD_CARD_ENABLETRIGGER = 0x00000008;

SpcmErrors.java
The SpcmErrors class contains all error codes that may be returned by the driver.

Examples

Examples for Java can be found on the USB stick in the directory /examples/java. The directory contains the above mentioned header files
and some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs
and to modify them in any kind.

(c) Spectrum Instrumentation GmbH 66

Software Julia Programming Interface and Examples

Julia Programming Interface and Examples

Driver interface

The driver interface contains the following files. The files need to be included in the julia project. Please do not edit any of these files as they
are regularly updated if new functions or registers have been included.

file spem_drv.jl
The file contains the interface to the driver library and defines some needed constants. All functions of the Julia library are similar to the above
explained standard driver functions.

hDevice::Int64 = spcm hOpen (sDeviceName::String)
Cvoid spcm_vClose (hDevice::Int64)

dwErr::UInt32, 1lValue::Int32 = spcm dwGetParam i32 (hDevice::Int64, lRegister::Int32)
dwErr::UInt32, llValue::Int64 = spcm dwGetParam i64 (hDevice::Int64, lRegister::Int32)
dwErr::UInt32, dvValue::Float6d4d = spcmﬁdeetParamfd64(hDevice::Int64, 1Register::Int32)

dwErr::UInt32 = spcm dwSetParam i32 (hDevice::Int64, lRegister::Int32 ,1Value::Int32)
dwErr::UInt32 = spcm dwSetParam i64 (hDevice::Int64, lRegister::Int32, llValue::Int64)
dwErr::UInt32 = spcm dwSetParam d64 (hDevice::Int64, lRegister::Int32, dValue::Float64)

dwErr::UInt32 = spcm dwDefTransfer i64 (hDevice::Int64, 1BufType::Int32, lDirection::Int32,
dwNotifySize::UInt32, pDataBuffer::Array{Intlé6,1},
agwBrdOffs: :UInt64, gwTransferLen::UInt64)

dwErr::UInt32 = spcm dwDefTransfer i64 (hDevice::Int64, 1BufType::Int32, lDirection::Int32,
dwNotifySize::UInt32, pDataBuffer::Array{Int8,1},
gwBrdOffs::UInt64, gwTransferLen::UInt64)

dwErr::UInt32 = spcm dwlInvalidateBuf (hDevice::Int64, 1BufType::Int32)
dwErr::UInt32, dwErrReg::UInt32, 1ErrVal::Int32, sErrText::String = spcm dwGetErrorInfo i32 (hDevice::Int64)

dwErr::UInt32, dwErrReg::UInt32, 1llErrVal::Int64, sErrText::String = spcm_dwGetErrorInfo_i64 (hDevice::Int64)
dwErr::UInt32, dwErrReg::UInt32, dErrVal::Float64, sErrText::String = spcm dwGetErrorInfo dé64 (hDevice::Int64)

file regs.jl

The regs.jl file defines all constants that are used for the driver. The constant names are the same names compared to the C/C++ examples.
All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is recommended
to only use these constant names for better readability of the programs:

const SPC_M2CMD = Int32(100) # write a command

const M2CMD_CARD RESET = Int32 (1) # 0x00000001 # hardware reset

const M2CMD CARD WRITESETUP = Int32(2) # 0x00000002 # write setup only

const M2CMD_CARD_START = Int32(4) # 0x00000004 # start of card (including writesetup)
const M2CMD_CARD ENABLETRIGGER = Int32(8) # 0x00000008 # enable trigger engine

#

file spcerr.jl
The spcerr.jl file contains all error codes that may be returned by the driver.

Examples

Examples for Julia can be found on USB-Stick in the directory /examples/julia. The directory contains the above mentioned include files and
some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs and
to modify them in any kind.

(c) Spectrum Instrumentation GmbH 67

Software

LabVIEW driver and examples

LabVIEW driver and examples

A full set of drivers and examples is available for LabVIEW for Windows. Lab-
VIEW for Linux is currently not supported. The LabVIEW drivers have their own
manual. The LabVIEW drivers, examples and the manual are found on the USB
stick that has been included in the delivery. The latest version is also available on

our webpage www.spectrum-instrumentation.com

Please follow the description in the LabVIEW manual for installation and useage

of the LabVIEW drivers for this card.

MATLAB driver and examples

A full set of drivers and examples is available for Mathworks MATLAB for Windows (32 bit
and 64 bit versions) and also for MATLAB for Linux (64 bit version). There is no additional
toolbox needed to run the MATLAB examples and drivers.

The MATLAB drivers have their own manual. The MATLAB drivers, examples and the manual
are found on the USB stick that has been included in the delivery. The latest version is also

available on our webpage www.spectrum-instrumentation.com

Please follow the description in the MATLAB manual for installation and useage of the

MATLAB drivers for this card.

Internal Clock PLL hd
Sampling Rate (kHz) ~ Reference Clock (kz)
o 4
El
[Clockoutput [Clock Termination

External Divider 3|2

Softwars Trigger vl

External Trigger | Chamnel Trigger

Pos.Ede | | _pos.Edge
ExtPw g2 Level0 30
Level 1 30
ChPw g2

] Tig Termination [Trig Output

Trigger Delay (Samples) 5[0
NEED ssm0my]

Hgh] s wlots S|
NEES sso0my]

Hgh] s wlots S|

[Enable 5000 mY. v|
2w vl = viowgh |

=
Cardindex 30|
4 Channel ,
———p——— EIEER
o -av -a
Seo STO_| rot Loz Fat | step seralne. [|
e] s S [acqung postrigger em () b

3 [Enable 5000 mY. v|
vgh vl = viorsdp |

110000 120000 130000 140000 150000 160000 170000 1snias

110000 120000 130000 140000 150000 160000 170000 1snias

1801a6)

509 ! v
azes 120000 140000

160000 1801a6)

Image 38: LabVIEW driver oscilloscope example

MATLAB Application (Example]

spom_LibPackage

|
[MATLAB 32 Bit: spem_ROpen.mexw32 . | | [WATLAB 64 B: spem hOpen mexw6d, |
I

spem_datasort_win32.dll

spcm_datasort_winé4.dll

[Windows Driver DLL spem_win32.dIl_|

[Windows Driver DLL spcm_winé4.dIl_|

Windows 32 Bit
Kernel Driver

|
|
|
|
|
|
|
|
|
|
|
|
|
I
!

Windows 64 Bit
Kernel Driver

| £7 Windows 7

1dows 8

Windows 10

Windows 32 Bit | Windows 64 Bit

Image 39: Spectrum MATLAB driver structure

(c) Spectrum Instrumentation GmbH

68

Integrated Webserver

Integrated Webserver

The digitizerNETBOX/generatorNETBOX has an integrated webserver following the LXI standards. The web pages give informtion about the
device, allows fo set up ethernet details or make firmware updates.

The webserver can be reached in three different ways:

* Directly by typing the IP address into the URL field of a Web Browser. p

® By selecting it from the Spectrum Control Center via the context menu on the remote device node (as shown on Cn
the screen shot on the right).

* On Windows machines (starting with Windows 7) on the device properties page, as described in the section
,Finding the digitizerNETBOX in the network” earlier in this manual.

4 Remote
4 [DN246F ™ o
Hw Copytoclipboard >
Add demo card

Instl Transfer Speed Test

»Ren NetboxDiscovery 1
) Open Web Interface.
Start Netbox Monitor

Identification

Refresh

Expand
Collapse

Home Screen

The home screen gives an overview about the instrument
showing all main information:

Name
Instrument Model

Manufacturer
Serial Number

Description

LXI Features
LXI Version
Host Name

mDNS Host Name

MAC Address

TCP/IP Address

Firmware revision

Software Revision
Instrument Address

String (VISA)
LAN ID Indicator

SPECTRUM

INSTRUMENTATION

Description :
Welcome
The specific model code of your digitizerNETBOX or
generatorNETBOX LAN Instrument Model DN2.465-08
. aﬁguration Manufacturer Spectrum GmbH
Manufacturer of the device - Spectrum GmbH o - W
The unique serial number of the product. The serial num- N Description digitizerNETBOX
ber is also found on the type plate on the back of the e ; e e 0
chassis of the digitizerNETBOX/generatorNETBOX. Locumentation o e
3 . ofe . i ‘ersion evice Specification rev.

A free definable description of the specific device that you s

N N . . A Update Host Name 192.168.169.23
can edit by yourself in the LAN configuration page. It is N R r R
recommended to include the location of the device and Power o SEIha e e
any other infoamtion that helps your network administra- Downloads MAC Address 0C:C4:7A:B3:C2:A2

tor. it TCP/IP Address 192.168.169.23
Listing the supported LXI features Access faese-lon 9z
e S P . . Software Revisi 5.17.17117
Listing the used LXI specification for designing this device Contact -
The host name given by the DN server. If the DNS server Dohug Instrument Address String [VISA] TCPIP::192.168.169.23::INSTR

LAN ID Indicator Enable

does not generate a host name, the IP address is shown
The internal mDNS host name which allows to find the M’
device in the network environment. The mDNS host name

can also be changed in the LAN configuration page cerereeene
The unique MAC address of the device which can also be

found on the type plate on the back of the device

The current TCP/IP address as given by the DNS

The revision of the installed firmware files for the digitizerNETBOX/generatorNETBOX itself. The integrated digitizer modules have their own firmware versioning
and can be read out by the Spectrum control center

NETBOX DN2.465-08 sn1234

The software revision of the integrated remote server software

The instrument address string following the VISA nofification. Using this address string one can access the digitizerNETBOX/generatorNETBOX from the software.
The integrated digitizer modules are numbered starting with INSTO (example: TCPIP::192.168.169.14::INSTO::INSTR)

Pressing this button starts flashing the LAN LED light on the front plate of the device. This helps to find the device inside a 19" rack where the back of the device
with the type plate is not easily accessible.

LAN Configuration

password is given in the security page.

Name

Host Name
mDNS Host Name
Domain

Description

Fome Current Network Configuration
The LAN configuration page allows to change the LAN con- Host Name 192.168.169.23
figuration of the device. This page is password protected if a B - oticerNETEOX Jocal
Domain
Description digitizerNETBOX
Documentation - enabled
AR IP Address 192.168.169.23
Descripﬁon Update Subnet Mask 255.255.255.0
Default Gat 192.168.169.250
The offical host name as given by the DNS Power D:Saéewzre(:;ay 60,902
D load 5 -
The local host name which can be changed here Lowﬁ T T
The domain in which the digitizerNETBOX is placed if the .
DNS server has filled this information correctly =
The device description which can be changed here %
Debug

DHCP

IP Address
Subnet Mask
Default Gateway
DNS Server(s)

DHCP (Dynamic Host Configuration Protocol) setting
The current IP address as given by the DHCP server (DHCP enable) or entered manually

The current subnet mask as given by the DHCP server (DHCP enable) or entered manually

The current default gateway address as given by the DHCP server (DHCP enable) or entered manually
The current DNS server address as given by the DHCP server (DHCP enable) or entered manually

As default DHCP (IPv4) will be used and an IP address will be automatically set. In case no DHCP server is found, an IP will be obtained
using the AutolP feature. This will lead to an IPv4 address of 169.254.x.y (with x and y being assigned to a free IP in the network) using a
subnet mask of 255.255.0.0.

The default IP setup can also be restored, by using the ,LAN Reset” button on the device.

If a fixed IP address should be used instead, the parameters need to be set according to the current LAN requirements.

(c) Spectrum Instrumentation GmbH 69

Integrated Webserver

Pressing the ,edit configuration” button will issue a new edit
page. If a password is given in the security pages the pass-
word must be entered before the edit screen is available

Name Description

Host Name Enter a new host name for the mDNS host name. Please
note that host names can only contain letters, numbers,
minus and underscore, no dots or blanks are allowed

Domain The domain in which the

digitizerNETBOX/generatorNETBOX is placed

After review this button submits the changes and changes
host name and description permanently

Submit Button

Reset Button Discards the changes and returns host name and descrip-

tion to the previous values.

TCP/IP Mode Select between DHCP + AutolP to have all configuration
done automatically or Manual to enter all IP related set-
tings manual.

IP Address Only available if manual TCP/IP mode is selected

Subnet Mask Only available if manual TCP/IP mode is selected

Only available if manual TCP/IP mode is selected
Only available if manual TCP/IP mode is selected

Default Gateway
DNS Server(s)
Submit Button

Home

LAN
Configuration
Status
Security

Documentation

=

Firmware
Update

Power
Downloads
Logging
Access
Contact
Debug

LXI

on the front page of the device will set back the LAN configuration to DHCP

Reset Button

Status

Shows the internal device status. For each internal
digitizer/generator module the status whether the module is
available or locked by a user is shown. A digitizer/generator
module is locked as soon as it is opened from any software
on any PC.

In case the instrument is locked, the IP address of the current
control PC can be obtained here.

Also the current temperature will be displayed here.
DN6.xxxx models of either the digitizerNETBOX or
generatorNETBOX will also display the case fan speed here
as well (not shown on screen shot).

Security

Allows to set a password to protect the device from changes.
The password secures access to LAN configuration, power set-
tings like reboot or power down and firmware updates of the
instrument. As default no password is set for the configuration.

To change the password the old password has to be entered
once and the new password twice fo avoid typing errors.

In case of a lost password the LAN reset button on the front

plate of the digitizerNETBOX/generatorNETBOX will delete
the password and set the complete device to the default stage
again.

Documentation

All related documents for the device that may be needed to
operate the digitizerNETBOX/generatorNETBOX or to pro-
gram it are available by download as pdf documents from
here.

Discards the changes and returns IP settings to the previous values

Home
LAN
Configuration

sons |
Security
Documentation

Firmware
Update

Power
Downloads
Logging
Access
Contact

Debug

Documentation

Firmware
Update

Power
Downloads
Logging
Access
Contact
Debug

T

ome

nfiguration
atus
Security

Documentation

Firmware
Update

Power

2 e
gk

Downloads
Logging
Access
Contact
Debug

Network Configuration

Host Name

Domain

Descripton
Attention: Leaving a field empty will set the default value
Submit Reset

Network Configuration

@®DHCP + AutoIP
TCP/IP Mode P
1P Address 192 168 169 |23

Subnet Mask 255 |255 ||255 |0
Default Gateway 192 .168 .169 .250
DNS Server(s) (192 168 163 .[202

submit | Reset

Status
TCPIP::192.168.169.23::inst0: :INSTR available

Temperature
CPU +45.0°C / +113.0°F

Security

Old Password

New P d

Repeat New Password
Submit | | Reset

Documentation

Manual DN2.46x

Datasheet DN2.46x

Homepage www.spectrum-instrumentation.com

NETBOX DN2.465-08 sn1234

Submits the changes. If you set the IP details manually please be sure that your device is adressable within your network. In case of a failure the LAN reset button

(c) Spectrum Instrumentation GmbH

70

Integrated Webserver

Firmware Update

The complete firmware of the device can be updated with a
single firmware update file which is available for download
directly here by clicking the ,check online” button or on the
Spectrum webpage www.spectrum-instrumentation.com. The
firmware file contains update files for the following parts:

e firmware files of the integrated digitizer/generator
modules

drivers for the digitizer/generator modules

software and setup of the underlying operating system
webserver and integrated web pages and manuals
remote server software

initialization scripts and tools

Power

From here the digitizerNETBOX/generatorNETBOX can be
remotely shut down or remotely rebooted. Please make sure
that no software is currently accessing the digitizerNETBOX
or generatorNETBOX before using any of these power options.

Downloads

The websever gives access to all necessary software compo-
nents for download. All these software installers are also
available on the USB-Stick that is delivered with the
digitizerNETBOX/generatorNETBOX and on the internet.

Loggin

This is a debug sefting only. You shouldn’t change any of these
settings unless our support team requested you to do so. Oper-
ating the digitizerNETBOX/generatorNETBOX with log-level
JLog all” will slow down the operation as each single call is
logged as a text entry in the internal log file.

These debug log settings are similar to the ones described in the
chapter about the Spectrum control center. Using this logging
the internal communication between the remote server and the
locally installed Spectrum driver is logged.

Please note that some digitizerNETBOX/generatorNETBOX
products (having only one internal digitizer/generator in-
stalled) show an error message

.KernelOpen /dev/spcm1 failed”. This error message is not an
error but simply the remote server trying to open the second in-
ternal digitizer that isn't installed.

=

ome
LAN
Configuration
Status
Security
Documentation

Firmware
e

Power

Downloads
Logging
Access
Contact

Debug

Home

LAN
Configuration

Status

Security
Documentation

Firmware
Update

Downloads
Logging
Access

Contact

Debug

Ho

N
Configuration
Status

B

e

Security

Documentation

Firmware
Update

Contact
Debug

=

ome

N
Configuration
Status

Security

Documentation

Firmware Update
Please select the firmware archive: | Durchsuchen... | Keine Datei ausgewahit.

Upload

New Firmware
Check online for new firmware version

Power settings
Reboot NETBOX Reboot
Shut down NETBOX Shut down

Downloads

Windows
SBench 6 32Bit 64Bit
Control Center & Driver 32Bit 64Bit

Linux

SBench 6 32Bit RPM 64Bit RPM 32Bit DEB 64Bit DEB
Control Center 32 & 64Bit

Driver 32 & 64Bit

Logging

DO NOT CHANGE ANYTHING HERE UNLESS YOU HAVE BEEN PROMPTED TO!
On-board Log Level

[Append logging to file

Submit

Firmware
Update

Power
Downloads
Access
Contact
Debug

LXI

: Thu Dec 17 11:46:59 2015

NETBOX DN2.465-08 sn1234

(c) Spectrum Instrumentation GmbH 71

Integrated Webserver

Access

In here it is possible to restrict the access to the N

digitizerNETBOX/generatorNETBOX fo certain IP addresses. o
As long as the access list is clear, everybody who has a TCP/IP
connection fo the digitizerNETBOX/generatorNETBOX can get

Documentation

control of it and use it with any software like SBench 6. %
Power

Use the add IP to list field with the submit button to add an IP L

address to the list. As a default your current IP address is shown | | ggging

in the entry field.
Contact
Debug

After having setup an access list everybody else who is not on
the access restricted IP list can still see the digitizerNETBOX or

Current restrictions

Access restricted to IPs

Clear List

New IP

P e T —

Submit

generatorNETBOX in the network and use the discovery function but access to the internal digitizers/generators is restricted and no longer

possible.

Use this option together with the password option to completely secure the digitizerNETBOX/generatorNETBOX from unwanted access.

Embedded Server .

The embedded server is an option and is only available if or- = 1an

dered with and installed on your particular digitizerNET- el Ui
BOX/generatorNETBOX. Please see the dedicated Embedded ﬁm
Server Option chapter for more information on this feature. P cation
Firmware
Using the ,Reset password” button the password for the user f::f:e
~embedded” is reset to the default password which is also ,em- = [~
bedded” -
Access
The autostart feature allows the user to automatically start Contact
scripts, programs or services on the device during boot pro- sy
cess. If something fails with the start, the autostart feature can i

be disabled using the ,Autostart [Disable]” button. After fixing

the automatically starting programs one can enable the autostart feature again.

Login/Logout

As soon as a password has been entered in the security set- s

tings a login/logout command is available from the webpage -

menu. Status
Security

Documentation

After entering the password once the login stays valid until a
logout or until closing the web browser.

Firmware
Update

Power

Embedded
Server

Embedded Server Options
Reset password for user "embedded" | Reset password

Autostart Enabled| pisable

System date and time

System date

System time |1 m s

Time zone [(GMT-11s
Submit

Pacific, Midway v

Login
Enter password:

login

(c) Spectrum Instrumentation GmbH 72

IVI Driver About IVI

IVI Driver

The IVI Foundation is an open consortium founded in 1998 to promote standards for programming test instruments. Composed primarily of
instrument manufacturers, end-users, software vendors, and system integrators, the Foundation strives to create specifications that govern the
development of instrument drivers.

-> http://IVIfoundation.org

About IVI

The IVI standards define an open driver architecture, a set of instrument classes, and shared software components. Together these provide
critical elements needed for instrument interchangeability.

Benefits
IVI offers several benefits to measurement system designers:

IVI's defined Application Programming Interfaces (APIs) standardize common measurement functions reducing the time needed to learn a
new IVl instrument.

Instrument simulation allows developers to run code without an instrument. This feature reduces the need for sometimes scarce measure-
ment hardware resources and it can simplify testing of measurement applications.

IVI drivers feature enhanced ease of use in popular Application Development Environments. IVI's standard APls, combined with VI driver
wrappers where appropriate, provide fast, intuitive access to driver functions.

IVI drivers provide for interchangeability. Interchangeability reduces the time and effort needed to integrate measurement devices into
new or existing systems

Interchangeability

Systems designed with VI drivers enjoy the benefits of standardized code that can be interchanged into other systems. This code also supports
inferchange of measurement devices - helping to prevent hardware obsolescence. Interchangeability is supported on three levels: The IVI
architecture specifications allow architectural interchangeability - that is a standard driver architecture that can be reused. The class specifi-
cations provide syntactic interchangeability which supports instrument exchange with minimal code changes. The highest level of interchange-
ability is achieved by using the IVl signal specifications.

General Concept of the Spectrum IVI driver

The Spectrum IVI driver is based on the standard Spectrum APl and can be used with any Spectrum products specified below in the supported
hardware chapter. The Spectrum products to be accessed with the VI driver can be locally installed data acquisition cards, remotely installed
data acquisition cards or remote LXI instruments like a digitizerNETBOX or generatorNETBOX.

Host PC

Software directly Software using Spectrum
accessing API IVl interface Control Center

A
Y
VI Config
Server

A
Y Y

Spectrum
IVI Driver v

A 4 ¢ Y

| Spectrum API | [spectrum Remote Control | Embedded Remote
Controller

Discovery over LAN

LAN

Remote PC Remote Instrument (LXI)

Y Y
| Kernel Driver | Kernel Driver |

digitizerNETBOX
Locally Installed Cards Remotely Installed Cards generatorNETBOX

Image 40: General concept of IV drivers for Spectrum products. Access of different type of products

(c) Spectrum Instrumentation GmbH 73

IVI Driver

Supported Spectrum Hardware

Supported Spectrum Hardware

All Spectrum analog data acquisition hardware based on the SPCM driver structure is supported by the IVI driver. There is only one IVI driver

for all hardware.

Supported data acquisition and generation card families:

M2i.20xx and M2i.20xx-exp family
M3i.21xx and M3i.2 1xx-exp family
M4i.22xx-x8 and M4x.22xx-x4 family
M2i.30xx and M2i.30xx-exp family
M2i.31xx and M2i.3 1xx-exp family
M3i.32xx and M3i.32xx-exp family
M2i.40xx and M2i.40xx-exp family
M3i.41xx and M3i.41xx-exp family
M4i.44xx-x8 and M4x.44xx-x4 family
M2i.46xx and M2i.46xx-exp family
M2i.47xx and M2i.47 xx-exp family
M3i.48xx and M3i.48xx-exp family
M2i.49xx and M2i.49xx-exp family
M2p.59xx-x4 family

M2p.65xx-x4 family

M2i.60xx and M2i.60xx-exp family

* M4i.66xx-x8 and M4x.66xx-x4 family

Supported digitizerNETBOX families

DN2.20x-xx family

DN2.22x-xx and DN6.22x-xx family
DN2.44x-xx and DN6.44x-xx family
DN2.46x-xx and DN6.46x-xx family
DN2.49x-xx and DN6.49x-xx family
DN2.59x-xx and DN6.59x-xx family

Supported generatorNETBOX families

® DN2.60x-xx family
® DN2.65x-xx and DN6.65x-xx family
® DN2.66x-xx and DN6.66x-xx family

IVI Compliance

General information on the Spectrum IVI driver:

IVI class specification version Version 3.3
IVI-C interface supported
IVI-COM interface supported
IVI.NET interface not supported

The following IVI classes are supported by different instrument types:

IVI Class Supported by Spectrum hardware

IVIScope Supported by all digitizerNETBOX devices and analog data
acquisition cards listed above

IVIDigitizer Supported by all digitizerNETBOX devices and analog data

acquisition cards listed above

IVIFgen Supported by all generatorNETBOX devices and analog data

generator cards listed above

Supported Operating Systems

32 bit operating systems 64 bit operating systems
Winodws 7 Windows 7

Windows 8 Windows 8

Windows 10 Windows 10

Windows 11 Windows 11

IVI specific driver function prefix
SpecScope_

SpecDigitizer_

SpecFGen_

(c) Spectrum Instrumentation GmbH

74

IVI Driver

IVI Compliance

Supported Standard Driver Features

Feature
State caching

Range checking

Instrument Status Checking

Multithread Safety

Simulation

Supported

yes
standard feature of the API
which is permanently active

yes

standard feature of the API
which is permanently active
yes

standard feature of the API
which is permanently active

yes

Description of the Feature

To minimize the number of 1/O calls needed to configure an instrument to a new state, IVI specific drivers
may implement state caching. IVI specific drivers can choose to implement state caching for all, some, or
none of the instrument settings. If the user enables state caching and the IVI specific driver implements
caching for hardware configuration attributes, driver functions perform instrument I/O when the current state
of the instrument settings is different from what the user requests.

If range checking is enabled, an IVI specific driver checks that input parameters are within the valid range for
the instrument.

If instrument status checking is enabled, an IVI specific driver automatically checks the status of the
instrument after most operations. If the instrument indicates that it has an error, the driver returns a special
error code. The user then calls the Error Query function to retrieve the instrument specific error code from the
instrument.

IVI drivers are multithread safe. Multithread safety means that multiple threads in the same process can use
the same IVI driver session and that different sessions of the same IVI driver can run simultaneously on
different threads.

If simulation is enabled, an VI specific driver does not perform instrument /O, and the driver creates
simulated data for output parameters. This allows the user to execute instrument driver calls in the application
program even though the instrument is not available.

IVIScope Supported Class Capabilities

Feature

IVIScopeBase
IVIScopelnterpolation
IVIScopeTVTrigger
IVIScopeRuntTrigger
IVIScopeGlitchTrigger
IVIScopeWidthTrigger
IVIScopeAclineTrigger
IVIScopeWaveformMeas
IVIScopeMinMaxWaveform
IVIScopeProbeAutoSense
IVIScopeContinuous Acquisition
IVIScopeAverage Acquisition
IVIScopeSampleMode
IVIScopeTrigger Modifier
IVIScopeAutoSetup

Supported Description of Feature

yes Base Capabilities of the IVIScope specification. This group includes the capability to acquire waveforms using edge triggering.
no Extension: [VIScope with the ability to configure the oscilloscope to interpolate missing points in a waveform.

no Extension: IVIScope with the ability to trigger on standard television signals.

no Extension: [VIScope with the ability to trigger on runts.

no Extension: IVIScope with the ability to trigger on glitches.

no Extension: [VIScope with the ability to trigger on a variety of conditions regarding pulse widths.

no Extension: IVIScope with the ability to trigger on zero crossings of a network supply voltage.

no Extension: [VIScope with the ability to calculate waveform measurements, such as rise time or frequency.

no Extension: IVIScope with the ability to acquire a minimum and maximum waveforms that correspond to the same time range.
no Extension: [VIScope with the ability to automatically sense the probe attenuation of an attached probe.

no Extension: IVIScope with the ability to continuously acquire data from the input and display it on the screen.

no Extension: [VIScope with the ability to create a waveform that is the average of multiple waveform acquisitions.

no Extension: IVIScope with the ability to return the actual sample mode.

no Extension: [VIScope with the ability to modify the behavior of the triggering subsystem in the absence of a expected trigger.
no Extension: IVIScope with the automatic configuration ability.

IVIDigitizer Supported Class Capabilities

Feature
IVIDigitizerBase

IVIDigitizerMultiRecord Acquisition

IVIDigitizerBoardTemperature
IVIDigitizerChannelFilter
IVIDigitizerChannelTemperature

IVIDigitizerTimelnterleavedChannels

IVIDigitizerDatalnterleavedChan-

nels
IVIDigitizerReferenceOscillator
IVIDigitizerSampleClock
IVIDigitizerSampleMode
IVIDigitizerSelfCalibration
IVIDigitizerDownconversion
IVIDigitizerArm
IVIDigitizerMultiArm
IVIDigitizerGlitchArm
IVIDigitizerRuntArm
IVIDigitizerSoftwareArm
IVIDigitizerTVArm
IVIDigitizerWidthArm
IVIDigitizerWindowArm
IVIDigitizerTriggerModifier

IVIDigitizerMultiTrigger
IVIDigitizerPretriggerSamples
IVIDigitizerTriggerHoldoff

IVIDigitizerGlitchTrigger
IVIDigitizerRunfTrigger
IVIDigitizerSoftwareTrigger
IVIDigitizerTVTrigger
IVIDigitizerWidthTrigger
IVIDigitizerWindowTrigger

Supported Description of Feature

yes Base Capabilities of the IVIDigitizer specification. This group includes the capability to acquire waveforms using edge triggering.

yes Extension: IVIDigitizer with the ability to do multi-record acquisitions.

no Extension: IVIDigitizer with the ability to report the temperature of the digitizer.

no Extension: IVIDigitizer with the ability to control the channel input filter frequency.

no Extension: IVIDigitizer with the ability to report the temperature of indIVIdual digitizer channels.

no Extension: IVIDigitizer with the ability to combine two or more input channels to achieve higher acquisitions rates and/or record
lengths.

no Extension: IVIDigitizer with the ability to interleave the data from two or more input channels, usually to create complex (I/Q)
data.

no Extension: IVIDigitizer with the ability to use an external reference oscillator.

yes Extension: IviDigitizer with the ability to use an external sample clock.

no Extension: IVIDigitizer with the ability to control whether the digitizer is using real-time or equivalenttime sampling.

yes Extension: IVIDigitizer with the ability to perform self calibration.

no Extension: IVIDigitizer with the ability to do frequency translation or downconversion in hardware.

no Extension: IVIDigitizer with the ability to arm on positive or negative edges.

no Extension: IVIDigitizer with the ability fo arm on one or more sources.

no Extension: IVIDigitizer with the ability to arm on glitches.

no Extension: IVIDigitizer with the ability to arm on runts.

no Extension: IVIDigitizer with the ability to arm acquisitions.

no Extension: IVIDigitizer with the ability to arm on standard TV signals.

no Extension: IVIDigitizer with the ability to arm on a variety of conditions regarding pulse widths.

no Extension: IVIDigitizer with the ability to arm on signals entering or leaving a defined voltage range.

no Extension: IVIDigitizer with the ability to perform an alternative triggering function in the event that the specified trigger event
doesn't occur.

yes Extension: IVIDigitizer with the ability to trigger on one or more sources.

yes Extension: IVIDigitizer with the ability to specify a number of samples to fill up the data buffer with pre-rigger data.

no Extension: IVIDigitizer with the ability to specify a length of time after the digitizer detects a trigger during which the digitizer
ignores additional triggers.

no Extension: IVIDigitizer with the ability to trigger on glitches.

no Extension: IVIDigitizer with the ability to trigger on runts.

no Extension: IVIDigitizer with the ability to trigger acquisitions.

no Extension: IVIDigitizer with the ability to trigger on standard television signals.

no Extension: IVIDigitizer with the ability to trigger on a variety of conditions regarding pulse widths.

yes Extension: IVIDigitizer with the ability to trigger on signals entering or leaving a defined voltage range.

(c) Spectrum Instrumentation GmbH 75

IVI Driver Find more Information on IVI

IVIFGen Supported Class Capabilities

Feature Supported Description of Feature

IviFgenBase yes Base Capabilities.

IviFgenArbFrequency no Extension: IVIFgen with the ability to generate arbitrary waveforms with user-defined sample rate.
IviFgenArbWfm yes Extension: IVIFgen with the ability to generate user-defined arbitrary waveforms.
IviFgenArbSeq no Extension: IVIFgen with the ability to generate of arbitrary sequences

IviFgenBurst no Extension: IVIFgen with the ability to generate discrete numbers of waveform cycles.
IviFgeninternalTrigger no Extension: IVIFgen with the ability to use internally generated triggers
IviFgenModulateAM no Extension: IVIFgen with the ability to apply amplitude modulation to an output signal
IviFgenModulateFM no Extension: IVIFgen with the ability to apply frequency modulation to an output signal
IviFgenSoftwareTrigger no Extension: IVIFgen with the ability to generate signals based on software triggers
IviFgenStdFunc yes Extension: IVIFgen with the ability to generate standard waveforms

IviFgenTrigger no Extension: IVIFgen with the ability to use user-definable trigger sources

Find more Information on IVI
The official IVI foundation webpage offers a lot of additional information on setup and programming of the IVI drivers using different envi-

ronments.

General Information on IVI
->http://ivifoundation.org

The website of the IVI foundation offers several documents and detailed explanations for the useage of IVI drivers and the benefits.

IVl Getting Started Guides and Videos

-> http://ivifoundation.org/resources/default.aspx

In here you find getting started guides and videos for different environments:

Using IVI with Visual C++

Using IVI Visual C# and Visual Basic .NET
Using IVI with LabVIEW

Using IVI with LabWindows/CVI

Using IVl with MATLAB

Using IVI with Measure Foundry

Using IVI with Visual Basic 6.0

Using IVI with Keysight VEE Pro

Installation

Installer

The Spectrum IVI Driver Installer is shipped as an executable containing all VI related software parts. There is only one installer for both 32 bit
and 64 bit environments. The insaller automatically detects the components that are necessary to install.

Please be sure to have the latest drivers available. You find the current driver archieves on the Spectrum web-
page www.spectrum-instrumentation.com available for download. &

Shared Components

To improve users' experience when they combine drivers and other software from various vendors, it is important to have some key software
components common to all implementations. In order to accomplish this, the IVI Foundation provides a standard set of shared components
that must be used by all compliant drivers and ancillary software. These components provide services to drivers and driver clients that need
to be common to all drivers, for instance, the administration of system-wide configuration.

The IVI shared components are available directly at the IVl Foundation homepage www.ivifoundation.org. Please download the lates version
of the IVI shared components there.

The IVI Shared Component installer creates a directory structure to house the IVl Shared Components as well as IVI drivers themselves. The
root of this directory structure is referred to as the IVl install directory [IVlInstallDir] and is typically located under [program files]\IVI Founda-
tion\IVI.

Installation Procedure

Please stick to this installation order to avoid any problems with the drivers:

(c) Spectrum Instrumentation GmbH 76

IVI Driver

Installation

Spectrum Card locally installed

Install the Spectrum Control Center
Install the IVI shared components from www.ivifoundation.org
Install the IVI driver package

Spectrum Card remotely installed

Install the Spectrum Control Center on the host system

Install the VI shared components from www.ivifoundation.org
Install the IVI driver package on the host system

Spectrum digitizerNETBOX/generatorNETBOX remotel

Install the Spectrum Control Center on the host system

Install the IVI shared components from www.ivifoundation.org
Install the IVI driver package on the host system

No Spectrum hardware available, only simulated cards

e Install the Spectrum Control Center on the system

Install the VI shared components from www.ivifoundation.org
Install the IVI driver package on the host system

Installation of the IVI driver package

Please start the installation by doubleclicking the install file

There is one installer for the IVI scope class driver and one installer
for the IVI digitizer class driver. You may install one of them or
both.

Select the setup type for the installation:

e Typical setup will install the most common program features

e Custom setup allows user to choose which program features
will be installed.

e Complete setup will install all prgra, features.

Typical and Complete setup runs without any further user interac-
tion and install the needed components of the driver.

Install card into the system as described in the hardware manual
Start the system and let Windows install the hardware driver from USB-Stick or from your download folder

Install card into the remote system as described in the hardware manual
Start the remote system and let Windows install the hardware driver from USB-Stick or from your download folder
Install the Spectrum Remote Package onto the remote PC as described in the manual

Setup the remote connection inside the Control Center as described in the hardware manual

controlled
Connect the digitizerNETBOX/generatorNETBOX to your LAN or directly to your host PC

Setup the remote connection inside the Control Center as described in the hardware manual

Setup one or more demo cards inside the Spectrum Control Center

j@ SpecDigitizer IVI Driver 1.2.0 Setup

—

Welcome to the SpecDigitizer
IVI Driver 1.2.0 Setup Wizard

The Setup Wizard will install SpecDigitizer IVI Driver 1.2.0 on
your computer, Click Next to continue or Cancel to exit the
Setup Wizard.

created with

DACIFIC MINDWORKS < Back MNext =] [Cancel
nimbus
ﬁ SpecDigitizer IVI Driver 1.2.0 Setup (|

Choose Setup Type
Choose the setup type that best suits your needs

¢

Typical

Installs the most common program features. Recommended for
most users.

Custom

Allows users to choose which program features will be installed
and where they will be installed. Recommended for advanced
users,

Complete

All program features will be installed. (Requires most disk

space)
created with
PACIFIC MINDWORKS MNext =
nimbus

(c) Spectrum Instrumentation GmbH

77

IVI Driver Configuration Store

The custom setup allows users to deselect certain parts of the driv-
er pcckoge ﬁ SpecDigitizer IVI Driver 1.2.0 Setup P9

Custom Setup
Select the way you want features to be installed.

Click on the icons in the tree below to change the way features will be installed.

=] IVI Driver This installs the driver binaries.
= v| Documentation

This feature requires 166 1KE on
your hard drive. Ithas 1of 1
subfeatures selected. The
subfeatures require 2125KE on y...

m
=]
7

Reset] lDiskUsage] l < Back][Mext =] l Cancel

Configuration Store

General Information

The IVI Configuration Server is the runtime module that is responsible for providing system database services to IVl based measurement system
applications. Specifically, it provides system initialization and configuration information. The IVI Configuration Server is used by several of
the IVI compliant modules. For instance, the Configuration Server indicates which physical instrument and IVI driver will be used by a par-
ticular application to provide a particular measurement capability.

Since a typical system intermixes instruments and drivers from multiple vendors this system configuration service needs to be accessed in a
vendor independent fashion. Therefore, the IVI Configuration Server is an IVl shared component (that is, the code is owned by the IVI Foun-
dation). The VI Configuration Server is provided by the IVI Foundation because the architecture requires a single Configuration Server be
installed on any system, therefore having a single shared implementation eliminates potential conflicts from divergent implementations.

The IVI Configuration Server is a single executable and one or more XML configuration stores (databases) made up of the following basic
components:

® The physical database (known as the configuration store). A physical configuration store is a single XML file. APls are available to read
and write the data to arbitrary files, thus providing complex applications with the ability to directly manage system configurations.

The API (and its implementation) used to read information from the configuration store(s). The IVl modules typically use this APl when they
are instantiated and configured.

The API (and its implementation) to write information to the configuration store(s). This APl is typically used by GUI or other applications
that set up the initial configuration.

The API (and its implementation) used to bind an instance of the Configuration Server code to a particular copy of the configuration infor-
mation stored on a system. This includes appropriate algorithms for gaining access to the master configuration store.

Repeated Capabilities

In many instruments there are capabilities that are duplicated either identically or very similarly across the instrument. Such capabilities are
called repeated capabilities. The IVI class-compliant APIs represent repeated capabilities by a parameter that indicates which instance of the
duplicate capability this function is intended to access. The IVI C APIs include this parameter as an additional parameter to function calls.

The IVI Configuration Server provides a way for software modules to publish the functionality that is duplicated and the strings that the soft-
ware module recognizes to access the repeated capabilities. The IVI Configuration Server also provides a way for the client to supply aliases

for the physical identifiers recognized by the drivers.

The Spectrum IVI driver for example uses the channel index as repeated capability allowing to give channel names as an identifier.

(c) Spectrum Instrumentation GmbH 78

Programming the Board Overview

Programming the Board

Overview

The following chapters show you in detail how to program the different aspects of the board. For every topic there’s a small example. For
the examples we focused on Visual C++. However as shown in the last chapter the differences in programming the board under different
programming languages are marginal. This manual describes the programming of the whole hardware family. Some of the topics are similar
for all board versions. But some differ a little bit from type to type. Please check the given tables for these topics and examine carefully which
seftings are valid for your special kind of board.

Register tables

The programming of the boards is totally software register based. All software registers are described in the following form:

The name of the software regis- | | The decimal value of the software register. | | Describes whether Short description of the function-
ter as found in the regs.h file. Also found in the regs.h file. This value must | | the register can be ality of the register. A more de-
These Mnemonics should be be used with all programs or compilers that | | read (r) and/or writ-| | tailed description is found

used to increase readability. cannot use the header file directly. ten (w). above or below the register ta-

R pu—

Table 14: Spectrum API: Command register and basic commands

Register Value Direction Description
SPC_M2CMD 100 w Command register of the board.
M2CMD_CARD_START 4h Starts the board with the current register settings.
M2CMD_CARD_STOP 40h Stops the board manually.
Any constants that can be used to | | The decimal or hexadecimal value of the Short description of
program the register directly are constant, also found in the regs.h file. Hex- | |the use of this con-
shown inserted beneath the register | | adecimal values are indicated with an ,h* stant.
table. at the end. This value must be used with all
programs or compilers that cannot use the
header file directly.

If no constants are given below the register table, the dedicated register is used as a switch. All such registers
are activated if written with a “1” and deactivated if written with a “0*. &

Programming examples

In this manual a lot of programming examples are used to give you an impression on how the actual mentioned registers can be set within
your own program. All of the examples are located in a separated colored box to indicate the example and to make it easier to differ it from
the describing text.

All of the examples mentioned throughout the manual are written in C/C++ and can be used with any C/C++ compiler for Windows or Linux.

(c) Spectrum Instrumentation GmbH 79

Programming the Board

Initialization

Complete C/C++ Example

#include “../c_header/dlltyp.h”
#include “../c header/regs.h”
#include “../c_header/spcm drv.h”
#include <stdio.h>

int main ()

{
drv_handle hDrv;
int32 1lCardType;

hDrv =
if

spcm_hOpen ("/dev/spcm0");
(!hDrv)

return -1;
spcm_dwGetParam i32 (hDrv, &1CardType) ;
printf

spcm_vClose

SPC_PCITYP,
(hDxrv) ;

return 0;

}

(“Found card M2i/M3i/M4i/M4x/M2p/M5i.%04x in the

// the handle of the device
// a place to store card information

// Opens the board and gets a handle

// check whether we can access the card

// simple command, read out of card type
system\n”, lCardType & TYP VERSIONMASK) ;

Initialization

Before using the card it is necessary fo open the kernel device to access the hardware. It is only possible to use every device exclusively using
the handle that is obtained when opening the device. Opening the same device twice will only generate an error code. After ending the
driver use the device has to be closed again to allow later re-opening. Open and close of driver is done using the spcm_hOpen and spcm_v-

Close function as described in the “Driver Functions” chapter before.

Open/Close Example

drv_handle hDrv;

hDrv =
if

spcm_hOpen ("/dev/spcmO") ;
('hDrv)

{

printf “Open failed\n”);
return -1;

}
do any work with the driver

spcm_vClose
return 0;

(hDrv) ;

// the handle of the device

// Opens the board and gets a handle
// check whether we can access the card

Initialization of Remote Products

The only step that is different when accessing remotely controlled cards or digitizerNETBOXes is the initialization of the driver. Instead of the
local handle one has to open the VISA string that is returned by the discovery function. Alternatively it is also possible to access the card

directly without discovery function if the IP address of the device is known.

drv_handle hDrv;

hDrv =
if

spcm_hOpen ("TCPIP::192.168.169.14::INSTR");
('hDrv)

{

printf “Open of remote card failed\n”);

return -1;

}

// the handle of the device

// Opens the remote board and gets a handle
// check whether we can access the card

Multiple cards are opened by indexing the remote card number:

hDrv = spcm hOpen ("TCPIP::192.168.169.14::INSTR");

hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTO0::INSTR");
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST1::INSTR");
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST2::INSTR") ;

// board #0
//
//
//
//
//

Opens the remote
or alternatively
Opens the remote
all other boards
Opens the remote
Opens the remote

board #0
require an index:
board #1
board #2

Error handling

If one action caused an error in the driver this error and the register and value where it occurs will be saved.

(c) Spectrum Instrumentation GmbH

80

Programming the Board Gathering information from the card

The driver is then locked until the error is read out using the error function spcm_dwGetErrorinfo_i32. Any
calls to other functions will just return the error code ERR_LASTERR showing that there is an error to be read
out.

This error locking functionality will prevent the generation of unseen false commands and settings that may lead to totally unexpected behav-
ior. For sure there are only errors locked that result on false commands or settings. Any error code that is generated to report a condition to
the user won't lock the driver. As example the error code ERR_TIMEOUT showing that the a timeout in a wait function has occurred won't
lock the driver and the user can simply react to this error code without reading the complete error function.

As a benefit from this error locking it is not necessary to check the error return of each function call but just checking the error function once
at the end of all calls to see where an error occurred. The enhanced error function returns a complete error description that will lead to the

call that produces the error.

Example for error checking at end using the error text from the driver:

char szErrorText [ERRORTEXTLEN] ;

spcm_dwSetParam i64 (hDrv, SPC_SAMPLERATE, 1000000) ; // correct command
spcm_dwSetParam 164 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam 164 (hDrv, SPC_POSTTRIGGER, 1024); // correct command
if (spcm _dwGetErrorInfo i32 (hDrv, NULL, NULL, szErrorText) != ERR OK) // check for an error
{
printf (szErrorText); // print the error text
spcm_vClose (hDrv); // close the driver
exit (0); // and leave the program

}

This short program then would generate a printout as:

Error ocurred at register SPC_MEMSIZE with value -345: value not allowed

All error codes are described in detail in the appendix. Please refer to this error description and the descrip-
tion of the software register to examine the cause for the error message. A

Any of the parameters of the spcm_dwGetErrorinfo_i32 function can be used to obtain detailed information on the error. If one is not interested
in parts of this information it is possible to just pass a NULL (zero) to this variable like shown in the example. If one is not interested in the
error fext but wants to install its own error handler it may be interesting to just read out the error generating register and value.

Example for error checking with own (simple) error handler:

uint32 dwErrorReg;
int32 1lErrorValue;
uint32 dwErrorCode;

spcm_dwSetParam_ 164 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam 164 (hDrv, SPC _MEMSIZE, -345); // faulty command
spcm_dwSetParam i64 (hDrv, SPC_ POSTTRIGGER, 1024); // correct command
dwErrorCode = spcm_dwGetErrorInfo_i32 (hDrv, &dwErrorReg, &lErrorValue, NULL);
if (dwErrorCode) // check for an error

{

printf (“Errorcode: %d in register %d at value %d\n”, lErrorCode, dwErrorReg, lErrorValue);

spcm_vClose (hDrv) ; // close the driver

exit (0); // and leave the program

}

Gathering information from the card

When opening the card the driver library internally reads out a lot of information from the on-board eeprom. The driver also offers additional
information on hardware details. All of this information can be read out and used for programming and documentation. This chapter will
show all general information that is offered by the driver. There is also some more information on certain parts of the card, like clock machine
or trigger machine, that is described in detail in the documentation of that part of the card.

All information can be read out using one of the spcm_dwGetParam functions. Please stick to the “Driver Functions” chapter for more details
on this function.

(c) Spectrum Instrumentation GmbH 81

Programming the Board Gathering information from the card

Card type

The card type information returns the specific card type that is found under this device. When using multiple cards in one system it is highly
recommended to read out this register first to examine the ordering of cards. Please don't rely on the card ordering as this is based on the
BIOS, the bus connections and the operating system.

Table 15: Spectrum API: Card Type Register

Register Value Direction Description
SPC_PCITYP 2000 read Type of board as listed in the table below.

The SPC_PCITYP register can be used to read the numeric card type as well as a full name of the card using the spcm_dwGetParam_ptr
function:

// read out the numeric card type as shown in the list below
spcm_dwGetParam i32 (hDrv, SPC_PCITYP, &lCardType) ;

// read out the official name of the card
char acCardType([20] = {};
spcm_dwGetParam ptr (hCard, SPC PCITYP, acCardType, sizeof (acCardType)):

// printout both information:
printf ("Found: %s (decimal: %d)\n", acCardType, lCardType);

One of the following values is returned, when reading this register. Each card has its own card type constant defined in regs.h. Please note
that when reading the card information as a hex value, the lower word shows the digits of the card name while the upper word is a indication

for the used bus type.

Table 16: Spectrum API: list of card type codes for M4i.22xx series

Card type Card type Value Value Card type Card type Value Value
as defined in h lecimal decimal as defined in h lecimal decimal
regs.h regs.h

M4i.2210x8 TYP_M412210_X8 | 72210h 467472 M4i.2230x8 TYP_M412230_X8 72230h 467504

M4i.2211x8 TYP_M412211_X8 | 72211h 467473 M4i.2233x8 TYP_M412233_X8 72233h 467507

M4i.2212x8 TYP_M4I12212_X8 | 72212h 467474 M4i.2234-x8 TYP_M412234_X8 72234h 467508

M4i.2220-x8 TYP_M412220_X8 | 72220h 467488

M4i.2221-x8 TYP_M412221_X8 | 72221h 467489

M4i.2223-x8 TYP_M412223 X8 | 72223h 467491

Table 17: Spectrum API: list of card type codes for Mdx.22xx series

Card type Card type Value Value Card type Card type Value Value
as defined in h lecimal decimal as defined in h decimal decimal
regs.h regs.h

M4x.2210-x4 TYP_M4X2210_X4 | 82210h 533008 M4x.2230-x4 TYP_M4X2230_X4 | 82230h 533040

M4x.2211x4 TYP_M4X2211_X4 | 82211h 533009 M4x.2233-x4 TYP_M4X2233_X4 | 82233h 533041

M4x.2212-x4 TYP_M4X2212_X4 | 82212h 533010 M4x.2234-x4 TYP_M4X2234_X4 | 82234h 533042

M4x.2220x4 TYP_M4X2220_X4 | 82220h 533024

M4x.2221-x4 TYP_M4X2221_X4 | 82221h 533025

M4x.2223-x4 TYP_M4X2223_X4 | 82223h 533027

Hardware and PCB version

Since all of the boards from Spectrum are modular boards, they consist of one base board and one piggy-back frontend module and even-
tually of an extension module like the star-hub. Each of these three kinds of hardware has its own version register. Normally you do not need
this information but if you have a support question, please provide the revision together with it.

Table 18: Spectrum API: hardware and PCB version register overview

Register Value Direction Description

SPC_PCIVERSION 2010 read Base card version: the upper 16 bit show the hardware version, the lower 16 bit show the firmware
version.

SPC_BASEPCBVERSION 2014 read Base card PCB version: the lower 16 bit are divided into two 8 bit values containing pre/post deci-

mal point version information. For example a lower 16 bit value of 0106h represents a PCB version
V1.6. The upper 16 bit are always zero.

SPC_PCIMODULEVERSION 2012 read Module version: the upper 16 bit show the hardware version, the lower 16 bit show the firmware ver-
sion.
SPC_MODULEPCBVERSION 2015 read Module PCB version: the lower 16 bit are divided into two 8 bit values containing pre/post decimal

point version information. For example a lower 16 bit value of 0106h represents a PCB version
V1.6. The upper 16 bit are always zero.

(c) Spectrum Instrumentation GmbH 82

Programming the Board Gathering information from the card

If your board has an additional piggy-back extension module mounted you can get the hardware version with the following register.

Table 19: Spectrum API: extension module hardware and PCB version register

Register Value Direction Description

SPC_PCIEXTVERSION 2011 read Extension module version: the upper 16 bit show the hardware version, the lower 16 bit show the
firmware version.

SPC_EXTPCBVERSION 2017 read Extension module PCB version: the lower 16 bit are divided into two 8 bit values containing pre/post
decimal point version information. For example a lower 16 bit value of 0106h represents a PCB ver-
sion V1.6. The upper 16 bit are always zero.

Reading currently used PXI slot No. (M4x only)

For the PXle cards of the M4x.xxxx series it is possible to read out the current slot number, in which the card is installed within the chassis:

Table 20: Spectrum API: register for reading back the PXle card slot number

Register Value Direction Description
SPC_PXIHWSLOTNO 2055 read Returns the currently used slot number of the chassis.

Firmware versions

All the cards from Spectrum typically contain multiple programmable devices such as FPGAs, CPLDs and the like. Each of these have their

own dedicated firmware version. This version information is readable for each device through the various version registers. Normally you do
not need this information but if you have a support question, please provide us with this information. Please note that number of devices and
hence the readable firmware information is card series dependent:

Table 21: Spectrum API: Register overview of firmware versions

Register Value Direction Description Available for
M2i | M3i | Mdi | M4x | M2p | M5i
SPCM_FW_CTRL 210000 read Main control FPGA version: the upper 16 bit show the firmware X X X X X X

type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

SPCM_FW_CTRL_GOLDEN 210001 read Main control FPGA golden version: the upper 16 bit show the — — X X X X
firmware type, the lower 16 bit show the firmware version. For
the golden (recovery) firmware, the type has always a value of

SPCM_FW_CLOCK 210010 read Clock distribution version: the upper 16 bit show the firmware X — — — — —
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

SPCM_FW_CONFIG 210020 read Configuration controller version: the upper 16 bit show the firm- X X - — - —
ware type, the lower 16 bit show the firmware version. For the
standard release firmware, the type has always a value of 1.

SPCM_FW_MODULEA 210030 read Frontend module A version: the upper 16 bit show the firmware X X X X X —
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

SPCM_FW_MODULEB 210031 read Frontend module B version: the upper 16 bit show the firmware X — — — X —
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

The version is zero if no second frontend module is installed on
the card.

SPCM_FW_MODEXTRA 210050 read Extension module (Star-Hub) version: the upper 16 bit show the X X X - X X
firmware type, the lower 16 bit show the firmware version. For
the standard release firmware, the type has always a value of 1.
The version is zero if no extension module is installed on the
card.

SPCM_FW_POWER 210060 read Power controller version: the upper 16 bit show the firmware — — X X X X
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

Cards that do provide a golden recovery image for the main control FPGA, the currently booted firmware can additionally read out:

Table 22: Spectrum API: Register overview of reading current firmware

Register Value Direction Description
M2i | M3i | Mdi | Max | M2p | M5i

SPCM_FW_CTRL_ACTIVE 210002 read Cards that do provide a golden (recovery) firmware additionally — — X X X X
have a register to read out the version information of the cur-
rently loaded firmware version string, to determine if it is stand-
ard or golden.

The hexadecimal 32bit format is: TVWVUUUUh

T: the currently booted type (1: standard, 2: golden)
V: the version
U: unused, in production versions always zero

(c) Spectrum Instrumentation GmbH 83

Programming the Board Gathering information from the card

Production date

This register informs you about the production date, which is returned as one 32 bit long word. The lower word is holding the information
about the year, while the upper word informs about the week of the year.

Table 23: Spectrum API: production date register

Register Value Direction Description
SPC_PCIDATE 2020 read Production date: week in bits 31 to 16, year in bits 15 to O

The following example shows how to read out a date and how to interpret the value:

spcm_dwGetParam i32 (hDrv, SPC_PCIDATE, &1ProdDate) ;
printf ("Production: week &d of year &d\n“, (lProdDate >> 16) & Oxffff, 1lProdDate & Oxffff);

Last calibration date (analog cards only)

This register informs you about the date of the last factory calibration. When receiving a new card this date is similar fo the delivery date
when the production calibration is done. When returning the card to calibration this information is updated. This date is not updated when
the user does an on-board calibration. The date is returned as one 32 bit long word. The lower word is holding the information about the
year, while the upper word informs about the week of the year.

Table 24: Spectrum API: calibration date register

Register Value Direction Description
SPC_CALIBDATE 2025 read Last calibration date: week in bit 31 to 16, year in bit 15 to O

Serial number

This register holds the information about the serial number of the board. This number is unique and should always be sent together with a
support question. Normally you use this information together with the register SPC_PCITYP to verify that multiple measurements are done with
the exact same board.

Table 25: Spectrum API: hardware serial number register

Register Value Direction Description
SPC_PCISERIALNO 2030 read Serial number of the board

Maximum possible sampling rate

This register gives you the maximum possible sampling rate the board can run. The information provided here does not consider any restric-
tions in the maximum speed caused by special channel settings. For detailed information about the correlation between the maximum sam-
pling rate and the number of activated channels please refer to the according chapter.

Table 26: Spectrum API: maximum sampling rate register

Register Value Direction Description
SPC_PCISAMPLERATE 2100 read Maximum sampling rate in Hz as a 64 bit integer value

Installed memory

This register returns the size of the installed on-board memory in bytes as a 64 bit integer value. If you want to know the amount of samples
you can store, you must regard the size of one sample of your card. All 7 bit and 8 bit A/D and D/A cards use only one byte per sample,
while all other A/D and D/A cards with 12, 14 and 16 bit resolution use two bytes to store one sample. All digital cards need one byte to
store 8 data bits.

Table 27: Spectrum API: installed memory registers. 32 bit read is limited to a maximum of 1 GByte

Register Value Direction Description

SPC_PCIMEMSIZE 2110 read _i32 Installed memory in bytes as a 32 bit integer value. Maximum return value will 1 GByte. If more mem-
ory is installed this function will return the error code ERR_EXCEEDINT32.

SPC_PCIMEMSIZE 2110 read _i64 Installed memory in bytes as a 64 bit integer value

The following example is written for a ,two bytes” per sample card (12, 14 or 16 bit board), on any 8 bit card memory in MSamples is
similar to memory in MBytes.

spcm_dwGetParam_i64 (hDrv, SPC_PCIMEMSIZE, &llInstMemsize) ;
printf ("Memory on card: %d MBytes\n", (int32) (llInstMemsize /1024/1024));
printf (" : %d MSamples\n", (int32) (llInstMemsize /1024/1024/2));

Installed features and options

The SPC_PCIFEATURES register informs you about the features, that are installed on the board. If you want to know about one option being
installed or not, you need to read out the 32 bit value and mask the interesting bit. In the table below you will find every feature that may be

(c) Spectrum Instrumentation GmbH 84

Programming the Board Gathering information from the card

installed on a M2i/M3i/M4i/M4x/M2p/M5i card. Please refer to the ordering information to see which of these features are available for
your card series.

Table 28: Spectrum API: Feature Register and available feature flags

Register Value Direction Description
SPC_PCIFEATURES 2120 read PCl feature register. Holds the installed features and options as a biffield. The read value must be
masked out with one of the masks below to get information about one certain feature.
SPCM_FEAT_MULTI 1h Is set if the feature Multiple Recording / Multiple Replay is available.
SPCM_FEAT_GATE 2h Is set if the feature Gated Sampling / Gated Replay is available.
SPCM_FEAT_DIGITAL 4h Is set if the feature Digital Inputs / Digital Outputs is available.
SPCM_FEAT_TIMESTAMP 8h Is set if the feature Timestamp is available.
SPCM_FEAT_STARHUB6_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 6 cards (M2p).
SPCM_FEAT_STARHUB8_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 8 cards (M4i).
SPCM_FEAT_STARHUB4 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 4 cards (M3i).
SPCM_FEAT_STARHUB5 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 5 cards (M2i).
SPCM_FEAT_STARHUB16_EXTM 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2p).
SPCM_FEAT_STARHUB8 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 8 cards (M3i and M5i).
SPCM_FEAT_STARHUB16 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2i).
SPCM_FEAT_ABA 80h Is set if the feature ABA mode is available.
SPCM_FEAT_BASEXIO 100h Is set if the extra BaseXIO option is installed. The lines can be used for asynchronous digital 1/O, extra trigger or
timestamp reference signal input.
SPCM_FEAT_AMPLIFIER_10V 200h Arbitrary Waveform Generators only: card has additional set of calibration values for amplifier card.
SPCM_FEAT_STARHUBSYSMASTER 400h Is set in the card that carries a System Star-Hub Master card to connect multiple systems (M2i).
SPCM_FEAT_DIFFMODE 800h M?2i.30xx series only: card has option -diff installed for combining two SE channels to one differential channel.
SPCM_FEAT_SEQUENCE 1000h Only available for output cards or I/O cards: Replay sequence mode available.
SPCM_FEAT_AMPMODULE_10V 2000h Is set on the card that has a special amplifier module for mounted (M2i.60xx/61xx only).
SPCM_FEAT_STARHUBSYSSLAVE 4000h Is set in the card that carries a System Star-Hub Slave module to connect with System Star-Hub master systems (M2i).
SPCM_FEAT_NETBOX 8000h The card is physically mounted within a digitizerNETBOX, generatorNETBOX or hybridNETBOX.
SPCM_FEAT_REMOTESERVER 10000h Support for the Spectrum Remote Server option is installed on this card.
SPCM_FEAT_SCAPP 20000h Support for the SCAPP option allowing CUDA RDMA access to supported graphics cards for GPU calculations
(M5i, M4i and M2p)
SPCM_FEAT_DIG16_SMB 40000h M2p: Set if option M2p.xxxx-DigSMB is installed, adding16 additional digital 1/Os via SMB connectors.
SPCM_FEAT_DIG16_FX2 80000h M2p: Set if option M2p.xxxx-DigFX2 is installed, adding16 additional digital 1/Os via FX2 multipin connectors.
SPCM_FEAT_DIGITALBWFILTER 100000h A digital (boxcar) bandwidth filter is available that can be globally enabled/disabled for all channels.
SPCM_FEAT_CUSTOMMOD_MASK | FOOO0000h | The upper 4 bit of the feature register is used to mark special custom modifications. This is only used if the card has
been specially customized. Please refer to the extra documentation for the meaning of the custom modifications.
(M2i/M3i). For M5i, M4i, M4x and M2p cards see ,Custom modifications” chapter instead.

The following example demonstrates how to read out the information about one feature.

spcm_dwGetParam i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
if (lFeatures & SPCM_FEAT_ DIGITAL)
printf ("Option digital inputs/outputs is installed on your card");

The following example demonstrates how to read out the custom modification code.

spcm_dwGetParam i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
1CustomMod = (lFeatures >> 28) & OxF;
if (1lCustomMod != 0)

printf ("Custom modification no. %d is installed.", 1lCustomMod) ;

Installed extended Options and Features
Some cards (such as M5i/M4i/M4x/M2p cards) can have advanced features and options installed. This can be read out with the following
register:

Table 29: Spectrum API: Extended feature register and available extended feature flags

Register Value Direction Description
SPC_PCIEXTFEATURES 2121 read PCl extended feature register. Holds the installed extended features and options as a bitfield. The
read value must be masked out with one of the masks below to get information about one certain fea-
ture.
SPCM_FEAT_EXTFW_SEGSTAT 1h Is set if the firmware option ,Block Statistics” is installed on the board, which allows certain statistics to be on-board
calculated for data being recorded in segmented memory modes, such as Multiple Recording or ABA.
SPCM_FEAT_EXTFW_SEGAVERAGE | 2h Is set if the firmware option ,Block Average” is installed on the board, which allows on-board hardware averaging of
data being recorded in segmented memory modes, such as Multiple Recording or ABA.
SPCM_FEAT_EXTFW_BOXCAR 4h Is set if the firmware mode ,Boxcar Average” is supported in the installed firmware version.
SPCM_FEAT_EXTFW_PULSEGEN 8h Is set if the firmware mode “Pulse Generator” is installed on the board, which allows generation of pulses for output
on the card’s multi-purpose 1/O lines (XIO).

(c) Spectrum Instrumentation GmbH 85

Programming the Board Gathering information from the card

Miscellaneous Card Information

Some more detailed card information, that might be useful for the application to know, can be read out with the following registers:

Table 30: Spectrum API: register overview of miscellaneous cards information

Register Value Direction Description

SPC_MIINST_MODULES 1100 read Number of the installed front-end modules on the card.

SPC_MIINST_CHPERMODULE 1110 read Number of channels installed on one front-end module.

SPC_MIINST_BYTESPERSAMPLE 1120 read Number of bytes used in memory by one sample.

SPC_MIINST_BITSPERSAMPLE 1125 read Resolution of the samples in bits.

SPC_MIINST_MAXADCVALUE 1126 read Decimal code of the full scale value.

SPC_MIINST_MINEXTCLOCK 1145 read Minimum external clock that can be fed in for direct external clock (if available for card model).
SPC_MIINST_MAXEXTCLOCK 1146 read Maximum external clock that can be fed in for direct external clock (if available for card model).
SPC_MIINST_MINEXTREFCLOCK 1148 read Minimum external clock that can be fed in as a reference clock.
SPC_MIINST_MAXEXTREFCLOCK 1149 read Maximum external clock that can be fed in as a reference clock.

SPC_MIINST_ISDEMOCARD 1175 read Returns a value other than zero, if the card is a demo card.

Function type of the card

This register register returns the basic type of the card:

Table 31: Spectrum API: register card function type and possible types

Register Value Direction Description
SPC_FNCTYPE 2001 read Gives information about what type of card it is.
SPCM_TYPE_AI Th Analog input card (analog acquisition; the M2i.4028 and M2i.4038 also return this value)
SPCM_TYPE_AO 2h Analog output card (arbitrary waveform generators)
SPCM_TYPE_DI 4h Digital input card (logic analyzer card)
SPCM_TYPE_DO 8h Digital output card (pattern generators)
SPCM_TYPE_DIO 10h Digital 1/O (input/output) card, where the direction is software selectable.

Used type of driver

This register holds the information about the driver that is actually used to access the board. Although the driver interface doesn’t differ be-
tween Windows and Linux systems it may be of interest for a universal program to know on which platform it is working.

Table 32: Spectrum API: register driver type information and possible driver types

Register Value Direction Description
SPC_GETDRVTYPE 1220 read Gives information about what type of driver is actually used
DRVTYP_LINUX32 1 Linux 32bit driver is used

DRVTYP_WDM32 Windows WDM 32bit driver is used (XP/Vista/Windows 7/8/10/11).

DRVTYP_WDMé64 Windows WDM 64bit driver is used by 64bit application (XP64/Vista/Windows 7/8/10/11).

DRVTYP_WOW64 Windows WDM 64bit driver is used by 32bit application (XP64/Vista/Windows 7/8/10/11).

N[O |O |~

DRVTYP_LINUX64 Linux 64bit driver is used

Driver version

This register holds information about the currently installed driver library. As the drivers are permanently improved and maintained and new
features are added user programs that rely on a new feature are requested to check the driver version whether this feature is installed.

Table 33: Spectrum API: driver version read register

Register Value Direction Description
SPC_GETDRVVERSION 1200 read Gives information about the driver library version

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Driver Major Version Driver Minor Version Driver Build
8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit O to bit 15

Kernel Driver version

This register informs about the actually used kernel driver. Windows users can also get this information from the device manager. Please refer
to the ,Driver Installation” chapter. On Linux systems this information is also shown in the kernel message log at driver start time.

Table 34: Spectrum API: kernel driver version read register

Register Value Direction Description
SPC_GETKERNELVERSION 1210 read Gives information about the kernel driver version.

(c) Spectrum Instrumentation GmbH 86

Programming the Board

Reset

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Driver Major Version Driver Minor Version

Driver Build

8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23

16 Bit wide, bit O to bit 15

The following example demonstrates how to read out the kernel and library version and how to print them.

spcm_dwGetParam_i32 (hDrv,
spcm_dwGetParam i32 (hDrv,

SPC_GETDRVVERSION,
SPC_GETKERNELVERSION,

&lLibVersion) ;
&1KernelVersion) ;

printf ("Kernel V %d.%d build %d\n”, 1KernelVersion >> 24, (lKernelVersion >> 16) & Oxff, 1KernelVersion & Oxffff);
printf ("Library V %d.%d build %d\n”,lLibVersion >> 24, (lLibVersion >> 16) & Oxff, lLibVersion & Oxffff);

This small program will generate an output like this:

Kernel V 1.11 build 817
Library V 1.1 build 854

Custom modifications

Since all of the boards from Spectrum are modular boards, they consist of one base board and one piggy-back frontend module and even-
tually of an extension module like the Star-Hub. Each of these three kinds of hardware has its own version register. Normally you do not need
this information but if you have a support question, please provide the revision together with it.

Table 35: Spectrum API: custom modification register and different bitmasks to split the register in various hardware parts

Register Value Direction Description
SPCM_CUSTOMMOD 3130 read Dedicated feature register used to mark special custom modifications of the base card and/or the
frontend module and/or the Star-Hub module. This is only used if the card has been specially
customized. Please refer fo the extra documentation for the meaning of the custom modifications.
This register is supported for all M5i, M4i, M4x, M2p cards and all digitizerNETBOX,
generatorNETBOX or hybridNETBOX based upon these series of cards.
SPCM_CUSTOMMOD_BASE_MASK 000000FFh Mask for the custom modification of the base card.
SPCM_CUSTOMMOD_MODULE_MASK 0000FFOOh Mask for the custom modification of the frontend module(s).
SPCM_CUSTOMMOD_STARHUB_MASK OOFFO000h | Mask out custom modification of the Star-Hub module.

Reset

Every Spectrum card can be reset by software. Concerning the hardware, this reset is the same as the power-on reset when starting the host
computer. In addition to the power-on reset, the reset command also brings all internal driver settings to a defined default state. A software
reset is automatically performed, when the driver is first loaded after starting the host system.

Performing a board reset can be easily done by the related board command mentioned in the following table.

Table 36: Spectrum API: command register and reset command

Register Value Direction Description
SPC_M2CMD 100 w Command register of the board.
M2CMD_CARD_RESET 1h A software and hardware reset is done for the board. All settings are set to the default values. The data in the board’s
on-board memory will be no longer valid. Any output signals like trigger or clock output will be disabled.

(c) Spectrum Instrumentation GmbH

87

digitizerNETBOX/generatorNETBOX specific registers

Information about the digitizerNETBOX/generatorNETBOX, in which the card is installed, can be read out via the card handle.

The following digitizerNETBOX/generatorNETBOX specific information registers can be used:

Table 37: Spectrum API: digitizerNETBOX/generatorNETBOX specific registers and available information

Register Value Direction Description

SPC_NETBOX_TYPE 400000 read Hex coded version of the digitizerNETBOX/generatorNETBOX, example 024901 10h:
bit 24 to 31: Series: example 02h = DN2

bit 16 to 23: Family: example 49h = 49

bit 8 to 15: Speed grade: example O1h = 1

bit O to 7: Channels: example 10h = 16

Decoded example: DN2.491-16

SPC_NETBOX_SERIALNO 400001 read Serial number of the digitizerNETBOX/generatorNETBOX itself. In most cases the serial numbers of
the digitizerNETBOX/generatorNETBOX and the embedded cards are consecutive but there is no
guarantee for this.

SPC_NETBOX_PRODUCTIONDATE 400002 read Production date: week in bit 31 to 16, year in bit 15 to O

SPC_NETBOX_HWVERSION 400003 read The hardware version of the digitizerNETBOX/generatorNETBOX products
SPC_NETBOX_SWVERSION 400004 read The software version of the installed remote server

SPC_NETBOX_FEATURES 400005 read Features of the digitizerNETBOX/generatorNETBOX. Holds the installed features and options as a

bitfield. The read value must be masked out with one of the masks below to get information about
one certain feature.

NETBOX_FEAT_DCPOWER Th Is set if one of the DC power options are installed in the system.

NETBOX_FEAT_BOOTATPOWERON | 2h Is set if the special feature automatic boot on power on is installed. This would allow remote devices to automatically
reboot after a failure of the power supply.

NETBOX_FEAT_EMBEDDEDSERVER 4h Is set if the option Embedded Server is installed.

Using the dwGetParam_ptr function, added with revison 7 of the driver, allows to read the SPC_NETBOX_TYPE as a fext string without the
need to decode the return value:

// read out the numeric card type as shown in the list below
spcm_dwGetParam i32 (hDrv, SPC_NETBOX TYPE, &1NetboxType) ;

// read out the official name of the card
char acCardType([20] = {};
spcm_dwGetParam ptr (hCard, SPC NETBOX TYPE, acNetboxType, sizeof (acNetboxType)):

// printout both information:
printf ("Found: %s (decimal: %d)\n", acNetboxType, 1NetboxType) ;

Register Value Direction Description
SPC_NETBOX_CUSTOM 400006 read Custom code for custom modifications of the digitizerNETBOX/generatorNETBOX.
SPC_NETBOX_WAKEONLAN 400007 write This command is issed to wake a digitizerNETBOX/generatorNETBOX that is currently in standby-

mode with a special wake-on-lan message. Please note that the card handle is NULL in this case as
there is no opened card here. The argument is the MAC address of that device

SPC_NETBOX_MACADDRESS 400008 read Reads out the MAC address of the digitizerNETBOX/generatorNETBOX.

SPC_NETBOX_LANIDFLASH 400009 write By writing 1 to this register, one can start the autoamtic flashing of the LAN Id to detect a particulat
digitizerNETBOX/generatorNETBOX that is installed in a Rack of multiple digitizerNETBOX or
generatorNETBOX devices. Writing a O to this register will stop the flashing again.

SPC_NETBOX_TEMPERATURE 400010 read Read out the temperature inside the digitizerNETBOX/generatorNETBOX (same as displayed in the
webinterface status information) in Kelvin.
SPC_NETBOX_SHUTDOWN 400011 write Remotely shut down the digitizerNETBOX/generatorNETBOX. Value must be set to 0.
SPC_NETBOX_RESTART 400012 write Remotely restart the digitizerNETBOX/generatorNETBOX. Value must be set to 0.
SPC_NETBOX_FANSPEEDO 400013 read DN2: Read out the current cooling fan speed of main fan (right side)
DNé: Read out the current cooling fan speed of the power supply fan
SPC_NETBOX_FANSPEED1 400014 read DN2: not used

DN6: Read out the current cooling fan speed of the outer auxiliary fan

(c) Spectrum Instrumentation GmbH 88

Analog Inputs Channel Selection

Analog Inputs

Channel Selection

One key setting that influences all other possible settings is the channel enable register. A unique feature of the Spectrum cards is the possibility
to program the number of channels you want to use. All on-board memory can then be used by these activated channels.

This description shows you the channel enable register for the complete card family. However, your specific board may have less channels
depending on the card type that you have purchased and therefore does not allow you to set the maximum number of channels shown here.

Table 38: Spectrum API: channel enable register and register settings

Register Value Direction Description
SPC_CHENABLE 11000 read/write Sets the channel enable information for the next card run.
CHANNELO 1 Activates channel O
CHANNEL1 2 Activates channel 1
CHANNEL2 4 Activates channel 2
CHANNEL3 8 Activates channel 3

The channel enable register is set as a bitmap. That means that one bit of the value corresponds to one channel to be activated. To activate
more than one channel the values have to be combined by a bitwise OR.

Example showing how to activate 4 channels:

spcm_dwSetParam i64 (hDrv, SPC_CHENABLE, CHANNELO | CHANNEL1 | CHANNEL2 | CHANNEL3);

The following table shows all allowed settings for the channel enable register when your card has a maximum of 1 channel.

Channels to activate

ChO Values to program Va_|ue as hex Value as decimal
X CHANNELO 1h 1

The following table shows all allowed settings for the channel enable register when your card has a maximum of 2 channels.

Channels to activate
ChO Ch1 Values to program Value as hex Value as decimal
X CHANNELO 1h 1
X CHANNEL1 2h 2
X X CHANNELO | CHANNEL1 3h 3

The following table shows all allowed settings for the channel enable register in case that you have a four channel card.

Channels to activate
ChO Chl Ch_2 Ch3 Values to program Vchas hex Value as decimal
X CHANNELO 1h 1
X CHANNEL1 2h 2
X CHANNEL2 4h 4
X CHANNEL3 8h 8
X X CHANNELO | CHANNEL1 3h 3
X X CHANNELO | CHANNEL2 5h 5
X X CHANNELO | CHANNEL3 %h 9
X X CHANNELT | CHANNEL2 6h [}
X X CHANNELT | CHANNEL3 Ah 10
X X CHANNEL2 | CHANNEL3 Ch 12
X X X X CHANNELO | CHANNEL1 | CHANNEL2 | CHANNEL3 Fh 15

Any channel activation mask that is not shown here is not valid. If programming an other channel activation,
the driver will return with an error code ERR_VALUE. A

To help user programs it is also possible to read out the number of activated channels that correspond to the currently programmed bitmap.

Table 39: Spectrum API: channel count register

Register Value Direction Description
SPC_CHCOUNT 11001 read Reads back the number of currently activated channels.

(c) Spectrum Instrumentation GmbH 89

Analog Inputs Setting up the inputs

Reading out the channel enable information can be done directly after setting it or later like this:

spcm_dwSetParam i32 (hDrv, SPC_CHENABLE, CHANNELO | CHANNEL1) ;
spcm_dwGetParam i32 (hDrv, SPC_CHENABLE, &lActivatedChannels);
spcm_dwGetParam_i32 (hDrv, SPC_CHCOUNT, &lChCount);

printf ("Activated channels bitmask is: 0x%08x\n", lActivatedChannels);
printf ("Number of activated channels with this bitmask: %$d\n", 1ChCount) ;

Assuming that the two channels are available on your card the program will have the following output:

Activated channels bitmask is: 0x00000003
Number of activated channels with this bitmask: 2

Important note on channel selection

channel settings throughout this handbook are described for the maximum number of possible channels that
are available on one card of the current series. There can be less channels on your actual type of board or
bus-system. Please refer to the technical data section to get the actual number of available channels.

As some of the manuals passages are used in more than one hardware manual most of the registers and f

Setting up the inputs

This analog acquisition board uses separate input stages and converters on each -
channel. This gives you the possibility to set up the desired and concerning your
application best suiting input range also separately for each channel. All input

stage related seftings can easily be set by the corresponding input registers. The
table below shows the available input stage registers and possible standard values

for your type of board. As there are also modified versions available with different @—E:'.J i lG‘T” l—;
H 5@ Ohm Path

input ranges it is recommended to read out the currently available input ranges as

shown later in this chapter. Channel @
[Channel 1

Banduidth Limit

Input ranges

This analog acquisition board has several different input ranges for each channel. -
This gives you the possibility to set up the desired and concerning your application
best suiting input range also separately for each channel. The input ranges can

easily be set by the corresponding input registers. The table below shows the avail-

able input registers and possible standard ranges for your type of board. As there
are also modified versions available with different input ranges it is recommended | (903 F5n N T
to read out the currently available input ranges as shown later in this chapter. 0 G Bk Sancutam Linit |
et T
The available input rages are read out using the following registers. =
Table 40: Spectrum API: registers for reading the installed input ranges from card EEPROM
Register Value Direction Description
SPC_READIRCOUNT 3000 read Returns the number of available input ranges.
SPC_READRANGEMINO 4000 read Reads the lower border of input range O in mV
SPC_READRANGEMIN1 4001 read Reads the lower border of input range 1 in mV
SPC_READRANGEMAXO 4100 read Reads the upper border of input range O in mV
SPC_READRANGEMAX1 4101 read Reads the upper border of input range 1 in mV

The following example reads out the number of available input ranges and reads and prints the minimum and maximum value of all input
ranges.

spcm_dwGetParam i32 (hDrv, SPC_READIRCOUNT, &lNumberOfRanges) ;
for (i = 0; i < 1lNumberOfRanges; i++)
{
spcm_dwGetParam i32 (hDrv, SPC_READRANGEMINO + i, &lMinimumInputRage) ;
spcm_dwGetParam_i32 (hDrv, SPC_READRANGEMAXO + i, &lMaximumInputRange);
printf (,Range %d: %d mV to %d mV\n“, i, 1MinimumInputRange, lMaximumInputRange) ;

}

(c) Spectrum Instrumentation GmbH 90

Analog Inputs Setting up the inputs

The input range is selected individually for each channel. Please note that the correct input path needs to be set

Table 41: Spectrum API: input range settings register and available vales depending on installed low-voltage option

Register Value Direction Description

SPC_AMPO 30010 read/write Defines the input range of channelO.
SPC_AMPI1 30110 read/write Defines the input range of channel1.
SPC_AMP2 30210 read/write Defines the input range of channel2.
SPC_AMP3 30310 read/write Defines the input range of channel3.

Standard Input ranges:

200 + 200 mV calibrated input range for the appropriate channel.
500 + 500 mV calibrated input range for the appropriate channel.
1000 + 1V calibrated input range for the appropriate channel.
2500 + 2.5V calibrated input range for the appropriate channel.

Low-voltage Input ranges (option M4i.22xx-ir40m or M4i.23xx-ir40m installed):

40 + 40 mV calibrated input range for the appropriate channel.

100 + 100 mV calibrated input range for the appropriate channel.

200 + 200 mV calibrated input range for the appropriate channel.

500 + 500 mV calibrated input range for the appropriate channel.
Input offset
In most cases the external signals will not be symmetrically re- input used input used
lated fo groun.d. If you want to acquire such asymmetrical sig- sig nal ' IR+£2V sig nal R«1V
nals, it is possible to use the smallest input range that matches z0v y

. .) . . \
the biggest absolute signal amplitude without exceeding the |
15V -+

range.

The figure at the right shows this possibility. But in this exam-
ple you would leave half of the possible resolution unused. 05V -1

It is much more efficient if you shift the signal on-board to be
as symmetrical as possible and to acquire it within the best 5, _|
possible range.

This results in a much better use of the converters resolution.

On this acquisition boards from Spectrum you have the pos- 20y
sibility to adjust the input offset separately for each channel.

possible better

Image 41: Spectrum API: using the input offset shifting to optimize the usage of the input range

The example in the right figure shows signals with a 20v
range of 1.0 V that have offsets up to 1.0 V. So relat-
ed to the desired input range these signals have offsets '3V~

of £100 %.

For compensating such offsets you can use the offset reg- o5y -{--—- -
ister for each channel separately. If you want to compen-
sate the +100 % offset of the outer left signal, you would

| |
| |
| |
1 |
J I Input
have to set the offset to -100 % to compensate it. P l 77777777 4| 77777777

\ |

1 |

\ |

1 1

\ |

f |

range

As the offset levels are relatively to the related input 10V
range, you have fo calculate and set your offset again

when changing the input’s range. B

The table below shows the offset registers and the possi- +100% ' 450 % 0% 509% 1009 Send

ble offset ranges for your specific type of board. offeet
-100 % 50 % 0% +50% +100 % ,,.Z;::s

Image 42: Spectrum API: effects of different input offset setting

(c) Spectrum Instrumentation GmbH 91

Analog Inputs Setting up the inputs

Image 43: Spectrum API: input offset registers and available register settings

Register Value Direction Description Offset range

SPC_OFFSO 30000 read/write Defines the input's offset and therefore shifts the input of channel0. | + 200 % in steps of 1 %
SPC_OFFS1 30100 read/write Defines the input's offset and therefore shifts the input of channell. | + 200 % in steps of 1 %
SPC_OFFS2 30200 read/write Defines the input's offset and therefore shifts the input of channel2. | + 200 % in steps of 1 %
SPC_OFFS3 30300 read/write Defines the input's offset and therefore shifts the input of channel3. | + 200 % in steps of 1 %

AC/DC offset compensation

When using the input offset other than 0% an offset voltage will be visible in case DC coupling is selected for the channel and the signal
source is externally AC coupled. This offset can be compensated for by setting the compensation registers:

Table 42: Spectrum API: AC/DC compensation register for offset settings with an AC coupled signal

Register Value Direction Description

SPC_ACDC_OFFS_COMPENSATIONO 30021 read/write A 1" enables the compensation. A ,0” disables the compensation (default).
SPC_ACDC_OFFS_COMPENSATION1 30121 read/write A 1" enables the compensation. A ,0” disables the compensation (default).
SPC_ACDC_OFFS_COMPENSATION2 30221 read/write A 1" enables the compensation. A ,0” disables the compensation (default).
SPC_ACDC_OFFS_COMPENSATION3 30321 read/write A 1" enables the compensation. A ,0” disables the compensation (default).

Read out of input features

Each input path (if multiple paths are available on the card) has different features that can be read out to make the software more general.
If you only operate one single card type in your software it is not necessary to read out these features.

Please note that the following table shows all input features settings that are available throughout all Spectrum acquisition cards. Some of
these features are not installed on your specific hardware:

Table 43: Spectrum API: register to read the analog input features and the meaning of the feature flags

Register Value Direction Description
SPC_READAIFEATURES 3101 read Ee:urns a bit map with the available features of that input path. The possible return values are listed
elow.
Value Path O | Description
SPCM_AI_TERM 00000001h Programmable input termination available
SPCM_AI_SE 00000002h | fixed Input is single-ended. If available together with SPC_AI_DIFF: input type is software selectable
SPCM_AI_DIFF 00000004h Input is differential. If available together with SPC_AI_SE: input type is software selectable
SPCM_AI_OFFSPERCENT 00000008h | x Input offset programmable in per cent of input range
SPCM_AI_OFFSMV 00000010h Input offset programmable in mV
SPCM_AI_OVERRANGEDETECT 00000020h Programmable over-range detection available
SPCM_AI_DCCOUPLING 00000040h | x Input is DC coupled. If available together with AC coupling: coupling is software selectable
SPCM_AI_ACCOUPLING 00000080h | x Input is AC coupled. If available together with DC coupling: coupling is software selectable
SPCM_AI_LOWPASS 00000100h Input has a individually per channel selectable low pass filter (bandwidth limit)
SPCM_AI_ACDC_OFFS_COMP 00000200h Input has a selectable offset compensation for HF-Path with AC/DC coupling/source mismatch.
SPCM_AI_GLOBALLOWPASS 00000800h | x Card has a globally selectable low pass (affects all channels with the same setting)
SPCM_AI_AUTOCALOFFS 00001000h | x Input offset can be auto calibrated on the card
SPCM_AI_AUTOCALGAIN 00002000h Input gain can be auto calibrated on the card
SPCM_AI_AUTOCALOFFSNOIN | 00004000h Input offset can auto calibrated on the card if inputs are left open
SPCM_AI_HIGHIMP 00008000h Input has a high impedance mode available
SPCM_AI_LOWIMP 00010000h | fixed Input has a low impedance mode (50 Ohm) available
SPCM_AI_INDIVPULSEWIDTH 00100000h Trigger pulse-width is individually per channel programmable

The following example shows a setup of the input range of a two channel card.

Please note that this is a general example and the number of input channels may not match your card channels.

spcm_dwSetParam 132 (hDrv, SPC AMPO , 1000); // Set up channel0 to the range of
spcm_dwSetParam_i32 (hDrv, SPC_AMP1 , 500); // Set up channell to the range of

H H
o =
no
<<

(c) Spectrum Instrumentation GmbH 92

Analog Inputs Setting up the inputs

Input coupling

All inputs can be set separately switched to AC or DC coupling. Please refer to -
the technical data section to see the signal frequency range that is available for
the different settings.

Using the AC coupling will eliminate all DC and low frequency parts of the input D l—/
signal and allows best quality measurements in the frequency domain even if the @@ |Gi‘” ~N T
DC level of the signal varies over the time. 52 0nm Patn sancuiath Linit |
Channel 8
The following table shows the corresponding register to set the input coupling. (hamnel L
Table 44: Spectrum API: AC/DC setup registers and available register settings
Register Value Direction Description
SPC_ACDCO 30020 read/write A 1" sets the AC coupling for channelO. A ,0” sets the DC coupling (default is AC)
SPC_ACDC1 30120 read/write A 1" sets the AC coupling for channell. A ,0” sets the DC coupling (default is AC)
SPC_ACDC2 30220 read/write A 1" sets the AC coupling for channel2. A ,0” sets the DC coupling (default is AC)
SPC_ACDC3 30320 read/write A 1" sets the AC coupling for channel3. A ,0” sets the DC coupling (default is AC)

Anti dliasing filter (Bandwidth limit)

All inputs share a global selectable anti aliasing filter (bandwidth limit) that will
cut of any aliasing effects and will reduce signal noise.

Please note that this bandwidth limit filter will also cut of any distortion or high
frequency spurious signals parts that are within the frequency spectrum of the T

input. @ D\q |Gain ~N w L
- | 152 Ohm Path

Please refer to the technical data section to see the cut off frequency and the type Banduidth Linit
of filter used. The following table shows the corresponding register to activate o2

the bandwidth limit.

Table 45: Spectrum API: anti-aliasing filter setup register

Register Value Direction Description
SPC_FILTERO 30080 read/write A 1" selects the bandwidth limit for all channels. A ,0” sets all channels to full bandwidth (default).

Automatic on-board calibration of the offset and gain settings

All of the channels are calibrated in factory before the board is shipped. These values are stored in the on-board EEProm under the default
seftings. If you have asymmetrical signals, you can adjust the offset easily with the corresponding registers of the inputs as shown before.

To start the automatic offset adjustment, simply write the register, mentioned in the following table.
Before you start an automatic offset adjustment make sure, that no signal is connected to any input. Leave

all the input connectors open and then start the adjustment. All the internal settings of the driver are changed,
while the automatic offset compensation is in progress.

Table 46: Spectrum API: automatic offset compensation register and valid register settings

Register Value Direction Description
SPC_ADJ_AUTOAD) 50020 write Performs the automatic offset compensation in the driver either for all input ranges or only the actual.
I ADJ_ALL 0 Automatic offset adjustment for all input ranges.

As all settings are temporarily stored in the driver, the automatic adjustment will only affect these values. After exiting your program, all cali-
bration information will be lost. To give you a possibility to save your own settings, most Spectrum card have at least one set of user settings
that can be saved within the on-board EEPROM. The default settings of the offset and gain values are then read-only and cannot be written
to the EEPROM by the user. If the card has no user settings the default settings may be overwritten.

You can easily either save adjustment settings to the EEPROM with SPC_AD]_SAVE or recall them with SPC_AD]_LOAD. These two registers
are shown in the table below. The values for these EEPROM access registers are the sets that can be stored within the EEPROM. The amount
of sets available for storing user offset settings depends on the type of board you use. The table below shows all the EEPROM sets, that are
available for your board.

Table 47: Spectrum API: loading and storing calibration values to the EEPROM

Register Value Direction Description

SPC_ADJ_LOAD 50000 write Loads the specified set of seftings from the EEPROM. The default settings are automatically loaded,
when the driver is started.

read Reads out, what kind of settings have been loaded last.

(c) Spectrum Instrumentation GmbH 93

Analog Inputs Setting up the inputs

Table 47: Spectrum API: loading and storing calibration values to the EEPROM

Register Value Direction Description
SPC_ADJ_SAVE 50010 write Stores the current seftings to the specified set in the EEPROM.
read Reads out, what kind of settings have been saved last.
I ADJ_DEFAULT 0 Default settings, no user seftings available

If you want to make an offset and gain adjustment on all the channels and store the data to the ADJ_DEFAULT set of the EEPROM you can
do this the way, the following example shows.

spcm_dwSetParam_i32 (hDrv, SPC_ADJ_AUTOADJ, ADJ ALL); // Activate offset/gain adjustment on all channels
spcm_dwSetParam i32 (hDrv, SPC_ADJ_ SAVE 5 ADJ_DEFAULT) ; // and store values to DEFAULT set in the EEPROM

(c) Spectrum Instrumentation GmbH 94

Acquisition modes Overview

Acquisition modes

Your card is able to run in different modes. Depending on the selected mode there are different registers that each define an aspect of this
mode. The single modes are explained in this chapter. Any further modes that are only available if an option is installed on the card is doc-
umented in a later chapter.

Overview

This chapter gives you a general overview on the related registers for the different modes. The use of these registers throughout the different
modes is described in the following chapters.

Setup of the mode

The mode register is organized as a bitmap. Each mode corresponds to one bit of this bitmap. When defining the mode to use, please be
sure just to set one of the bits. All other settings will return an error code.

The main difference between all standard and all FIFO modes is that the standard modes are limited to on-board memory and therefore can
run with full sampling rate. The FIFO modes are designed to transfer data continuously over the bus to PC memory or to hard disk and can
therefore run much longer. The FIFO modes are limited by the maximum bus transfer speed the PC can use. The FIFO mode uses the complete
installed on-board memory as a FIFO buffer.

However as you'll see throughout the detailed documentation of the modes the standard and the FIFO mode are similar in programming and
behavior and there are only a very few differences between them.

Table 48: Spectrum API: card mode and read out of available card mode software registers

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
SPC_AVAILCARDMODES 9501 read Returns a bitmap with all available modes on your card. The modes are listed below.

(c) Spectrum Instrumentation GmbH 95

Acquisition modes

Commands

Acquisition modes

Table 49: Spectrum API: possible values for the card mode register. Description of the different card modes

Mode Value Available on | Description

SPC_REC_STD_SINGLE Th all cards Data acquisition to on-board memory for one single trigger event.

SPC_REC_STD_MULTI 2h all cards Data acquisition to on-board memory for multiple trigger events. Each recorded segment has the same size.

This mode is described in greater detail in a special chapter about the Multiple Recording option.

SPC_REC_STD_GATE 4h all M2p and Data acquisition to on-board memory using an external Gate signal. Acquisition is only done as long as the
M4 digitizers gate signal has a programmed level. The mode is described in greater detail in a special chapter about the
and NETBOXes | Gated Sampling option.

SPC_REC_STD_ABA 8h all M2p and Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored
M4i digitizers with programmed sampling rate the inputs are sampled continuously with a slower sampling speed. The
and NETBOXes | mode is described in a special chapter about ABA mode option.

SPC_REC_STD_SEGSTATS 10000h M4i/M4x.2xxx | Data acquisition to on-board memory for multiple trigger events, using Block/Segment Statistic Module
M4i/M4x.44xx | (FPGA firmware Option).

DN2/DN6.2xx
DN2/DN6.44x
digitizers only

SPC_REC_STD_AVERAGE 20000h M4i/M4x.2xxx | Data acquisition to on-board memory for multiple trigger events, using Block Average Module (FPGA firm-
M4i/M4x.44xx | ware Option).

M5i.33xx
DN2/DN6.2xx
DN2/DN6.44x
digitizers only

SPC_REC_STD_BOXCAR 800000h M4i/M4x.44xx | Enables Boxcar Averaging for standard acquisition. Requires digitizer module with firmware version V29 or
DN2/DNé.44x | newer.
digitizers only

SPC_REC_FIFO_SINGLE 10h all cards Continuous data acquisition for one single trigger event. The on-board memory is used completely as FIFO

buffer.

SPC_REC_FIFO_MULTI 20h all cards Continuous data acquisition for multiple trigger events.

SPC_REC_FIFO_GATE 40h all M2p and Continuous data acquisition using an external gate signal.

M4i digitizers
and NETBOXes

SPC_REC_FIFO_ABA 80h all M2p and Continuous data acquisition for multiple trigger events together with continuous data acquisition with a
M4 digitizers slower sampling clock.
and NETBOXes

SPC_REC_FIFO_SEGSTATS 100000h M4i/M4x.2xxx | Enables Block/Segment Statistic for FIFO acquisition (FPGA firmware Option).

M4i/M4x.44xx
DN2/DN6.2xx
DN2/DN6.44x
digitizers only

SPC_REC_FIFO_AVERAGE 200000h M4i/M4x.2xxx | Enables Block Averaging for FIFO acquisition (FPGA firmware Option).
M4i/M4x.44xx
Mb5i.33xx
DN2/DN6.2xx
DN2/DN6.44x
digitizers only

SPC_REC_FIFO_BOXCAR 1000000h | M4i/M4x.44xx | Enables Boxcar Averaging for FIFO acquisition. Requires digitizer module firmware version V29 or newer.
DN2/DN6.44x
digitizers only

SPC_REC_FIFO_SINGLE_MONITOR | 2000000h | all M2p and Combination of SPC_REC_FIFO_SINGLE mode with additional slower sampling clock data stream for moni-
M4i digitizers toring purposes (same as A-data of SPC_REC_FIFO_ABA mode).
and NETBOXes

Commands

The data acquisition/data replay is controlled by the command register. The command register controls the state of the card in general and
also the state of the different data transfers. Data transfers are explained in an extra chapter later on.

The commands are split up into two types of commands: execution commands that fulfill a job and wait commands that will wait for the
occurrence of an interrupt. Again the commands register is organized as a bitmap allowing you to set several commands together with one
call. As not all of the command combinations make sense (like the combination of reset and start at the same time) the driver will check the
given command and return an error code ERR_SEQUENCE if one of the given commands is not allowed in the current state.

Table 50: Spectrum API: card command register and different commands with descriptions

Register

Value

Direction

Description

SPC_M2CMD

100 write only

Executes a command for the card or data transfer.

(c) Spectrum Instrumentation GmbH 96

Acquisition modes Commands

Card execution commands

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above.

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started, only some of the seftings might
be changed while the card is running, such as e.g. output level and offset for D/A replay cards.

M2CMD_CARD_ENABLETRIGGER | 8h The trigger detection is enabled. This command can be either sent together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER | 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

Card wait commands

These commands do not return until either the defined state has been reached which is signaled by an interrupt from the card or the timeout
counter has expired. If the state has been reached the command returns with an ERR_OK. If a timeout occurs the command returns with ER-
R_TIMEQUT. If the card has been stopped from a second thread with a stop or reset command, the wait function returns with ERR_ABORT.

M2CMD_CARD_WAITPREFULL 1000h Acquisition modes only: the command waits until the pretrigger area has once been filled with data. After pretrigger
area has been filled the internal trigger engine starts to look for trigger events if the trigger detection has been ena-
bled.

M2CMD_CARD_WAITTRIGGER 2000h Waits until the first trigger event has been detected by the card. If using a mode with multiple trigger events like Multi-
ple Recording or Gated Sampling there only the first trigger detection will generate an interrupt for this wait com-
mand.

M2CMD_CARD_WAITREADY 4000h Waits until the card has completed the current run. In an acquisition mode receiving this command means that all data
has been acquired. In a generation mode receiving this command means that the output has stopped.

Wait command timeout

If the state for which one of the wait commands is waiting isn’t reached any of the wait commands will either wait forever if no timeout is
defined or it will return automatically with an ERR_TIMEOUT if the specified timeout has expired.

Table 51: Spectrum API: timeout definition register

Register Value Direction Description

SPC_TIMEOUT 295130 read/write Defines the timeout for any following wait command in a millisecond resolution. Writing a zero to this
register disables the timeout.

As a default the timeout is disabled. After defining a timeout this is valid for all following wait commands until the timeout is disabled again
by writing a zero to this register.

A timeout occurring should not be considered as an error. It did not change anything on the board status. The board is still running and will
complete normally. You may use the timeout to abort the run affer a certain time if no trigger has occurred. In that case a stop command is
necessary affer receiving the timeout. It is also possible to use the timeout to update the user interface frequently and simply call the wait
function afterwards again.

Example for card control:

// card is started and trigger detection is enabled immediately
spcm_dwSetParam_ i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD ENABLETRIGGER) ;

// we wait a maximum of 1 second for a trigger detection. In case of timeout we force the trigger
spcm_dwSetParam i32 (hDrv, SPC_TIMEOUT, 1000);
if (spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD WAITTRIGGER) == ERR_TIMEOUT)

{

printf (“No trigger detected so far, we force a trigger now!\n”);

spcm_dwSetParam (hdrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER) ;

}

// we disable the timeout and wait for the end of the run
spcm_dwSetParam i32 (hDrv, SPC_TIMEOUT, O0);
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WAITREADY) ;
printf (“Card has stopped now!\n”);

Card Status

In addition to the wait for an interrupt mechanism or completely instead of it one may also read out the current card status by reading the
SPC_M2STATUS register. The status register is organized as a bitmap, so that multiple bits can be set, showing the status of the card and
also of the different data transfers.

Table 52: Spectrum API: card status register and possible status values with descriptions of the status

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information

(c) Spectrum Instrumentation GmbH 97

Acquisition modes Commands

M2STAT_CARD_PRETRIGGER 1h Acquisition modes only: the first prefrigger area has been filled. In Multi/ABA/Gated acquisition this status is set only
for the first segment and will be cleared at the end of the acquisition.

M2STAT_CARD_TRIGGER 2h The first trigger has been detected.

M2STAT_CARD_READY 4h The card has finished its run and is ready.

M2STAT_CARD_SEGMENT_PRETRG | 8h This flag will be set for each completed pretrigger area including the first one of a Single acquisition.
Additionally for a Multi/ABA/Gated acquisition of M4i/M4x/M2p only, this flag will be set when the pretrigger
area of a segment has been filled and will be cleared after the trigger for a segment has been detected.

Acquisition cards status overview

The following drawing gives you an overview of the card commands and card status information. After start of card with M2CMD_-
CARD_START the card is acquiring pretrigger data until one time complete pretrigger data has been acquired. Then the status bit M2STAT_-
CARD_PRETRIGGER is set. Either the trigger has been enabled together with the start command or the card now waits for trigger enable
command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card checks for a trigger event.
As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card acquires the programmed posttrigger
data. After all post trigger data has been acquired the status bit M2STAT_CARD_READY is set and data can be read out:

I L] I

Trigger
L. Acquiring Waiting for Wailir;g Acquiring
Acquisition Pretrigger data trigger enable for Tri'gger Postirigger data
/ Pretrigger o : Pretrigger Posttrigger
i g ' »
8 g . Memsize ™ ~
| = o u -
o I+ @ o o
< u § 2 <
ol a| i L gv
g g g g g
3 3 3 3 61
Y Y

Image 44: Acquisition cards: graphical overview of acquisition status and card command interaction

Generation card status overview

This drawing gives an overview of the card commands and status information for a simple generation mode. After start of card with the
M2CMD_CARD_START the card is armed and waiting. Either the trigger has been enabled together with the start command or the card now
waits for trigger enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card
checks for a trigger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card starts with the
data replay. After replay has been finished - depending on the programmed mode - the status bit M2STAT_CARD_READY is set and the card
stops.

Trigger —’—l

. Waiting for Waiting Replaying
Generation trigger enable for Trigger Memsize data
A A Memsize
5]
g g
= 2 e 5
3 : g :
5 w Ll gv
g g g
% 3 3 b
Y Y

Image 45: Generation cards: graphical overview of generation status and card command interaction

Data Transfer

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Data transfer
shares the command and status register with the card control commands and status information. In general the following details on the data
transfer are valid for any data transfer in any direction:

® The memory size register (SPC_MEMSIZE) must be programmed before starting the data transfer.

When the hardware buffer is adjusted from its default (see ,Output latency” section later in this manual), this must be done before defin-
ing the transfer buffers in the next step via the spcm_dwDefTransfer function.

e Before starting a data transfer the buffer must be defined using the spcm_dwDefTransfer function.

Each defined buffer is only used once. After transfer has ended the buffer is automatically invalidated.

If a buffer has to be deleted although the data transfer is in progress or the buffer has at least been defined it is necessary to call the spc-
m_dwiInvalidateBuf function.

(c) Spectrum Instrumentation GmbH 98

Acquisition modes Commands

Definition of the transfer buffer

Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter.

uint32 _stdcall spcm dwDefTransfer i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to define as listed below under SPCM BUF XXXX
uint32 dwDirection, // the transfer direction as defined below
uint32 dwNotifySize, // number of bytes after which an event is sent (0O=end of transfer)
void* pvDataBuffer, // pointer to the data buffer
uint64 qwBrdOffs, // offset for transfer in board memory
uint64 gwTransferLen) ; // buffer length

This function is used to define buffers for standard sample data transfer as well as for extra data transfer for additional ABA or timestamp
information. Therefore the dwBufType parameter can be one of the following:

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the

timestamp option.

The dwDirection parameter defines the direction of the following data transfer:

SPCM_DIR_PCTOCARD 0

SPCM_DIR_CARDTOPC 1 Transfer is done from card on-board memory to PC memory.
SPCM_DIR_CARDTOGPU 2 RDMA transfer from card memory to GPU memory, SCAPP option needed, Linux only
SPCM_DIR_GPUTOCARD 3

Transfer is done from PC memory to on-board memory of card

RDMA transfer from GPU memory to card memory, SCAPP option needed, Linux only

The direction information used here must match the currently used mode. While an acquisition mode is used
there’s no transfer from PC to card allowed and vice versa. It is possible to use a special memory test mode &
to come beyond this limit. Set the SPC_MEMTEST register as defined further below.

The dwNotifySize parameter defines the amount of bytes after which an interrupt should be generated. If leaving this parameter zero, the
transfer will run until all data is transferred and then generate an interrupt. Filling in notify size > zero will allow you to use the amount of
data that has been transferred so far. The notify size is used on FIFO mode to implement a buffer handshake with the driver or when trans-
ferring large amount of data where it may be of interest to start data processing while data transfer is still running. Please see the chapter on
handling positions further below for details.

M2i, M3i, M4i, MaAx and M2p cards:

fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in

the range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the

notify size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use
the polling mode as described later.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There- j

M5i:

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-

fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in

the range of 64, 128, 256, 512, 1k or 2k. No other values are allowed. For timestamp the notify size can be

2k as a minimum. If you need to work with timestamp data in smaller chunks please use the polling mode as de-
scribed later.

The pvDataBuffer must point to an allocated data buffer for the transfer. Please be sure to have at least the amount of memory allocated that
you program to be transferred. If the transfer is going from card to PC this data is overwritten with the current content of the card on-board
memory.

The pvDataBuffer needs to be aligned to a page size (4096 bytes). Please use appropriate software com-
mands when allocating the data buffer. Using a non-aligned buffer may result in data corruption. &

When not doing FIFO mode one can also use the gwBrdOffs parameter. This parameter defines the starting position for the data transfer as
byte value in relation to the beginning of the card memory. Using this parameter allows it to split up data transfer in smaller chunks if one
has acquired a very large on-board memory.

The gwTransferlen parameter defines the number of bytes that has to be transferred with this buffer. Please be sure that the allocated memory

has at least the size that is defined in this parameter. In standard mode this parameter cannot be larger than the amount of data defined with
memory size.

M5i cards only:
On MS5i cards the qwTransferLlen parameter needs to be an integer multiple of 64 bytes. &

(c) Spectrum Instrumentation GmbH 99

Acquisition modes Commands

Memory test mode

In some cases it might be of interest to transfer data in the opposite direction. Therefore a special memory test mode is available which allows
random read and write access of the complete on-board memory. While memory test mode is activated no normal card commands are pro-
cessed:

Table 53: Spectrum API: memory test register

Register Value Direction Description

SPC_MEMTEST 200700 read/write Writing a 1 activates the memory test mode, no commands are then processed.
Writing a O deactivates the memory test mode again.

Invalidation of the transfer buffer

The command can be used to invalidate an already defined buffer if the buffer is about to be deleted by user. This function is automatically
called if a new buffer is defined or if the transfer of a buffer has completed

uint32 _stdcall spcm_dwInvalidateBuf (// invalidate the transfer buffer
drv_handle hbDevice, // handle to an already opened device
uint32 dwBufType) ; // type of the buffer to invalidate as listed above under SPCM BUF XXXX

The dwBufType parameter need to be the same parameter for which the buffer has been defined:

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option. The ABA mode is only available on analog acquisition cards.

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the times-
tamp option. The timestamp mode is only available on analog or digital acquisition cards.

Commands and Status information for data transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control. It is possible to send
commands for card control and data transfer at the same time as shown in the examples further below.

Table 54: Spectrum APl: Command register and commands for DMA transfers

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_DATA_STARTDMA 10000h Starts the DMA transfer for an already defined buffer. In acquisition mode it may be that the card hasn't received a
trigger yet, in that case the transfer start is delayed until the card receives the trigger event
M2CMD_DATA_WAITDMA 20000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter described above into account.
M2CMD_DATA_STOPDMA 40000h Stops a running DMA transfer. Data is invalid afterwards.

The data transfer can generate one of the following status information:

Table 55: Spectrum API: status register and status codes for DMA data transfer

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_DATA_BLOCKREADY 100h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_DATA_END 200h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_DATA_OVERRUN 400h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_DATA_ERROR 800h An internal error occurred while doing data transfer.

Example of data transfer

void* pvData = pvAllocMemPageAligned (1024);

// transfer data from PC memory to card memory (on replay cards) 5
spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_DATA, SPCM DIR PCTOCARD , 0, pvData, 0, 1024);
spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

// ... or transfer data from card memory to PC memory (acquisition cards)
spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 0, pvData, 0, 1024);
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

// explicitely stop DMA tranfer prior to invalidating buffer
spcm_dwSetParam i32 (hDrv, SPC _M2CMD, M2CMD DATA STOPDMA) ;
spcm_denvalidateBuf (hDrv, SPCM BUF_DATA) ;
vFreeMemPageAligned (pvData, 1024);

To keep the example simple it does no error checking. Please be sure to check for errors if using these command in real world programs!

buffer, to avoid crashes due to race conditions when using higher-latency data transportation layers, such

Users should take care to explicitly send the M2CMD_DATA_STOPDMA command prior to invalidating the f
as to remote Ethernet devices.

(c) Spectrum Instrumentation GmbH 100

Acquisition modes Standard Single acquisition mode

Standard Single acquisition mode

The standard single mode is the easiest and mostly used mode to acquire analog data with a Spectrum acquisition card. In standard single
recording mode the card is working totally independent from the PC, after the card setup is done. The advantage of the Spectrum boards is
that regardless to the system usage the card will sample with equidistant time intervals.

The sampled and converted data is stored in the on-board memory and is held there for being read out after the acquisition. This mode allows
sampling at very high conversion rates without the need to transfer the data into the memory of the host system at high speed.

After the recording is done, the data can be read out by the user and is transferred via the bus into PC memory.

This standard recording mode is the most common mode for all

analog and digital acquisition and oscilloscope boards. The data Trigger
is written fo a programmed amount of the on-board memory (mem-
size). That part of memory is used as a ring buffer, and recording B T “/“BL “““ -
is done continuously until a trigger event is detected. After the trig- B e o A o a
: - —_—
ger event, a cerfain programmable amount of data is recorded ¥
(post trigger) and then the recording finishes. Due to the continuous ‘Prefrigge: “Postirigger
ring buffer recording, there are also samples prior to the trigger - Memsize »

event in the memor retrigger).
Y (P 99) Image 46: standard acquisition mode and pretrigger/posttrigger/trigger relation

with data first. While doing this the board’s trigger detection is not armed. If you use a huge pre trigger size

When the card is started the pre trigger area is filled up f
and a slow sample rate it can take some time after starting the board before a trigger event will be detected.

Card mode
The card mode has to be set to the correct mode SPC_REC_STD_SINGLE.

Table 56: Spectrum API: card mode register and standard single mode setup

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
I SPC_REC_STD_SINGLE 1h Data acquisition to on-board memory for one single trigger event.

Memory, Pre- and Posttrigger

At first you have to define, how many samples are to be recorded at all and how many of them should be acquired after the trigger event
has been detected.

Table 57: Spectrum API: memory size and posttrigger registers for standard single mode

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Sets the memory size in samples per channel.

SPC_POSTTRIGGER 10100 read/write Sets the number of samples to be recorded per channel after the trigger event has been detected.
==

You can access these settings by the register SPC_MEMSIZE, which sets the total amount of data that is recorded, and the register SPC_POST-
TRIGGER, that defines the number of samples to be recorded after the trigger event has been detected. The size of the pretrigger results on
the simple formula:

pretrigger = memsize - posttrigger

The maximum memsize that can be use for recording is of course limited by the installed amount of memory and by the number of channels
to be recorded. Please have a look at the topic "Limits of pre, post memsize, loops" later in this chapter.

Example

The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

int32 1Memsize = 16384; // recording length is set to 16 kSamples
spcm_dwSetParam 132 (hDrv, SPC_CHENABLE, CHANNELO); // only one channel activated
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD SINGLE) ; // set the standard single recording mode
spcm_dwSetParam i64 (hDrv, SPC MEMSIZE, lMemsize); // recording length
spcm_dwSetParam i64 (hDrv, SPC_POSTTRIGGER, 8192); // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam _i32 (hDrv, SPC_M2CMD, M2CMD CARD START | M2CMD_ CARD ENABLETRIGGER | M2CMD_ CARD WAITREADY) ;

void* pvData = pvAllocMemPageAligned (2 * 1lMemsize); // assuming 2 bytes per sample
// read out the data

spcm_dwDefTransfer i64 (hDrv, SPCM BUF DATA, SPCM _DIR CARDTOPC , 0, pvData, 0, 2 * 1Memsize);
spcm_dwSetParam _i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

(c) Spectrum Instrumentation GmbH 101

Acquisition modes FIFO Single acquisition mode

FIFO Single acquisition mode

The FIFO single mode does a continuous data acquisition using the on-board memory as a FIFO buffer and transferring data continuously to
PC memory. One can make on-ine calculations with the acquired data, store the data continuously to disk for later use or even have a data
logger functionality with on-line data display.

Card mode
The card mode has to be set to the correct mode SPC_REC_FIFO_SINGLE.

Table 58: Spectrum API: card mode register and standard FIFO mode setup

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
I SPC_REC_FIFO_SINGLE 10h Continuous data acquisition to PC memory. Complete on-board memory is used as FIFO buffer.

Length and Pretrigger

Even in FIFO mode it is possible to program a pretrigger area. In general FIFO mode can run forever until it is stopped by an explicit user
command or one can program the total length of the transfer by two counters Loop and Segment size

Table 59: Spectrum API: setup registers for standard FIFO mode

Register Value Direction Description

SPC_PRETRIGGER 10030 read/write Programs the number of samples to be acquired before the trigger event detection

SPC_SEGMENTSIZE 10010 read/write Length of segments to acquire.

SPC_LOOPS 10020 read/write Number of segments to acquire in total. If set to zero the FIFO mode will run continuously until it is
stopped by the user.

The total amount of samples per channel that is acquired can be calculated by [SPC_LOOPS * SPC_SEGMENTSIZE]. Please stick to the below
mentioned limitations of the registers.

Difference to standard single acquisition mode

The standard modes and the FIFO modes differ not very much from the programming side. In fact one can even use the FIFO mode to get the
same behavior like the standard mode. The buffer handling that is shown in the next chapter is the same for both modes.

Pretrigger
When doing standard single acquisition memory is used as a circular buffer and the pre trigger can be up to the [installed memory] - [minimum
post trigger]. Compared to this the pre trigger in FIFO mode is limited by a special pre trigger FIFO and hence considerably shorter.

Length of acquisition.
In standard mode the acquisition length is defined before the start and is limited to the installed on-board memory whilst in FIFO mode the
acquisition length can either be defined or it can run continuously until user stops it.

(c) Spectrum Instrumentation GmbH 102

Acquisition modes

Limits of pre trigger, post trigger, memory size

Example FIFO acquisition

The following example shows a simple FIFO single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

spcm_dwSetParam 132 (hDrv, SPC_CHENABLE, CHANNELO); // only one channel activated
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC REC FIFO_ SINGLE) ; // set the FIFO single recording mode
spcm_dwSetParam 164 (hDrv, SPC_PRETRIGGER, 1024); // 1 kSample of data before trigger

{

}

dwError =
dwError =

printf

(!dwError)

// in FIFO mode we need to
void* pvData =
spcm_dwDefTransfer 164

spcm_dwSetParam i32
spcm_dwSetParam 132

spcm_dwGetParam_ i64
11lTotalBytes += llAvailBytes;

spcm_dwSetParam i64
dwError =

(hDrv,

(hDrv,

(hDrv,

pvAllocMemPageAligned
SPCM_BUF_DATA,

pvData,

(hDrv,
(hDrv,

0,

SPC_DATA AVAIL USER_LEN,

%$11d, total:

// here is the right position to do something with the data
("Currently Available:

$11d\n",

11AvailBytes,

4096,

// now we start the acquisition and wait for the first block
SPC_M2CMD, M2CMD CARD START
SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD_DATA WAITDMA) ;

&11AvailBytes) ;

// now we free the number of bytes and wait for the next buffer
SPC_DATA AVAIL CARD LEN,
spcm_dwSetParam i32 (hDrv, SPC M2CMD, M2CMD DATA WAITDMA) ;

11AvailBytes) ;

define the buffer before starting the transfer
(11BufsizeInSamples * 2);

SPCM_DIR CARDTOPC,
2 * 1l1BufsizeInSamples) ;

// 2 bytes per sample

| M2CMD CARD ENABLETRIGGER) ;

// we acquire data in a loop. As we defined a notify size of 4k we’ll get the data in >=4k chuncks
11TotalBytes = 0;
while

// read out the available bytes

(printf is limited to 32 bit variables)
11lTotalBytes);

Limits of pre trigge

r, post tri

P gger, p gger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Table 60: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step | Min | Max | Step | Min Max Step | Min I Max | Step | Min I Max I Step
1Ch Standard Single 64 | Mem 32 32 [Mem-32 |32 [32 [8G-32 32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem 32 32 | 8k | 32 32 | Mem/2-32 | 32 Jé4 Mem/2 |32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 Mem 32 32 [sk [32 32 [Mem32 [32 not used not used
Standard Average For the limits in this mode please refer to the dedicated chapter in this manual,
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) |4G-1 1
FIFO Multi/ABA not used 32 |8k 32 32 | 8G32 | 32 64 [pretpost |32 JO(o) [4G-1 |1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [s8c-32 [32 not used 0 [4G6-1 |1
FIFO Average For the limits in this mode :>|e<ﬁefer to the dedicated chapter in this manual.
2 Ch Standard Single 64 Mem/2 32 32 | Mem/2 - 32 I 32 32 8G-32 32 not used not used
(defined by mem and post)
Standard Multi/ABA 64 [Mem/2 |32 |32 sk [32 32 [Mem/432 | 32 64 [Mem/a [32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 |[Mem/2 |32 32 [sk [32 |32 [Mem/232 [32 not used not used
Standard Average For the |imi_ts, in this mode :>|ea_se refer to the dedicated chapter in this manual.
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) |4G-1 1
FIFO Multi/ABA not used 32 8k 32 32 | 8G-32 | 32 o4 pre+post | 32 0 () [4G-1 1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [8G-32 [32 not used 0 [46-1 |1
FIFO Average For the limits in this mode please refer to the dedicated chapter in this manual.
4 Ch Standard Single 64 Mem/4 |32 32 [Mem/4-32 [32 32 8G-16 32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem/4 |32 32 | 8k | 32 32 | Mem/4-32 | 32 Jé4 Mem/8 |32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 |Mem/a |32 [32 sk [32 132 [Mem/4-16 [32 not used not used
Standard Averoae For the limits in this mode please refer to the dedicated chgeter in this manual.
FIFO Single not used [32 |8k [32] not used Jo4 [8G-32 [32 oo [4G-1 |1
(c) Spectrum Instrumentation GmbH 103

Acquisition modes Buffer handling

Table 60: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max | Step | Min | Max | Step | Min | Max | Step § Min Max Step | Min Max Step
FIFO Multi/ABA not used 32 | 8k | 32 32 | 8G32 | 32 o4 pre+post | 32 0 () [4G-1 1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [8G-32 [32 not used 0 [46-1 |1
FIFO Average For the limits in this mode please refer to the dedicated chapter in this manual.

All figures listed here are given in samples. An entry of [8G - 32] means [8 GSamples - 32] = 8,589,934,560 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
2 GSample 8 GSample
(Option: M5i.xxx-MEM8GS)
——
Mem 2 GSample 8 GSample
Mem / 2 1 GSample 4 GSample
Mem / 4 512 MSample 2 GSample
Mem / 8 256 MSample 1 GSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Buffer handling

To handle the huge amount of data that can possibly be acquired with the M5i/M4i/M4x/M2p series cards, there is a very reliable two
step buffer strategy set up. The on-board memory of the card can be completely used as a real FIFO buffer. In addition a part of the PC
memory can be used as an additional software buffer. Transfer between hardware FIFO and software buffer is performed interrupt driven
and automatically by the driver to get best performance. The following drawing will give you an overview of the structure of the data transfer
handling:

Busmaster HW Data FIFO Buffer
Scatter-Gather |[€——2 {complete memory)
DMA Engine

DMA Control
Engine

———————————————————— :@mf""u}.;&h&l&"""' T TTTTTTTTTT T T T Thpplication

Application Applicatidn Data Buffer
{up to sejeral GByte of PC memory)

Image 47: Overview of buffer handling for DMA transfers showing and the interaction with the DMA engine

Although an M4i is shown here, this applies to M5i, Mdx and M2p cards as well. A data buffer handshake is implemented in the driver
which allows to run the card in different data transfer modes. The software transfer buffer is handled as one large buffer which is on the one
side controlled by the driver and filled automatically by busmaster DMA from/to the hardware FIFO buffer and on the other hand it is handled
by the user who set's parts of this software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3
software registers:

Table 61: Spectrum API: registers for DMA buffer handling

Register Value Direction Description

SPC_DATA_AVAIL_USER_LEN 200 read Returns the number of currently to the user available bytes inside a sample data transfer.
SPC_DATA_AVAIL_USER_POS 201 read Returns the position as byte index where the currently available data samples start.
SPC_DATA_AVAIL_CARD_LEN 202 write Writes the number of bytes that the card can now use for sample data transfer again

(c) Spectrum Instrumentation GmbH 104

Acquisition modes Buffer handling

Internally the card handles two counters, a user counter and a card counter. Depending on the transfer direction the software registers have
slightly different meanings:

Table 62: Spectrum API: content of DMA buffer handling registers for different use cases

Transfer directi Regist Direction Description
Write to card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are free to write new data to the
card. The user can now fill this amount of bytes with new data to be transferred.
SPC_DATA_AVAIL_CARD_LEN write Atter filling an amount of the buffer with new data to transfer to card, the user tells the driver with this

register that the amount of data is now ready to transfer.

Read from card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are filled with newly transferred
data. The user can now use this data for own purposes, copy it, write it to disk or start calculations
with this data.

SPC_DATA_AVAIL_CARD_LEN write After finishing the job with the new available data the user needs to tell the driver that this amount of
bytes is again free for new data to be transferred.

Any direction SPC_DATA_AVAIL_USER_POS read The register holds the current byte index position where the available bytes start. The register is just
intended to help you and to avoid own position calculation
Any direction SPC_FILLSIZEPROMILLE read The register holds the current fill size of the on-board memory (FIFO buffer) in promille (1,/1000) of

the full on-board memory. Please note that the hardware reports the fill size only in 1/16 parts of the
full memory. The reported fill size is therefore only shown in 1000/16 = 63 promille steps.

Directly after start of transfer the SPC_DATA_AVAIL_USER_LEN is every time zero as no data is available for the user and the SPC_DATA-
_AVAIL_CARD_LEN is every time identical fo the length of the defined buffer as the complete buffer is available for the card for transfer.

notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get notice

The counter that is holding the user buffer available bytes (SPC_DATA_AVAIL USER_LEN) is related to the f
of it in case the notify size is programmed to a higher value.

Remarks

® The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller

located on the card. Even if the PC is busy with other jobs data is still transferred until the application data buffer is completely used.

Even if application data buffer is completely used there's still the hardware FIFO buffer that can hold data until the complete on-board

memory is used. Therefore a larger on-board memory will make the transfer more reliable against any PC dead times.

* As you see in the above picture data is directly transferred between application data buffer and on-board memory. Therefore it is abso-
lutely critical to delete the application data buffer without stopping any DMA transfers that are running actually. It is also absolutely criti-
cal to define the application data buffer with an unmatching length as DMA can than try to access memory outside the application data
area.

® As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is

done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time

and is therefore highly desirable if other threads do a lot of calculation work. However it is not necessary to use the wait functions and
one can simply request the current status whenever the program has time to do so. When using this polling mode the announced availa-
ble bytes still stick to the defined notify size!

If the on-board FIFO buffer has an overrun (card to PC) or an underrun (PC to card) data transfer is stopped. However in case of transfer

from card to PC there is still a lot of data in the on-board memory. Therefore the data transfer will continue until all data has been trans-

ferred although the status information already shows an overrun.

For very small notify sizes, getting best bus transfer performance could be improved by using a ,continuous buffer”. This mode is

explained in the appendix in greater detail.

M2i, M3i, M4i, MAx and M2p cards:

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in A
the range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the

notify size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use
the polling mode as described later.

M5i:

fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in

the range of 64, 128, 256, 512, 1k or 2k. No other values are allowed. For timestamp the notify size can be

2k as a minimum. If you need to work with timestamp data in smaller chunks please use the polling mode as de-
scribed later.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There- j

The following graphs will show the current buffer positions in different states of the transfer. The drawings have been made for the transfer
from card to PC. However all the block handling is similar for the opposite direction, just the empty and the filled parts of the buffer are
inverted.

Step 1: Buffer definition

Directly after buffer definition the complete buffer is empty (card to PC) or
completely filled (PC to card). In our example we have a notify size which
is 1/4 of complete buffer memory to keep the example simple. In real %
world use it is recommended to set the notify size to a smaller stepsize. Notify Size
USER_POS

empty Buffer

(c) Spectrum Instrumentation GmbH 105

Acquisition modes Buffer handling

Step 2: Start and first data available

In between we have started the transfer and have waited for the first data
to be available for the user. When there is at least one block of notify size
in the memory we get an interrupt and can proceed with the data. Any
data that already was transferred is announced. The USER_POS is still
zero as we are right at the beginning of the complete transfer.

USER_LEN
USER_POS

Step 3: set the first data available for card
Now the data can be processed. If transfer is going from card to PC that
may be storing to hard disk or calculation of any figures. If transfer is go-
ing from PC to card that means we have to fill the available buffer again
with data. After the amount of data that has been processed by the user | CARD_LEN
application we set it available for the card and for the next step.

Step 4: next data available
After reaching the next border of the notify size we get the next part of the
data buffer to be available. In our example at the time when reading the

USER_LEN even some more data is already available. The user position e »

will now be at the position of the previous set CARD_LEN. USER_LEN
USER_POS

Step 5: set data available again

Again after processing the data we set it free for the card use. -

In our example we now make something else and don't react to the inter-

rupt for a longer time. In the background the buffer is filled with more da-
. CARD_LEN

Step 6: roll over the end of buffer

Now nearly the complete buffer is filled. Please keep in mind that our cur-
rent user position is still at the end of the data part that we processed and

marked in step 4 and step 5. Therefore the data to process now is splitin g | 4 1«

two parts. Part 1 is at the end of the buffer while part 2 is starting with USER_LEN USER_LEN

address 0. part 2 USER_POS part 1

Step 7: set the rest of the buffer available

Feel free to process the complete data or just the part 1 until the end of n

the buffer as we do in this example. If you decide to process complete

buffer please keep in mind the roll over at the end of the buffer. - »

CARD_LEN

This buffer handling can now continue endless as long as we manage to
set the data available for the card fast enough. The USER_POS and USER_LEN for step 8 would now look exactly as the buffer shown in step 2.

(c) Spectrum Instrumentation GmbH 106

Acquisition modes Buffer handling

Buffer handling example for transfer from card to PC (Data acquisition)

int8* pcData = (int8%*) pvAllocMemPageAligned (llBufferSizeInBytes) ;

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF DATA, SPCM DIR CARDTOPC , 4096, (void*) pcData, 0, llBufferSizeInBytes);

// we start the DMA transfer
dwError = spcm dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_DATA STARTDMA) ;

do
{
if (!dwError)
{
// we wait for the next data to be available. Afte this call we get at least 4k of data to proceed
dwError = spcm dwSetParam i32 (hDrv, SPC M2CMD, M2CMD DATA WAITDMA) ;

// 1f there was no error we can proceed and read out the available bytes that are free again
spcm_dwGetParam i64 (hDrv, SPC DATA AVAIL USER LEN, &llAvailBytes);
spcm_dwGetParam i64 (hDrv, SPC_DATA AVAIL USER_POS, &llBytePos);

printf (“We now have %11d new bytes available\n”, 1lAvailBytes);
printf (“The available data starts at position %$11d\n”, 11BytesPos);

// we take care not to go across the end of the buffer, handling the wrap-around
if ((l1BytePos + 1llAvailBytes) >= 11lBufferSizeInBytes)
11AvailBytes = 11BufferSizeInBytes - 11BytePos;

// our do function gets a pointer to the start of the available data section and the length
vDoSomething (&pcData[llBytesPos], 1llAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i64 (hDrv, SPC_DATA AVAIL CARD LEN, llAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Buffer handling example for transfer from PC to card (Data generation)

int8* pcData = (int8*) pvAllocMemPageAligned (llBufferSizeInBytes);
// before starting transfer we first need to fill complete buffer memory with meaningful data
vDoGenerateData (&pcData[0], llBufferSizeInBytes);
// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF_DATA, SPCM DIR PCTOCARD , 4096, (void*) pcData, 0, l1lBufferSizeInBytes);
// and transfer some data to the hardware buffer before the start of the card
spcm_dwSetParam_i32 (hDrv, SPC_DATA AVAIL CARD_LEN, llBufferSizelInBytes);
dwError = spcm dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD_DATA WAITDMA) ;
do
{
if (!dwError)
{
// 1f there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i64 (hDrv, SPC DATA AVAIL USER LEN, &llAvailBytes);
spcm_deetParam_i64 (hDrv, SPC_DATA AVAIL USER POS, &llBytePos);
printf (“We now have %11d free bytes available\n”, 1llAvailBytes);
printf (“The available data starts at position %$11d\n”, 1l1BytesPos);
// we take care not to go across the end of the buffer, handling the wrap-around
if ((11BytePos + l1lAvailBytes) >= 11lBufferSizeInBytes)
11AvailBytes = 11BufferSizeInBytes - 11lBytePos;
// our do function gets a pointer to the start of the available data section and the length
vDoGenerateData (&pcData[llBytesPos], 1llAvailBytes);
// now we mark the number of bytes that we just generated for replay
// and wait for the next free buffer
spcm_dwSetParam i64 (hDrv, SPC_DATA AVAIL CARD_LEN, llAvailBytes);
dwError = spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD DATA WAITDMA) ;
}
}
while (!dwError); // we loop forever if no error occurs

Please keep in mind that you are using a continuous buffer writing/reading that will start again at the zero
position if the buffer length is reached. However the DATA_AVAIL USER_LEN register will give you the com- A
plete amount of available bytes even if one part of the free area is at the end of the buffer and the second

half at the beginning of the buffer.

(c) Spectrum Instrumentation GmbH 107

Acquisition modes

Data organization

Data organization

Data is organized in a multiplexed way in the transfer buffer. If using 2 channels data of first activated channel comes first, then data of

second channel.

Table 63: M4i and M4x cards data organization

Activated Channels | ChO [Ch1 | Ch2 | Ch3 [Samples ordering in buffer memory starting with data offset zero

1 channel X A0 | Al A2 |A3 |A4 |A5 (A6 |A7 |AB [A9 | A10 [A11 |A12 |A13 [A14 |A15 |Al6
1 channel X BO B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 [B11 |B12 |B13 |B14 [B15 [B16
1 channel X co |C1 C2 |C3 |[C4 |C5 |C6 |[C7 |C8 |C9 [CIO |Cl1 [CI2 |CI13 |Cl4 [C15 |C1¢6
1 channel X DO | DI D2 D3 D4 D5 D6 D7 D8 D9 DIO (D11 [D12 | D13 |D14 |[DI5 (D16
2 channels X X A0 |BO Al B1 A2 B2 A3 B3 A4 (B4 A5 B5 A6 | B6 A7 [B7 |A8
2 channels X X A0 |CO |Al Cl A2 [C2 |A3 |[C3 |[A4 |C4 |A5 [C5 |A6 |C6 |A7 |C7 |A8
2 channels X X AO [DO |Al D1 A2 [D2 |A3 D3 A4 (D4 |A5 |D5 [A6 |D6 |A7 D7 |A8
2 channels X X BO COo |B1 Cl B2 C2 |B3 C3 B4 C4 |B5 C5 |B6 C6 |B7 C7 |B8
2 channels X X BO DO |BI D1 B2 D2 B3 D3 B4 D4 B5 D5 B6 D6 |B7 D7 |B8
2 channels X X CO |DO |CI D1 Cc2 |D2 [C3 D3 C4 [D4 [C5 |D5 [C6 [D6 |C7 [D7 [C8
4 channels X X X X A0 [BO CO [DO |Al B1 Cl D1 A2 B2 C2 |D2 |A3 B3 C3 D3 | A4

The samples are re-named for better readability. AO is sample O of channel O, B4 is sample 4 of channel 1, and so on.

Sample format

The card is using 8 bit A/D samples, that are stored in twos complement in one 8 bit data byte. 8 bit resolution means that data is ranging

from -128...to...+127:

Table 64: data sample format in standard mode and with digital inputs enable

Standard Mode Digital inputs enabled
SPCM_XMODE_DIGIN
M4i.22xx M4i.22xx
Data bit 8 bit ADC resolution 7 bit ADC resolution
D7 ADx Bit 7 22x4, 22x2 (4 Ch models):
Ch3: Digital bit 0 (XO)
Ch2: Digital bit 2 (X2)
Ch1: Digital bit 1 (X1)
ChO: Digital bit 0 (XO)
22x3, 22x1 (2 Ch models):
Ch1: Digital bit 1 (XO)
ChO: Digital bit 0 (X2)
22x0 (1 Ch models):
ChO: Digital bit O (XO)
Dé ADx Bit 6 ADx Bit 7
D5 ADx Bit 5 ADx Bit 6
D4 ADx Bit 4 ADx Bit 5
D3 ADx Bit 3 ADx Bit 4
D2 ADx Bit 2 ADx Bit 3
D1 ADx Bit 1 ADx Bit 2
DO ADx Bit O (LSB] ADx Bit 1 (LSB)

Converting ADC samples to voltage values

The Spectrum driver also contains a register that holds the value of the decimal value of the full scale representation of the installed ADC. This
value should be used when converting ADC values (in LSB) into real-world voltage values, because this register also automatically takes any
specialities into account, such as slightly reduced ADC resolution with reserved codes for gain/offset compensation.

Register

Value

Direction

Description

SPC_MIINST_MAXADCVALUE

1126

read

Contains the decimal code (in LSB) of the ADC full scale value.

In case of a board that uses an 8 bit ADC that provides the full ADC code (with-
out reserving any bits) the returned value would be 128. The peak value for a

£1.0 V input range would be 1.0 V (or 1000 mV).

A returned sample value of for example +49 (decimal, two's complement,

signed representation) would then convert to:

A returned sample value of for example -55 (decimal) would then convert to:

V[n = ADCCode X

Vip = =55 x

1000 mV

InputRange,, .«
- ° peadk

128

ADC

max

= 382.81 mV

= —429.69 mV

(c) Spectrum Instrumentation GmbH

108

Acquisition modes Data organization

or over-range bits, this extra information must be first masked out and a proper sign-extension must be per-

When converting samples that contain any additional data such as for example additional digital channels f
formed, before these values can be used as a signed two’s complement value for above formulas.

Enabling hardware sample conversion to offset-binary

The data conversion modes allow the conversion of acquired sample data in on the fly within the firmware from the cards native two's
complement representation to the offset binary mode. This feature was implemented beginning with firmware version V45. It is only intended
to allow existing applications/data calculation routines relying on such encoding to be re-used. For all other situations the default two's com-
plement signed integer format as described above should be used:

Table 65: Spectrum API: data conversion registers and valid register settings

Register Value Direction Description

SPC_DATACONVERSION 201400 read/write Defines the data conversion mode.

SPC_AVAILDATACONVERSION 201401 read Read out the available data conversion modes.
SPCM_DC_NONE Oh The original data format will be used and no hardware data conversion will be done.
SPCM_DC_TO_OFFSETBINARY 800h Allows conversion of RAW 1samples om two’s complement to encoding to offset-binary encoding.

The conversion to offset-binary only works on the RAW original samples, as listed in the ,Sample format”
table above. It cannot be combined with any other data conversion mode (,Mode 8 bit Storage”) and also &
does not work on the output of any other firmware processing feature, such as ,Block Average”,

~Block Statistics”, or ,Boxcar Average”. This conversion also only affects the samples of the main data stream
(B-data) when using ,ABA mode”.

(c) Spectrum Instrumentation GmbH 109

Clock generation Overview

Clock generation

Overview

The Spectrum M4i PCl Express (PCle) and M4x PXI Express (PXle) cards
offer a wide variety of different clock modes to match all the customers” ==
needs. All of the clock modes are described in detail with programming |#axenin —J

examples in this chapter. auartz 2

(option, M4i only)

The figure is showing an overview of the complete engine used on all M4i So/a i
Quartz 1

cards for clock generation.)

The purpose of this chapter is to give you a guide fo the best matching @I
clock settings for your specific application and needs.

Clock

——O ouput

|

|

to Slave(s) |

|

Star-Hub (option, M4i only) |

L e e e e Vo e Vi

Clock Mode Regisl'er Image 48: M4i/M4x clock section overview

The selection of the different clock modes has to be done by the SPC_CLOCKMODE register. All available modes, can be read out by the
help of the SPC_AVAILCLOCKMODES register.

Table 66: Spectrum API: clock mode register and available clock modes

Register Value Direction Description
SPC_AVAILCLOCKMODES 20201 read Bitmask, in which all bits of the below mentioned clock modes are set, if available.
SPC_CLOCKMODE 20200 read/write Defines the used clock mode or reads out the actual selected one.
SPC_CM_INTPLL 1 Enables internal programmable high precision Quartz 1 for sample clock generation
SPC_CM_QUARTZ2 4 Enables optional Quartz 2 as reference for sample clock generation
SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation
SPC_CM_PXIREFCLOCK 64 M4x cards only: Enables internal PLL with PXle backplane clock as reference for sample clock generation

The different clock modes and all other related or required register seftings are described on the following pages.

The different clock modes

Standard internal sample rate (programmable reference quartz 1)

This is the easiest and most common way to generate a sample rate with no need for additional external clock signals. The sample rate has
low jitter and a high accuracy and on cards supporting fine granularity sample rate, this mode also provides a very fine resolution. The Quartz
1 is a high quality software programmable clock device acting as a reference to the internal PLL. The specification is found in the technical
data section of this manual.

Quartz2 with PLL (option, M4i cards only)

This optional second Quartz 2 is for special customer needs, either for a special direct sampling clock or as a very precise reference for the
PLL. Please feel free to contact Spectrum for your special needs. The Quarz 2 clock footprint can be equipped with a wide variety of clock
sources that are available on the market.

External Clock (reference clock)

Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a
system clock or to feed in an exact matching sample rate. The external clock is divided/multiplied using a PLL allowing a wide range of
external clock modes.

PXle Reference Clock (M4x cards only)

The PXle reference clock is a 100 MHz high-quality differential clock signal with an accuracy of +100 ppm or better. This reference clock is
located on the PXle backplane and is routed to every PXle slot with the same trace length on the mainboard’s PCB. PXle cards from Spectrum
are able to use the PXle reference clock for sampling clock generation. One big advantage of using the reference clock is the fact that all
cards that are synchronized to the reference clock are running with the same clock frequency.

Synchronization Clock (option Star-Hub, M4i cards only)

The star-hub option allows the synchronization of up to 8 cards of the M4i series from Spectrum with a minimal phase delay between the
different cards. The clock is distributed from the master card to all connected cards. As a source it is possible to either use the programmable
Quarz 1 clock or the external ExtO reference clock input of the master card. For details on the synchronization option please take a look at
the dedicated chapter later in this manual.

(c) Spectrum Instrumentation GmbH 110

Clock generation Details on the different clock modes

Details on the different clock modes

Standard internal sampling clock (PLL)

The internal sampling clock is generated in default mode by a programmable high precision quartz. You need to select the clock mode by
the dedicated register shown in the table below:

Table 67: Spectrum API: clock mode register and internal clock mode

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_INTPLL 1 Enables internal programmable high precision Quartz 1 for sample clock generation

The user does not have to care about how the desired sampling rate is generated by multiplying and dividing internally. You simply write the
desired sample rate to the according register shown in the table below and the driver makes all the necessary calculations. If you want to
make sure the sample rate has been set correctly you can also read out the register and the driver will give you back the sampling rate that
is matching your desired one best.

Table 68: Spectrum API: samplerate register

Register Value Direction Description
SPC_SAMPLERATE 20000 write Defines the sample rate in Hz for internal sample rate generation.
read Read out the internal sample rate that is nearest matching to the desired one.

Independent of the used clock source it is possible to enable the clock output. The clock will be available on the external clock output connector
and can be used to synchronize external equipment with the board.

Table 69: Spectrum API: clock output and clock output frequency register

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Writing a ,,1” enables clock output on external clock output connector. Writing a ,0” disables the
clock output (tristate)

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

Example on writing and reading internal sampling rate

spcm_dwSetParam i32 (hDrv, SPC_CLOCKMODE, SPC_CM_INTPLL); // Enables internal programmable quartz 1
spcm_dwSetParam i64 (hDrv, SPC_SAMPLERATE, 62500000) ; // Set internal sampling rate to 62.5 MHz

spcm dwSetParam i32 (hDrv, SPC CLOCKOUT, 1); // enable the clock output of the card
spcm_dwGetParam i64 (hDrv, SPC_SAMPLERATE, &lSamplerate); // Read back the programmed sample rate and print
printf (,Sample rate = %d\n“, lSamplerate); // it. Output should be ,Sample rate = 62500000"

this. Valid sampling rates are [max], [max/2], [max/4], [max/8], ... [max/1310 ny programmed sam-

In all clock modes, the sampling rate can only be prozliammed as maximum sun;gl}inx rate and divisions of f
pling rate in between will automatically be rounded to the next matching divided s;:mpling clock.

Minimum internal sampling rate

The minimum internal sampling rates depend on the specific type of board. This value can be found in the technical data section of this man-
val.

Maximum internal sampling rate (standard clock mode)

Table 70: Spectrum API: maximum internal sampling rate depending on channel selection and model

activated Channels

= = o 8 N Q 3 3 &
Cho Ch1 Ch2 Ch3 Q N Q g Q S N N S
e 3 g g g g 3 g 3
= = = = = 3 = 3 =
X 1.25GS/s | 1.25GS/s | 1.25GS/s | 2.5 GS/s 2.5GS/s 2.5GS/s 5GS/s 5GS/s 5GS/s
X n.a. 1.25GS/s | 1.25GS/s | n.a. 2.5GS/s 2.5GS/s n.a. 5GS/s 5GS/s
X n.a. n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 5GS/s
X n.a. n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 5GS/s
X X n.a. 1.25GS/s | 1.25GS/s | n.a. 2.5GS/s 1.25GS/s | n.a. 2.5GS/s 1.25GS/s
X X n.a n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 2.5GS/s
X X n.a. n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 2.5GS/s
X X n.a. n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 2.5GS/s
X X n.a. n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 2.5GS/s
X X n.a. n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 1.25 GS/s
X X X X n.a. n.a. 1.25GS/s | n.a. n.a. n.a. n.a. n.a. 1.25 GS/s

(c) Spectrum Instrumentation GmbH 111

Clock generation Details on the different clock modes

Special Clock Mode

The special clock mode allows a different frequency as maximum internal sampling rate. Once this mode is activated the sampling rate can
also be setto 4/2/1 GS/s and any divided frequency of these. The special clock mode can only be activated when using single cards with
internal clock only. It is not working for star-hub-synchronized cards nor is it working when using reference clock input.

When using multiple cards synchronized by star-hub, special clock mode is not available. Only standard clock
mode is possible, when synchronizing cards via Star-Hub. This is also true for the digitizerNETBOX products &
which internally use multiple digitizers synchronized by star-hub

The special clock is only available when using internal clock. It is not available with reference clock mode,
neither external nor PXle-reference clock. &

Special Clock Mode Setup
To enable the special clock mode allowing to use the second main clock frequency granularity the register below needs to be programmed.
As default this mode is deactivated.

Table 71: Spectrum API: special clock mode register and usage

Register Value Direction Description
SPC_SPECIALCLOCK 295100 read/write Activated or de-activates the special clock mode

After activation any clock be used that is based on the standard clock frequency or the special clock frequency and divisions of both as
described above. For the 5 GS/s version this for example equals to the following available sampling clocks:

5GS/s, 4 GS/s, 2.5 GS/s, 2 GS/s, 1.25 GS/s, 1 GS/s, 625 MS/s, 500 MS/s, 312.5 MS/s, 250 MS/s, 156.25 MS/s, 125 MS/s, ...

Using Quartz2 with PLL (optional, M4i cards only)

In some cases it is necessary to use a special high precision frequency for sampling rate generation. For these applications all cards of the
M3i/M4i series can be equipped with a special customer quartz. Please contact Spectrum for details on available oscillators. If your card is
equipped with a second oscillator you can enable it for sampling rate generation with the following register:

Table 72: Spectrum API: clock mode register and quartz 2 settings

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_QUARTZ2 4 Enables optional quartz2 for sample clock generation

The quartz 2 clock is routed through a PLL to allow the generation of sampling rates based on this reference clock. As with internal PLL mode
it's also possible to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to read it back. The
result will then again be the best matching sampling rate.

Independent of the used clock source it is possible to enable the clock output. The clock will be available on the external clock output connector
and can be used to synchronize external equipment with the board.

Table 73: Spectrum API: clock output and clock output frequency register

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Writing a ,, 1" enables clock output on external clock output connector. Writing a ,0” disables the
clock output (tristate)

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

Oversampling

Al fast instruments have a minimum clock frequency that is limited by either the manufacturer limit of the used A/D converter or by limiting
factors of the clock design. You find this minimum sampling rate specified in the technical data section as minimum native ADC converter
clock.

When using one of the above mentioned internal clock modes the driver allows you to program sampling clocks that lie far beneath this
minimum sampling clock. To run the instrument properly we use a special oversampling mode where the A/D converter/clock section is within
its specification and only the digital part of the card is running with the slower clock. This is completely defined inside the driver and cannot
be modified by the user. The following register allows to read out the oversampling factor for further calculation

Table 74: Spectrum API: clock oversampling readout register

Register Value Direction Description

SPC_OVERSAMPLINGFACTOR 200123 read only Returns the oversampling factor for further calculations. If oversampling isn't active a 1 is returned.

not the programmed slower sampling rate. To calculate the output clock, please just multiply the pro-

When using clock output the sampling clock at the output connector is the real instrument sampling clock and f
grammed sampling clock with the oversampling factor read with the above mentioned register.

(c) Spectrum Instrumentation GmbH 112

Clock generation Details on the different clock modes

External clock (reference clock)

The external clock input is fed through a PLL to the clock system. Therefore the input will act as a reference clock input thus allowing to either
use a copy of the external clock or fo generate any sampling clock within the allowed range from the reference clock. Please note the limited
setup granularity in comparison to the internal sampling clock generation. Details are found in the technical data section.

Table 75: Spectrum API: clock mode register and external reference clock setup

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Due to the fact that the driver needs to know the external fed in frequency for an exact calculation of the sampling rate you must set the
SPC_REFERENCECLOCK register accordingly as shown in the table below. The driver then automatically sets the PLL to achieve the desired
sampling rate. Please be aware that the PLL has some internal limits and not all desired sampling rates may be reached with every reference
clock.

Table 76: Spectrum API: reference clock register and available settings

Register Value Direction Description
SPC_REFERENCECLOCK 20140 read/write Programs the external reference clock in the range stated in the technical data section.
I External sampling rate in Hz as an integer value You need to set up this register exactly to the frequency of the external fed in clock.

Example of reference clock:

spcmﬁdeetParamﬁi32 (hDrv, SPC_CLOCKMODE, SPC_CM EXTREFCLOCK) ; // Set to reference clock mode
spcm_dwSetParam i32 (hDrv, SPC_REFERENCECLOCK, 10000000) ; // Reference clock that is fed in is 10 MHz
spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 65200000) ; // We want to have 62.5 MHz as sampling rate

It is recommended that the sampling clock is always a multiple of the reference clock. If the sampling clock
is a division of the reference clock, the clock starting phase is undetermined and may change between resets &
or clock configuration changes.

PLL Locking Error

The external clock signal is routed to a PLL to generate any sampling clock from this external clock. Due to the internal structure of the card
the PLLis even used if a copy of the clock fed in externally is used for sampling (SPC_REFERENCECLOCK = SPC_SAMPLERATE). The PLL needs
a stable and defined external clock with no gaps and no variation in the frequency. The external clock must be present when issuing the start
command. It is not possible to start the card with external clock activated and no external clock available.

When starting the card all seftings are written to hardware and the PLL is programmed to generate the desired sampling clock. If there has
been any change to the clock setting the PLL then tries to lock on the external clock signal to generate the sampling clock. This locking will

normally need 10 to 20 ms until the sampling clock is stable. Some clock settings may also need 200 ms to lock the PLL. This waiting time is
automatically added at card start.

However if the PLL can not lock on the external clock either because there is no clock available or it hasn't sufficient signal levels or the clock
is not stable the driver will return with an error code ERR_CLOCKNOTLOCKED. In that case it is necessary fo check the external clock con-
nection. Please see the example below:

// settings done to external clock like shown above.

if (spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD CARD START | M2CMD_CARD ENABLETRIGGER) == ERR CLOCKNOTLOCKED)
{
printf (,External clock not locked. Please check connection\n") ;
return =i;

}

Independent of the used clock source it is possible to enable the clock output. The clock will be available on the external clock output connector
and can be used to synchronize external equipment with the board.

Table 77: Spectrum API: clock output and clock output frequency register

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Writing a ,, 1" enables clock output on external clock output connector. Writing a ,0” disables the
clock output (tristate)

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

(c) Spectrum Instrumentation GmbH 113

Clock generation Details on the different clock modes

PXI Reference Clock (M4x cards only)

Table 78: Spectrum API: clock mode register and PXI reference clock usage

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_PXIREFCLOCK 64 Enables internal PLL with PXI reference for sample clock generation

The 100 MHz PXle system reference clock can be used as a reference clock for internal sample rate generation on all M4x PXle cards from
Spectrum. With the above mentioned software command the PXle reference clock is routed to the internal PLL. Afterwards you only have to
program the sample rate register to the desired sampling rate. The remaining internal calculations will be automatically done by the driver.

Example of PXI reference clock:

spcm_dwSetParam i32 (hDrv, SPC_CLOCKMODE, SPC_CM_PXIREFCLOCK) ; // Set to PXI reference clock mode
spcm_dwSetParam 164 (hDrv, SPC_SAMPLERATE, 65200000) ; // We want to have 62.5 MHz as sampling rate

PLL Locking Error

The PXI reference signal is routed to a PLL to generate any sampling clock from this external clock. The PLL needs a stable and defined external
clock with no gaps and no variation in the frequency. Some backplanes might allow to turn off the reference clock. The PXI clock must be
present when issuing the start command. It is not possible to start the card with external clock activated and no external clock available.

When starting the card all seftings are written to hardware and the PLL is programmed to generate the desired sampling clock. If there has
been any change to the clock setting the PLL then tries to lock on the external clock signal to generate the sampling clock. This locking will

normally need 10 to 20 ms until the sampling clock is stable. Some clock settings may also need 200 ms to lock the PLL. This waiting time is
automatically added at card start.

However if the PLL can not lock on the PXI clock because there is no clock available (if however disabled on the backplane), the driver will
return with an error code ERR_CLOCKNOTLOCKED. In that case it is necessary to check the external clock connection. Please see the example
below:

// settings done to PXI clock like shown above.

if (spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD CARD START | M2CMD_CARD ENABLETRIGGER) == ERR_ CLOCKNOTLOCKED)
{
printf (,External clock not locked. Please check connection\n") ;
return =i;

}

(c) Spectrum Instrumentation GmbH 114

Trigger modes and appendant registers General Description

Trigger modes and appendant registers

General Description

The trigger modes of the Spectrum M4i/M4x series A/D and D/A cards are very extensive and give you the possibility to defect nearly any
trigger event you can think of.

You can choose between more than 10 external trigger modes and up to 20 internal trigger modes (on analog acquisition cards) including
software and channel trigger, depending on your type of board. Many of the channel trigger modes can be independently set for each input
channel (on A/D boards only) resulting in a even bigger variety of modes. This chapter is about to explain all of the different trigger modes
and setting up the card’s registers for the desired mode.

Trigger Engine Overview

i AD Cardsonly '
|| Analeg ADC Channel(s) Trig Level 1 — :
: : 1 Mdionly :
! Trigger Channelis) d - ,
: O—| Input Stage |—<Anc =y Chanlll ¢ | rar-Hub (Option) !
| ! ExtQ : i
| ' '
from
Trig Level 0 i 1
| T | Extl ! :'::'s OR !
P ———SSSSESSSSS—————SSS——————| | TR T e ==
-- ! F loR ! - .
) mw“—l—' L} L}
Analog Trigger Input (Ext0) Trig Level 1 o Mexonly I P
_Software | r‘
Trigge.r Earce Triggar Trigger
Detection Delay e
»
AND
Trig Level 0
Channel(s)
Analeg Trigger Input (Ext1) Exi0
' Trigger Extl
} Detection o : AND
BXl Triggars |
Trig Level O :_ _ _ Mdxonly _ _
LEnable Trigger __|
Multi Purpese 1/0 (X0, X1, X2) ;
g M Pulse Generator
= Digital Input (Option)
Run/Arm/PGen/... I A —— Run/Arm)/ Trig/PGen/X0,X1,X2 In/ ... o
< Asynchronous Out < PGen
Enable Trigger Output
L
[

Image 49: Trigger Engine Overview. Red marked parts not available on all card types

The trigger engine of the M4iM4x card series allows to combine several different trigger sources with OR and AND combination, with a
trigger delay or even with an OR combination across several cards when using the Star-Hub option. The above drawing gives a complete
overview of the trigger engine and shows all possible features that are available.

On A/D cards each analog input channel has two trigger level comparators to detect edges as well as windowed triggers. All card types
have a total of two different additional external trigger sources. One main trigger source (ExtO, labelled TrgO on front panel) which also has
two analog level comparators also allowing to use edge and windowed trigger detection and one secondary analog trigger (Ext1, labelled
Trg1 on front panel) with one analog level comparator. Additionally three multi purpose in/outputs that can be software programmed to
either inputs or outputs some extended status signals.

The Enable trigger allows the user to enable or disable all trigger sources (including channel trigger on A/D cards and external trigger) with
a single software command. The enable trigger command will not work on force trigger.

When the card is waiting for a trigger event, either a channel trigger or an external trigger the force trigger command allows to force a
trigger event with a single software command. The force trigger overrides the enable trigger command.

Before the trigger event is finally generated, it is wired through a programmable trigger delay. This trigger delay will also work when used
in a synchronized system thus allowing each card to individually delay its trigger recognition.

(c) Spectrum Instrumentation GmbH 115

Trigger modes and appendant registers

Trigger masks

Trigger masks

Trigger OR mask

The purpose of this passage is to explain the trigger OR mask (see
left figure) and all the appendant software registers in detail.

The OR mask shown in the overview before as one obiject, is separat-
ed into two parts: a general OR mask for main external trigger (ex-
ternal analog window trigger), the secondary external trigger
(external analog comparator trigger, the various PXI triggers (availa-
ble on M4x PXle cards only) and software trigger and a channel OR
mask.

Image 50: trigger engine overview with trigger OR mask shown

Every frigger source of the M4i/M4x series cards is wired to one of the above
mentioned OR masks. The user then can program which trigger source will be
recognized, and which one won't.

This selection for the general mask is realized with the SPC_TRIG_ORMASK
register in combination with constants for every possible trigger source.

This selection for the channel mask (A/D cards only) is realized with the SP-
C_TRIG_CH_ORMASKO register in combination with constants for every pos-
sible channel trigger source.

In either case the sources are coded as a bitfield, so that they can be combined
by one access to the driver with the help of a bitwise OR.

If no input is enabled, the output will be a logic “true”, to not block the follow-
ing static AND mask.

The table below shows the relating register for the general OR mask and the
possible constants that can be written to it.

Table 79: Spectrum API: general trigger OR mask register and available settings

External0 *‘(D

SPC_TMASK_EXTO

SPC_TMASK_EXT1

AID Cards only

1 SPC_TMASKO_CHO

Image 51: trigger engine OR mask details

Register Value Direction Description
SPC_TRIG_AVAILORMASK 40400 read Bitmask, in which all bits of the below mentioned sources for the OR mask are set, if available.
SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.
SPC_TMASK_NONE 0 No trigger source selected
SPC_TMASK_SOFTWARE 1h Enables the software trigger for the OR mask. The card will frigger immediately after start.
SPC_TMASK_EXTO 2h Enables the external (analog window) trigger O (labelled TrgO on front panel) for the OR mask. The card will trigger
when the programmed condition for this input is valid.
SPC_TMASK_EXT1 4h Enables the external (analog comparator) trigger 1 (labelled Trg1 on front paneljfor the OR mask. The card will trig-
ger when the programmed condition for this input is valid.
SPC_TMASK_PXIO 100000h Enables the PXI_TRIGO for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI1 200000h Enables the PXI_TRIG1 for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI2 400000h Enables the PXI_TRIG2 for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI3 800000h Enables the PXI_TRIG3 for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI4 1000000h Enables the PXI_TRIG4 for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI5 2000000h Enables the PXI_TRIGS5 for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI6 4000000h Enables the PXI_TRIG6 for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI7 8000000h Enables the PXI_TRIG7 for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXISTAR 10000000h | Enables the PXISTAR line for the OR mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXIDSTARB 20000000h | Enables the PXI_DSTARB for the OR mask. The card will trigger when the signal on this input is HIGH.

ger mode requiring values in the SPC_TRIG_ORMASK register, this mask should explicitely cleared, as other-

C Please note that as default the SPC_TRIG_ORMASK is set to SPC_TMASK_SOFTWARE. When not using any trig-

wise the software trigger will override other modes.

The following example shows, how to setup the OR mask, for the two external trigger inputs, ORing them together. When using just a single
trigger, only this particular trigger must be used in the OR mask register, respectively. As an example a simple edge detection has been

(c) Spectrum Instrumentation GmbH 116

Trigger modes and appendant registers

Trigger masks

chosen for Ext1 input and a window edge detection has been chosen for ExtO input. The explanation and a detailed description of the different
trigger modes for the external trigger inputs will be shown in the dedicated passage within this chapter.

spcm_dwSetParam_ i32
spcm_dwSetParam i32
spcm_dwSetParam i32

spcm_dwSetParam i32
spcm_dwSetParam i32

spcm_dwSetParam_ i32

(hDrv,
(hDrv,
(hDrv,

(hDrv,
(hDrv,

(hDrv,

SPC_TRIG_EXTO_LEVELO,
SPC_TRIG_EXTO_LEVELL,

1800) ; // lower Window Trigger level set to 1.8 V
2000) ; // upper Window Trigger level set to 2.0 V

SPC_TRIG EXTO0 MODE, SPC TM WINENTER);// Setting up main window trigger for entering

SPC_TRIG EXT1_LEVELO,

SPC_TRIG EXT1 MODE,

2500) ; // Trigger level set to 2.5 V

SPC TM POS); // Setting up secondary trigger for rising edges

// Enable both external triggers within the OR mask, hence ORing them together

SPC_TRIG ORMASK, SPC TMASK EXT1 | SPC_TMASK EXTO);

The table below is showing the registers for the channel OR mask (A/D cards only) and the possible constants that can be written to it.

Table 80: Spectrum API: channel trigger OR mask registers and available settings

Register Value Direction Description
SPC_TRIG_CH_AVAILORMASKO 40450 read Bitmask, in which all bits of the below mentioned sources/channels (0...7) for the channel OR mask
are set, if available.
SPC_TRIG_CH_ORMASKO 40460 read/write Includes the analog channels (O...7) within the channel trigger OR mask of the card.
SPC_TMASKO_CHO 00000001h | Enables channelO for recognition within the channel OR mask. -
SPC_TMASKO_CH1 00000002h | Enables channell for recognition within the channel OR mask.
SPC_TMASKO_CH2 00000004h | Enables channel2 for recognition within the channel OR mask.
SPC_TMASKO_CH3 00000008h | Enables channel3 for recognition within the channel OR mask.
SPC_TMASKO_CH4 00000010h | Enables channel4 for recognition within the channel OR mask.
SPC_TMASKO_CH5 00000020h | Enables channel5 for recognition within the channel OR mask.
SPC_TMASKO_CH6 00000040h | Enables channelé for recognition within the channel OR mask.
SPC_TMASKO_CH7 00000080h | Enables channel7 for recognition within the channel OR mask.

The following example shows, how to setup the OR mask for channel trigger. As an example a simple edge detection has been chosen. The
explanation and a detailed description of the different trigger modes for the channel trigger modes will be shown in the dedicated passage

within this chapter.

spcm_dwSetParam i32
spcm_dwSetParam i32
spcm_dwSetParam_ i32
spcm_dwSetParam i32

SPC_TRIG ORMASK,
SPC_TRIG CH ORMASKO,
SPC_TRIG_CHO_LEVELO,

SPC_TRIG_CHO_MODE,

SPC_TMASK_NONE) ; // disable default software trigger
SPC_TMASK CHO); // Enable channelO trigger within the OR mask
0); // Trigger level is zero crossing
SPC_TM POS); // Setting up channel trigger for rising edges

Trigger AND mask
The purpose of this passage is to explain the trigger AND mask (see

left figure) and all the appendant software registers in detail.

The AND mask shown in the overview before as one object, is sepa-
rated into two parts: a general AND mask for external trigger and
software trigger and a channel AND mask.

Image 52: trigger engine overview with trigger AND mask shown

(c) Spectrum Instrumentation GmbH 117

Trigger modes and appendant registers

Trigger masks

Every trigger source of the M4i/M4x series cards except the software trigger
is wired to one of the above mentioned AND masks. The user then can pro- Externalo ——"
gram which trigger source will be recognized, and which one won't.

This selection for the general mask is realized with the SPC_TRIG_ANDMASK
register in combination with constants for every possible trigger source.

This selection for the channel mask (A/D cards only) is realized with the SP-

B | AND

C_TRIG_CH_ANDMASKO register in combination with constants for every | SEC_TMASK PXISTAR ------ e : —

possible channel trigger sou

In either case the sources are coded as a bitfield, so that they can be com-
bined by one access to the driver with the help of a bitwise OR. " AID Girds Gy

If no input is enabled, the output will be a logic “true”, to not block the follow-

ing static AND mask.

The table below shows the relating register for the general AND mask and the

rce.

possible constants that can be written to it.

SPC_TMASKO_CHO - --—-------------- Channel
AND

Image 53: trigger engine AND mask details

Table 81: Spectrum API: general trigger AND mask registers and available settings

Register Value Direction Description
SPC_TRIG_AVAILANDMASK 40420 read Bit mask, in which all bits of the below mentioned sources for the AND mask are set, if available.
SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.
SPC_TMASK_NONE 0 No trigger source selected m
SPC_TMASK_EXTO 2h Enables the external (analog window) trigger O (labelled TrgO on front panel) for the AND mask. The card will trigger
when the programmed condition for this input is valid.
SPC_TMASK_EXT1 4h Enables the external (analog comparator) trigger 1 (labelled Trg1 on front panel) for the AND mask. The card will
trigger when the programmed condition for this input is valid.
SPC_TMASK_PXIO 100000h Enables the PXI_TRIGO for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI1 200000h Enables the PXI_TRIG1 for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI2 400000h Enables the PXI_TRIG2 for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI3 800000h Enables the PXI_TRIG3 for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI4 1000000h Enables the PXI_TRIG4 for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI5 2000000h Enables the PXI_TRIG5 for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI6 4000000h Enables the PXI_TRIG6 for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXI7 8000000h Enables the PXI_TRIG7 for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXISTAR 10000000h | Enables the PXISTAR line for the AND mask. The card will trigger when the signal on this input is HIGH.
SPC_TMASK_PXIDSTARB 20000000h | Enables the PXI_DSTARB for the AND mask. The card will trigger when the signal on this input is HIGH.

The following example shows, how to setup the AND mask, for an external trigger. As an example a simple high level detection has been
chosen. When multiple external triggers shall be combined by AND, both of the external sources must be included in the AND mask register,
similar to the OR mask example shown before. The explanation and a detailed description of the different trigger modes for the external
trigger inputs will be shown in the dedicated passage within this chapter.

spcm_dwSetParam i32
spcm_dwSetParam_ i32
spcm_dwSetParam i32
spcm_dwSetParam 132

hDrv,
hDrv,
hDrv,

(
(
(
(hDrv,

SPC_TRIG_ORMASK, SPC_TMASK NONE); // disable default software trigger

SPC_TRIG_ANDMASK,

SPC_TMASK_EXTO); // Enable external trigger within the AND mask

SPC_TRIG_EXTO_LEVELO, 2000); // Trigger level is 2.0 V (2000 mv)
SPC_TRIG EXTO MODE,

SPC TM HIGH); // Setting up external trigger for HIGH level

The table below is showing the constants for the channel AND mask (A/D cards only) and all the constants for the different channels.

Table 82: Spectrum API: channel trigger AND mask registers and available settings

Register Value Direction Description
SPC_TRIG_CH_AVAILANDMASKO 40470 read Bitmask, in which all bits of the below mentioned sources/channels (0...7) for the channel AND mask
are set, if available.
SPC_TRIG_CH_ANDMASKO 40480 read/write Includes the analog or digital channels (0...7) within the channel trigger AND mask of the card.
SPC_TMASKO_CHO 00000001h | Enables channelO for recognition within the channel OR mask. n
SPC_TMASKO_CH1 00000002h | Enables channell for recognition within the channel OR mask.
SPC_TMASKO_CH2 00000004h | Enables channel2 for recognition within the channel OR mask.
SPC_TMASKO_CH3 00000008h | Enables channel3 for recognition within the channel OR mask.
SPC_TMASKO_CH4 00000010h | Enables channel4 for recognition within the channel OR mask.
SPC_TMASKO_CH5 00000020h | Enables channel5 for recognition within the channel OR mask.
SPC_TMASKO_CH6 00000040h | Enables channelé for recognition within the channel OR mask.
SPC_TMASKO_CH7 00000080h | Enables channel7 for recognition within the channel OR mask.

The following example shows, how to setup the AND mask for a channel trigger. As an example a simple level detection has been chosen.

(c) Spectrum Instrumentation GmbH 118

Trigger modes and appendant registers Software trigger

The explanation and a detailed description of the different trigger modes for the channel trigger modes will be shown in the dedicated pas-
sage within this chapter.

spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE) ; // disable default software trigger
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CH_ANDMASKO, SPC_TMASK CHO) ;// Enable channel0 trigger within AND mask
spcm dwSetParam i32 (hDrv, SPC TRIG CHO LEVELO, O0); // channel level to detect is zero level
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CHO_MODE, SPC_TM HIGH) ; // Setting up chO0 trigger for HIGH levels

Software trigger

The software trigger is the easiest way of triggering any Spectrum = i

board. The acquisition or replay of data will start immediately af- Beced

ter the card is started and the trigger engine is armed. The result- shplne Triggerevent
ing delay upon start includes the time the board need:s for its START

setup and the time for recording the pre-trigger area (for acquisi- command

tion cards).

For enabling the software trigger one simply has to include the
software event within the trigger OR mask, as the following table is showing:

Table 83: Spectrum API: software register and register setting for software trigger

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.
—
I SPC_TMASK_SOFTWARE 1h Sets the trigger mode to software, so that the recording/replay starts immediately.
—

Example for sefting up the software trigger:

spcm_dwSetParam_ i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_ SOFTWARE) ; // Internal software trigger mode is used

Force- and Enable trigger

In addition to the software trigger (free run) it is also possible to force a trigger event by software while the board is waiting for a real physical
trigger event. The forcetrigger command will only have any effect, when the board is waiting for a trigger event. The command for forcing
a trigger event is shown in the table below.

Issuing the forcetrigger command will every time only generate one trigger event. If for example using Multiple Recording that will result in
only one segment being acquired by forcetrigger. After execution of the forcetrigger command the trigger engine will fall back to the trigger
mode that was originally programmed and will again wait for a trigger event.

Table 84: Spectrum APl: command register and force trigger command

Register Value Direction Description
SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p/M5i series cards.
I M2CMD_CARD_FORCETRIGGER 10h Forces a trigger event if the hardware is still waiting for a trigger event.

The example shows, how to use the forcetrigger command:

spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER); // Force trigger is used.

It is also possible to enable (arm) or disable (disarm) the card’s whole triggerengine by software. By default the trigger engine is disabled.

Table 85: Spectrum API: command register and trigger enable/disable command

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p/M5i series cards.
M2CMD_CARD_ENABLETRIGGER | 8h Enables the trigger engine. Any trigger event will now be recognized.
M2CMD_CARD_DISABLETRIGGER | 20h Disables the trigger engine. No trigger events will be recognized, except force frigger.

The example shows, how to arm and disarm the card’s trigger engine properly:

spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD_CARD_ENABLETRIGGER); // Trigger engine is armed.

spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD_DISABLETRIGGER); // Trigger engine is disarmed.

(c) Spectrum Instrumentation GmbH 119

Trigger modes and appendant registers Trigger delay

Trigger delay

All of the Spectrum M4i/M4x series cards allow the user to program
an additional trigger delay. As shown in the trigger overview section,
this delay is the last element in the trigger chain. Therefore the user
does not have to care for the sources when programming the trigger
delay.

As shown in the overview the trigger delay is located after the star-
hub connection meaning that every M4i card being synchronized

can still have its own trigger delay programmed. The Star-Hub will

combine the original trigger events before the result is being delayed.

The delay is programmed in samples. The resulting time delay will
therefore be [Programmed Delay] / [Sampling Rate].

Image 54: trigger engine overview with marked trigger delay stage

The following table shows the related register and the possible values. A value of O disables the trigger delay.

Table 86: Spectrum API: trigger delay registers and available settings

Register Value Direction Description
SPC_TRIG_AVAILDELAY 40800 read Contains the maximum available delay as a decimal integer value.
SPC_TRIG_DELAY 40810 read/write Defines the delay for the detected trigger events.
0 No additional delay will be added. The resulting inte:cl delay is mentioned in the technical data section.

16...[8G -8] in steps of 16 (12, 14, 16 bit cards) Defines the additional trigger delay in number of sample clocks. The trigger delay can be programmed up to
(8GSamples - 16) = 8589934576. Stepsize is 16 samples for 12, 14, 16 bit cards.

32...[8G -32] in steps of 32 (8 bit cards) Defines the additional trigger delay in number of sample clocks. The trigger delay can be programmed up to
(8GSamples - 32) = 8589934560. Stepsize is 32 samples for 8 bit cards.

The example shows, how to use the trigger delay command:

spcm_dwSetParam_i64 (hDrv, SPC_TRIG_DELAY, 1984); // A detected trigger event will be
// delayed for 1984 sample clocks.

Using the delay trigger does not affect the ratio between pre trigger and post trigger recorded number of samples, but only shifts .,
the trigger event itself. For changing these values, please take a look in the relating chapter about ,Acquisition Modes”. :,Q_i

Trigger Counter

The number of acquired trigger events is counted in hardware and can be read out while the acquisition is running or after the acquisition
has finished. The trigger events are counted both in standard mode as well as in FIFO mode.

Table 87: Spectrum API: trigger counter register and register return values

Register Value Direction Description

SPC_TRIGGERCOUNTER 200905 read Returns the number of trigger events that has been acquired since the acquisition start. The infernal
trigger counter has 48 bits. It is therefore necessary to read out the trigger counter value with 64 bit
access or 2 x 32 bit access if the number of trigger events exceed the 32 bit range.

(M3i series), V6 (M4i/M4x series) or V1 (M2p and M5i series). Please update the driver and the card firmware
to these versions to use this feature. Trying to use this feature without the proper firmware version will issue
a driver error.

The trigger counter feature needs at least driver version V2.17 and firmware version V20 (M2i series), V10 j

On M2i and M3i cards, using the trigger counter information allows to determine how many Multiple Recording segments have
been acquired and can perform a memory flush by issuing Force trigger commands to read out all data. This is helpful if the number i,@;
of trigger events is not known at the start of the acquisition. In that case one will do the following steps: |

® Program the maximum number of segments that one expects or use the FIFO mode with unlimited segments

Set a timeout fo be sure that there are no more trigger events acquired. Alternatively one can manually proceed as soon as it is clear from
the application that all trigger events have been acquired

Read out the number of acquired trigger segments

Issue a number of Force Trigger commands to fill the complete memory (standard mode) or to transfer the last FIFO block that contains
valid data segments

Use the trigger counter value to split the acquired data into valid data with a real trigger event and invalid data with a force trigger event.

(c) Spectrum Instrumentation GmbH 120

Trigger modes and appendant registers Main external window trigger (Ext0/TrgO)

Main external window trigger (Ext0/Trg0)

The M4i/M4x series has one main external trigger input consisting
of an input stage with programmable termination and programmable
AC/DC coupling and two comparators that can be programmed in
the range of +/- 10000 mV. Using two comparators offers a wide
range of different trigger modes that are support like edge, level, re-

arm and window trigger.

The main external analog trigger can be easily combined with chan-
nel trigger or with the secondary external trigger being programmed
as an additional external trigger input. The programming of the
masks is shown in the chapters above.

The external trigger ExtO is labelled TrgO on the front-panel
Image 55: trigger engine overview with marked main external trigger Ext0/TrgO

Trigger Mode

Please find the main external (analog) trigger input modes below. A detailed description of the modes follows in the next chapters..

Table 88: Spectrum API: external trigger ExtO registers and register settings

Register Value Direction Description
SPC_TRIG_EXTO_AVAILMODES 40500 read Bitmask showing all available trigger modes for external O (ExtO) = main analog trigger input
SPC_TRIG_EXTO_MODE 40510 read/write Defines the external trigger mode for the external SMA connector trigger input. The trigger need to
be added to either OR or AND mask input to be activated.
SPC_TM_NONE 00000000h | Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.
SPC_TM_POS 00000001h | Trigger detection for positive edges (crossing level O from below to above)
SPC_TM_NEG 00000002h | Trigger detection for negative edges (crossing level O from above to below)

SPC_TM_POS | SPC_TM_REARM | 01000001h | Trigger detection for positive edges on level 0. Trigger is armed when crossing level 1 to avoid false trigger on noise

SPC_TM_NEG | SPC_TM_REARM | 01000002h | Trigger detection for negative edges on level 1. Trigger is armed when crossing level O to avoid false trigger on noise

SPC_TM_BOTH 00000004h | Trigger detection for positive and negative edges (any crossing of level O)
SPC_TM_HIGH 00000008h | Trigger detection for HIGH levels (signal above level O)

SPC_TM_LOW 00000010h | Trigger detection for LOW levels (signal below level O)
SPC_TM_WINENTER 00000020h | Window trigger for entering area between level O and level 1
SPC_TM_WINLEAVE 00000040h | Window trigger for leaving area between level O and level 1
SPC_TM_INWIN 00000080h | Window trigger for signal inside window between level O and level 1
SPC_TM_OUTSIDEWIN 00000100h | Window trig_ger for signal outside window between level 0 and level 1

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Table 89: Spectrum API: external trigger ExtO OR mask settings

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.
I SPC_TMASK_EXTO 2h Enable main external trigger input for the OR mask

Trigger Input Termination

The external trigger input is a high impedance input with TkOhm termination against GND. It is possible to program a 50 Ohm termination
by software to terminate fast trigger signals correctly. If you enable the termination, please make sure, that your trigger source is capable to
deliver the needed current. Please check carefully whether the source is able to fulfil the trigger input specification given in the technical data
section.

Table 90: Spectrum API: external trigger ExtO input termination

Register Value Direction Description
SPC_TRIG_TERM 40110 read/write A 1" sets the 50 Ohm termination for external trigger signals. A ,0" sets the high impedance termi-
nation

Please note that the signal levels will drop by 50% if using the 50 ohm termination and your source also has 50 ohm output impedance (both
terminators will then work as a 1:2 divider). In that case it will be necessary to reprogram the trigger levels to match the new signal levels.
In case of problems receiving a trigger please check the signal level of your source while connected to the terminated input.

(c) Spectrum Instrumentation GmbH 121

Trigger modes and appendant registers Secondary external level trigger (Ext1/Trg1)

Trigger Input Coupling

The external trigger input can be switched by software between AC and DC coupling. Please see the technical data section for details on the
AC bandwidth.

Table 91: Spectrum API: external trigger ExtO input coupling

Register Value Direction Description

SPC_TRIG_EXTO_ACDC 40120 read/write COUPLING_DC enables DC coupling, COUPLING_AC enables AC coupling for the external trigger
input (AC coupling is the default).

Secondary external level trigger (Ext1/Trgl

The M4i/M4x series has one secondary external trigger input con-
sisting of an input stage with fixed 10 kOhm termination and one
comparator that can be programmed in the range of +/- 10000 mV.
Using one comparators offers a wide range of different logic levels
for the available trigger modes that are support like edge, level.

The secondary external analog trigger can be easily combined with
channel trigger or with the main external trigger being programmed [swsrissimsen
as an additional external trigger input. The programming of the O
masks is shown in the chapters above.

The secondary trigger input Ext1 is labelled Trg1 on the front-panel.

Image 56: trigger engine overview with external trigger Ext1 marked

Trigger Mode

Please find the main external (analog) trigger input modes below. A detailed description of the modes follows in the next chapters..

Table 92: Spectrum API: external trigger Ext] registers and register seftings

Register Value Direction Description
SPC_TRIG_EXT1_AVAILMODES 40501 read Bit mask showing all available trigger modes for Ext1(Trg1) = secondary analog trigger input
SPC_TRIG_EXT1_MODE 40511 read/write Defines the external trigger mode for the external MMCX connector trigger input. The trigger need to
be added to either OR or AND mask input to be activated.
SPC_TM_NONE 00000000h | Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.
SPC_TM_POS 00000001h | Trigger detection for positive edges (crossing level O from below to above)
SPC_TM_NEG 00000002h | Trigger detection for negative edges (crossing level O from above to below)
SPC_TM_BOTH 00000004h | Trigger detection for positive and negative edges (any crossing of level O)
SPC_TM_HIGH 00000008h | Trigger detection for HIGH levels (signal above level O)
SPC_TM_LOW 00000010h Trig_ger detection for LOW levels (signal below level O)

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Table 93: Spectrum API: external trigger Ext] OR mask settings

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.
I SPC_TMASK_EXT1 4h Enable secondary external trigger input for the OR mask

Trigger level

All of the external (analog) trigger modes listed above require at least one trigger level to be set (except SPC_TM_NONE of course). Some
like the window or the re-arm triggers require even two levels (upper and lower level) fo be set. The meaning of the trigger levels is depending
on the selected mode and can be found in the detailed trigger mode description that follows.

Trigger levels for the external (analog) trigger to be programmed in mV:

Table 94: Spectrum API: external trigger available settings for trigger levels

Register Value Direction Description Range
SPC_TRIG_EXT_AVAILO_MIN 42340 read returns the minimum trigger level for ExtO to be programmed in mV

SPC_TRIG_EXT_AVAILO_MAX 42341 read returns the maximum trigger level for ExtO to be programmed in mV

SPC_TRIG_EXT_AVAILO_STEP 42342 read returns the step size of trigger level for ExtO to be programmed in mV

SPC_TRIG_EXT_AVAILT_MIN 42345 read returns the minimum trigger level for Ext1 to be programmed in mV

SPC_TRIG_EXT_AVAILT_MAX 42346 read returns the maximum trigger level for Ext1 to be programmed in mV

SPC_TRIG_EXT_AVAIL1_STEP 42347 read returns the step size of trigger level for Ext1 to be programmed in mV

SPC_TRIG_EXTO_LEVELO 42320 read/write Trigﬁ;er level O for externaﬁrigger ExtO -10000 mV to +10000 mV

(c) Spectrum Instrumentation GmbH 122

Trigger modes and appendant registers

Secondary external level trigger (Ext1/Trg1)

Table 94: Spectrum API: external trigger available settings for trigger levels

Register Value Direction Description Range

SPC_TRIG_EXTO_LEVEL1 42330 read/write Trigger level 1 for external trigger ExtO -10000 mV to +10000 mV

SPC_TRIG_EXT1_LEVELO 42321 read/write Trigger level O for external trigger Ext1 -10000 mV to +10000 mV
—

Detailed description of the external analog trigger modes

For all external analog trigger modes shown below, either the OR mask or the AND must contain the external trigger to activate the external

input as trigger source:.

Table 95: Spectrum API: external trigger OR mask and AND mask register and settings

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.
SPC_TMASK_EXTO 2h Enables the main external (analog) trigger O (labelled TrgO on front panel) for the mask.
SPC_TMASK_EXT1 4h Enables the secondary external (analo%er 1 (labelled Trg1 on front panel) for the mask.

The following pages explain the available modes in detail. All modes that only require one single trigger level are available for both external
trigger inputs. All modes that require two trigger levels are only available for the main external trigger input ExtO (Trg0).

Trigger on positive edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the trigger signal from lower values to higher values (rising
edge) then the trigger event will be defected. — i revel ™
_______________________________________ —
- I
This edge triggered external trigger mode correspond to /'/ e~
1 ibiliti 1 |
the trigger possibilities of usual oscilloscopes. | t
|
— | —
|
Triggerevent
Table 96: Spectrum API: external register mode setup for trigger on positive edge
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_POS Th
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_POS Th
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV
Trigger on negative edge
The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the trigger signal from higher values to lower values (falling
edge) then the trigger event will be detected. ,.—\ i revel ™
_______________________________________ —
- 1
This edge triggered external trigger mode correspond to i >
: e . i
the trigger possibilities of usual oscilloscopes. ! t
1
1
— I —
|
Triggerevent
Table 97: Spectrum API: external register mode setup for trigger on negative edge
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_NEG 2h
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_NEG 2h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV
(c) Spectrum Instrumentation GmbH 123

Trigger modes and appendant registers

Secondary external level trigger (Ext1/Trg1)

Trigger on positive and negative edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the trigger signal (either rising or falling edge) the trigger
event will be detected.

This edge triggered external trigger mode correspond to
the trigger possibilities of usual oscilloscopes.

i Triggerleve! _\
_____ — """"""7./"" Ty
1

Triggerevent

Triggerevent

Table 98: Spectrum API: external trigger register mode setup for trigger on positive and negative edge

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_BOTH 4h
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_BOTH 4h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV

Re-arm trigger on positive edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the trigger signal from lower values to higher
values (rising edge) then the trigger event will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected if the trigger engine is armed again.

The re-arm trigger modes can be used fo prevent the board
from triggering on wrong edges in noisy signals.

armed

Triggerevent

Triggerevent

Table 99: Spectrum API: external trigger register mode setup for trigger re-arm on positive edge

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_POS | SPC_TM_REARM 01000001h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Defines the re-arm level in mV mV

Re-arm trigger on negative edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the trigger signal from higher values to lower
values (falling edge) then the trigger event will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected, if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

I
Triggerevent

1
Triggerevent

Table 100: Spectrum API: external trigger register mode setup for trigger re-arm on negative edge

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_EXTO_LEVELO 42320 read/write Defines the re-arm level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the desired trig_ger level in mV mV

(c) Spectrum Instrumentation GmbH

124

Trigger modes and appendant registers Secondary external level trigger (Ext1/Trg1)

Window trigger for entering signals
The trigger input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-

dow. Every time the signal enters the window from the out- == el P

. . s upper leve -~

side, a trigger event will be detected. ___ _______ _//_ _ :&i_________________ ______

————— "ﬁ/""""*l" e
er leve

I
Triggerevent Triggerevent Triggerevent

Table 101: Spectrum API: external trigger register mode setup for window trigger for entering signals

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

Window trigger for leaving signals

The trigger input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in- == P
side, a trigger event will be detected. N _/Z‘I _________ wemrlowel /I - __
| [
| I ~
[[>
_____ N N e o ____t
/ : lower level :\H.__,/ :
: | i
| [} I
| i i
Triggerevent Triggerevent Triggerevent

Table 102: Spectrum API: external trigger register mode setup for window trigger for leaving signals

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

High level trigger

This trigger mode will generate an internal gate signal that
can be useful in conjunction with a second trigger mode to Start
gate that second trigger. If using this mode as a single trigger [

|

source the card will detect a trigger event at the time when _%I_ S Triggerlevel N
|
|
|

entering the high level (acting like positive edge trigger) or if |
the trigger signal is already above the programmed level at |
the start it will immediately detect a trigger event. !
|
|
|

The trigger input is continuously sampled with the selected

sample rate. The trigger event will be detected if the trigger |
t
input is above the programmed trigger level. ae

Table 103: Spectrum API: external trigger register mode setup for high level trigger

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_HIGH 00000008h
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_HIGH 00000008h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV

(c) Spectrum Instrumentation GmbH 125

Trigger modes and appendant registers

Secondary external level trigger (Ext1/Trg1)

Low level trigger

This trigger mode will generate an internal gate signal that

can be useful in conjunction with a second trigger mode to

gate that second trigger. If using this mode as a single trigger
source the card will detect a trigger event at the time when

entering the low level (acting like negative edge trigger) or if
the trigger signal is already above the programmed level at
the start it will immediately detect a trigger event.

The trigger input is continuously sampled with the selected
sample rate. The trigger event will be detected if the trigger
input is below the programmed trigger level.

Gate

-vY

=

Table 104: Spectrum API: external trigger register mode setup for low level trigger

Register

Value

Direction

set to

Value

SPC_TRIG_EXTO_MODE

40510

read/write

SPC_TM_LOW

00000010h

SPC_TRIG_EXT1_MODE

40511

read/write

SPC_TM_LOW

00000010h

SPC_TRIG_EXTO_LEVELO

42320

read/write

Set it to the upper trigger level in mV

mV

In window trigger

This trigger mode will generate an internal gate signal that
can be useful in conjunction with a second trigger mode to
gate that second trigger. If using this mode as a single trigger
source the card will detect a trigger event at the time when
entering the window defined by the two trigger levels (acting
like window enter trigger) or if the trigger signal is already
inside the programmed window at the start it will immediately
defect a trigger event.

The trigger input is continuously sampled with the selected

|ower |eve|

. . . : Gate
sample rate. The trigger event will be detected if the trigger [1 >
input is inside the programmed trigger window. t
Table 105: Spectrum API: external trigger register mode setup for in window trigger
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_INWIN 00000080h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

Outside window trigger

This trigger mode will generate an internal gate signal that

can be useful in conjunction with a second trigger mode to

gate that second trigger. If using this mode as a single trigger
source the card will defect a trigger event at the time when

leaving the window defined by the two trigger levels (acting
like leaving window trigger) or if the trigger signal is already
outside the programmed window at the start it will immedi-

ately defect a trigger event.

The trigger input is continuously sampled with the selected
sample rate. The trigger event will be detected if the trigger
input is outside the programmed trigger window.

upper level / - \\
|

—— — e
|
|
|
|
|
.
|

Table 106: Spectrum API: external trigger register mode setup for outside window trigger

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_OUTSIDEWIN 00000100h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

(c) Spectrum Instrumentation GmbH

126

Trigger modes and appendant registers Channel Trigger

Channel Trigger

Overview of the channel trigger registers

e e The channel trigger modes are the most common modes, compared
to external equipment like oscilloscopes. The huge variety of different

— channel trigger modes enables you to observe nearly any part of the
rrr analog signal. This chapter is about to explain the different modes in
detail. To enable the channel trigger, you have fo set the channel trig-
germode register accordingly. Therefore you have to choose, if you
either want only one channel to be the trigger source, or if you want
to combine two or more channels to a logical OR or a logical AND

trigger.

Image 57: trigger engine overview with channel trigger section marked

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):.

Table 107: Spectrum API: channel trigger OR mask register

Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
—
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask

The following table shows the according registers for the two general channel trigger modes. It lists the maximum of the available channel
mode registers for your card’s series. So it can be that you have less channels installed on your specific card and therefore have less valid
channel mode registers. If you try to set a channel that is not installed on your specific card, an error message will be returned.

Table 108: Spectrum API: channel trigger mode registers and available mode settings

Register Value Direction Description
SPC_TRIG_CH_AVAILMODES 40600 read Bitmask, in which all bits of the below mentioned modes for the channel trigger are set, if available.
SPC_TRIG_CHO_MODE 40610 read/write Sets the trigger mode for channel 0. Channel O must be enabled in the channel OR/AND mask.
SPC_TRIG_CH1_MODE 40611 read/write Sets the trigger mode for channel 1. Channel 1 must be enabled in the channel OR/AND mask.
SPC_TRIG_CH2_MODE 40612 read/write Sets the trigger mode for channel 2. Channel 2 must be enabled in the channel OR/AND mask.
SPC_TRIG_CH3_MODE 40613 read/write Sets the trigger mode for channel 3. Channel 3 must be enabled in the channel OR/AND mask.

SPC_TM_NONE 00000000h | Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.

SPC_TM_POS 00000001h | Enables the trigger defection for positive edges

SPC_TM_NEG 00000002h | Enables the trigger detection for negative edges

SPC_TM_BOTH 00000004h | Enables the trigger detection for positive and negative edges

SPC_TM_POS | SPC_TM_REARM 01000001h | Trigger detection for positive edges on level 0. Trigger is armed when crossing level 1 to avoid false trigger on noise

SPC_TM_NEG | SPC_TM_REARM 01000002h | Trigger detection for negative edges on level 1. Trigger is armed when crossing level O to avoid false trigger on noise

SPC_TM_LOW 00000010h | Enables the trigger detection for LOW levels

SPC_TM_HIGH 00000008h | Enables the trigger detection for HIGH levels

SPC_TM_WINENTER 00000020h | Enables the window trigger for entering signals

SPC_TM_WINLEAVE 00000040h | Enables the window trigger for leaving signals

SPC_TM_INWIN 00000080h | Enables the window trigger for inner signals

SPC_TM_OUTSIDEWIN 00000100h | Enables the window trigger for outer signals

SPC_TM_POS | SPC_TM_HYSTERESIS 20000001h | Enables the trigger detection for positive edges with hysteresis

SPC_TM_NEG | SPC_TM_HYSTERESIS 20000002h | Enables the trigger detection for negative edges with hysteresis

SPC_TM_POS | SPC_TM_REARM | 21000001h | Trigger detection for positive edges with hysteresis on level O. Trigger is armed when crossing level 1 to avoid false

SPC_TM_HYSTERESIS trigger on noise

SPC_TM_NEG | SPC_TM_REARM | 21000002h | Trigger detection for negative edges with hysteresis on level 1. Trigger is armed when crossing level O to avoid false

SPC_TM_HYSTERESIS trigger on noise

SPC_TM_LOW | SPC_TM_HYSTERESIS 20000010h | Enables the trigger detection for LOW levels with hysteresis

SPC_TM_HIGH | SPC_TM_HYSTERESIS 20000008h | Enables the trigﬁ)er detection for HIGH levels with hysteresis

If you want to set up a two channel board to detect only a positive edge on channel O, you would have to setup the board like the following
example. Both of the examples either for the single trigger source and the OR trigger mode do not include the necessary settings for the trigger
levels. These settings are detailed described in the following paragraphs.

spcm_dwSetParam 132 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK NONE) ; // disable software trigger
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CH ORMASKO, SPC_TMASKO_ CHO) ; // Enable channel 0 in the OR mask
spcm_dwSetParam i32 (hDrv, SPC_TRIG CHO MODE, SPC TM POS); // Set triggermode of Ch 0 to positive edge

(c) Spectrum Instrumentation GmbH 127

Trigger modes and appendant registers

Channel Trigger

If you want to set up a two channel board to detect a trigger event on either a positive edge on channel O or a negative edge on channel 1
you would have to set up your board as the following example shows.

spcm_dwSetParam_ i32
spcm_dwSetParam i32
spcm_dwSetParam i32
spcm_dwSetParam_ i32

hDrv, SPC TRIG ORMASK,

hDrv, SPC_TRIG_CH ORMASKO,

(
(
(hDrv, SPC TRIG CHO MODE,
(hDrv, SPC_TRIG_CH1_MODE,

SPC_TMASK_NONE) ;
SPC_TMASKO_CHO
SPC_TM POS);
SPC_TM NEG) ;

// disable software trigger

| SPC_TMASKO_CH1); // Enable Ch 0 & Ch 1
// Set triggermode of Ch 0 to positive edge
// Set triggermode of Ch 1 to negative edge

Channel trigger level

All of the channel trigger modes listed above require at least one trigger level to be set (except SPC_TM_NONE of course). Some modes like
the window triggers require even two levels (upper and lower level) to be set.

After the data has been sampled, the upper N data bits are compared with the N bits of the trigger levels. The following table shows the level
registers and the possible values they can be set to for your specific card.

As the trigger levels are compared to the digitized data, the trigger levels depend on the channels input range. For every input range available
to your board there is a corresponding range of trigger levels. On the different input ranges the possible stepsize for the trigger levels differs
as well as the maximum and minimum values. The table further below gives you the absolute trigger levels for your specific card series.

8 bit resolution for the trigger levels:

Table 109: Spectrum API: channel trigger level registers and available settings

Register Value Direction Description Range

SPC_TRIG_CHO_LEVELO 42200 read/write Trigger level O channel O: main trigger level / upper level if 2 levels used -127 to +127
SPC_TRIG_CH1_LEVELO 42201 read/write Trigger level O channel 1: main trigger level / upper level if 2 levels used 2127 to +127
SPC_TRIG_CH2_LEVELO 42202 read/write Trigger level O channel 2: main trigger level / upper level if 2 levels used -127 to +127
SPC_TRIG_CH3_LEVELO 42203 read/write Trigger level O channel 3: main trigger level / upper level if 2 levels used <127 to +127
SPC_TRIG_CHO_LEVEL1 42300 read/write Trig-ger level 1 channel O: auxiliary trigger level / lower level if 2 levels used -127 to +127
SPC_TRIG_CH1_LEVEL1 42301 read/write Trigger level 1 channel 1: auxiliary trigger level / lower level if 2 levels used | -127 to +127
SPC_TRIG_CH2_LEVEL1 42302 read/write Trigger level 1 channel 2: auxiliary trigger level / lower level if 2 levels used -127 to +127
SPC_TRIG_CH3_LEVEL1 42303 read/write Trigﬁer level 1 channel 3: auxiliary trigﬁer level / lower level if 2 levels used 127 t0 +127

Trigger level representation depending on selected input range

Table 110: Spectrum API: trigger level settings and related input trigger voltage in comparison to input range

Input ranges
Triggerlevel 2200 mV 500 mV 1V 2.5V
127 198.4 mV 496.1 mV 992.2 mV +2480.5 mV
126 196.9 mV 492.2 mV 984.4 mV +2460.9 mV
64 100.0 mV 250.0 mV 500.0 mV +1250.0 mV
2 3.1 mV 7.8 mV 15.6 mV +39.1 mV
1 1.6 mV 3.9 mV 7.8 mV +19.5mV
0 0.0 mV 0.0 mV 0.0 mV oV
-1 1.6 mV 3.9 mV 7.8 mV -19.5 mV
2 3.1 mV 7.8 mV -15.6 mV -39.1 mV
-64 -100.0 mV -250.0 mV -500.0 mV -1250.0 mV
-126 -196.9 mV -492.2 mV 984.4 mV -2460.9 mV
-127 -198.4 mV -496.1 mV 992.2 mV -2480.5 mV
Step size 1.6 mV 3.9 mvV 7.8 mV 19.5 mV

The following example shows, how to set up a one channel board to trigger on channel O with rising edge. It is assumed, that the input range
of channel O is set to the 200 mV range. The decimal value for SPC_TRIG_CHO_LEVELO corresponds then with 168 mV, which is the resulting

trigger level.

spcm_dwSetParam i32
spcm_dwSetParam_ i32
spcm_dwSetParam i32
spcm_dwSetParam i32

hDrv, SPC TRIG ORMASK, SPC TMASK NONE);
hDrv, SPC_TRIG_CHO_MODE,
hDrv, SPC_TRIG_CHO_ LEVELO, 105);
hDrv, SPC TRIG CH ORMASKO,

SPC_TM_POS) ;

SPC TMASKO CHO); // and enable it within the OR mask

// disable default software trigger
// Setting up channel trig (rising edge)

// Sets triggerlevel to 168 mV

(c) Spectrum Instrumentation GmbH

128

Trigger modes and appendant registers Channel Trigger

Reading out the number of possible trigger levels

The Spectrum driver also contains a register that holds the value of the maximum possible different trigger levels considering the above men-
tioned exclusion of the most negative possible value. This is useful, as new drivers can also be used with older hardware versions, because
you can check the trigger resolution during run time. The register is shown in the following table:

Table 111: Spectrum API: trigger level count register

Register Value Direction Description
SPC_READTRGLVLCOUNT 2500 r Contains the number of different possible trigger levels meaning + of the value.
—
In case of a board that uses 8 bits for trigger defection the returned value would Input Range

be 127, as either the zero and 127 positive and negative values are possi- Trigger step width =
ble.The resulting trigger step width in mV can easily be calculated from the re-
turned value. It is assumed that you know the actually selected input range.

Number of trigger levels + 1

To give you an example on how to use this formula we assume, that the ' ' +1000 mV
+1.0 V input range is selected and the board uses 8 bits for trigger detection. Trigger step width = —=====
The result would be 7.81 mV, which is the step width for your type of board

within the actually chosen input range.

Detailed description of the channel trigger modes

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):

Table 112: Spectrum API: channel trigger OR mask register

Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
—
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask

Channel trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower values to higher values (ris-
ing edge) then the trigger event will be detected. —

Triggerleve! _\
. A
These edge triggered channel trigger modes correspond to - /

the trigger possibilities of usual oscilloscopes.

I
Triggerevent

Table 113: Spectrum API: channel trigger register settings for positive edge trigger

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS 1h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

Channel trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher values to lower values (fall-

ing edge) then the trigger event will be detected. ,——~\ Triggerlevel

These edge triggered channel trigger modes correspond to
the trigger possibilities of usual oscilloscopes.

-vY

|
Triggerevent

Table 114: Spectrum API: channel trigger register settings for negative edge trigger

Register Value Direction set to Value

SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG 2h

SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
—

(c) Spectrum Instrumentation GmbH 129

Trigger modes and appendant registers Channel Trigger

Channel trigger on positive and negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal (either rising or falling edge) the trigger

event will be detected. — Triggerlevel ~
_______________________________________ S
— I
These edge triggered channel trigger modes correspond to /l/
i
1
1
1
|

the trigger possibilities of usual oscilloscopes.

Triggerevent Triggerevent

Table 115: Spectrum API: channel trigger register settings for positive and negative edge trigger

Register Value Direction set to Value

SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_BOTH 4h

SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
—

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from |
lower to higher values, the trigger engine is armed and ! —]

1

waiting for trigger. If the programmed trigger level is _trigger levs! _:_/Z’ _____ R N i/ ff'______
crossed by the channel’s signal from lower values to higher i ﬁ\
values (rising edge) then the trigger event will be detected

| >
) AN ; T TN YA A ,
and the trigger engine will be disarmed. A new trigger / ey o X\/ 3

event is only detected if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board |
from triggering on wrong edges in noisy signals. Triggerevent Triggerevent

Table 116: Spectrum API: channel trigger register settings for re-arm trigger on positive edge

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 01000001h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm level relatively to the channel’s input range board dependent

Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and

waiting for trigger. If the programmed trigger level is | ___ N re-arm level -~~~
crossed by the channel’s signal from higher values to lower
values (falling edge) then the trigger event will be detected

and the trigger engine will be disarmed. A new trigger 74*;9_9;'7;“;_8‘\:(7[___ —_—_7/ ——————— \\; ——_———___—7[—

event is only defected, if the trigger engine is armed again.

The re-arm trigger modes can be used fo prevent the board | 1
from triggering on wrong edges in noisy signals. Triggerevent Triggerevent

Table 117: Spectrum API: channel trigger register settings for re-arm trigger on negative edge

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Defines the re-arm level relatively to the channel’s input range board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the desired trig_ger level relatively to the channel’s input range. board dependent

(c) Spectrum Instrumentation GmbH 130

Trigger modes and appendant registers Channel Trigger

Channel window trigger for entering signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-

dow. Every time the signal enters the window from the out- —
side, a trigger event will be detected. upper level ~
99 ___ _______ _//_ - :Xi_________________ ______
————— "ﬁ/""""*l" e
er leve
— / o

I
Triggerevent Triggerevent Triggerevent

Table 118: Spectrum API: channel trigger register settings for window trigger for entering signals

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel's input range. board dependent

Channel window trigger for leaving signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in- —. -
side, a trigger event will be detected. N _/f _________ upperlevel L f’_'__‘__
| |
| [
: \ : g
_____ N N e o ____t
/ i lower level : “m.__,/ :
| | i
| i i
| i I
Triggerevent Triggerevent Triggerevent

Table 119: Spectrum API: channel trigger register settings for window trigger for leaving signals

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependent

High level trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated ST?”
by a different mode. If using this mode as a single trigger [

source the card will defect a trigger event at the time when _%I_\ — Triggerlevel N

entering the high level (acting like positive edge trigger) or if "
the analog signal is already above the programmed level at :
the start it will immediately detect a trigger event. !
|
|
|

S

The channel is continuously sampled with the selected sample

rate. The trigger event will be detected if the analog signal is
G
above the programmed trigger level. are ’—L

Table 120: Spectrum API: channel trigger register settings for high level trigger

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_HIGH 00000008h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent

(c) Spectrum Instrumentation GmbH 131

Trigger modes and appendant registers

Channel Trigger

Low level trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. If using this mode as a single trigger
source the card will detect a trigger event at the time when
entering the low level (acting like negative edge trigger) or if
the signal is already above the programmed level at the start
it will immediately detect a trigger event.

The channel is continuously sampled with the selected sample

rate. The trigger event will be detected if the analog signal is
below the programmed trigger level.

Table 121: Spectrum API: channel trigger register settings for low level trigger

-vY

Gate

=

Register Value Direction

set to

Value

SPC_TRIG_CHO_MODE 40610 read/write

SPC_TM_LOW

00000010h

SPC_TRIG_CHO_LEVELO 42200

read/write

Set it to the upper trigger level relatively to the channel’s input range.

board dependent

In window trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. If using this mode as a single trigger
source the card will defect a trigger event at the time when
entering the window defined by the two trigger levels (acting
like window enter trigger) or if the signal is already inside the
programmed window at the start it will immediately detect a
trigger event.

The channel is continuously sampled with the selected sample

|ower |eve|

. Gate
rate. The trigger event will be detected if the analog signal is |—‘ >
inside the programmed trigger window. t
Table 122: Spectrum API: channel trigger register settings for in-window trigger
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_INWIN 00000080h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel's input range. board dependent

Outside window trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. If using this mode as a single trigger
source the card will detect a trigger event at the time when
leaving the window defined by the two trigger levels (acting
like leaving window trigger) or if the signal is already outside
the programmed window at the start it will immediately de-
tect a trigger event.

The channel is continuously sampled with the selected sample
rate. The trigger event will be detected if the analog signal is
outside the programmed trigger window.

upper level

A
S
%
\
{

Table 123: Spectrum API: channel trigger register settings for outside-window trigger

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_OUTSIDEWIN 00000100h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependent

(c) Spectrum Instrumentation GmbH

132

Trigger modes and appendant registers

Channel Trigger

Channel hysteresis trigger on positive edge
This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated

by a different mode. The analog input is continuously sam- Start
pled with the selected sample rate.
T, trigger level P 7
If the programmed trigger level is crossed by the channel’s =T s 7 s g
signal from lower values to higher values [rising edge) the | | |
gatestarts. N L | hysteresislevel /| ¢
| I, s |
| | |
When the signal crosses the programmed hysteresis level ' ' '
from higher values to lower values (falling edge) then the o —
gate will stop. are
t
As this mode is purely edge-triggered, the high level at the
cards start time does not trigger the board.
Table 124: Spectrum API: register settings for channel hysteresis trigger on positive edge
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_HYSTERESIS 20000001h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant

Channel hysteresis trigger on negative edge

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

Start

-~ irigger level

If the programmed trigger level is crossed by the channel’s TN T T T TN T T T T
signal higher values to lower values (falling edge) the gate | |
starts. N | hysteresislevel | 4
I, / |
[|
When the signal crosses the programmed hysteresis level ' '
from lower values to higher values (rising edge) then the a
gate will stop. 20
t
As this mode is purely edge-triggered, the low level at the
cards start time does not trigger the board.
Table 125: Spectrum API: register settings for channel hysteresis trigger on negative edge
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_HYSTERESIS 20000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant

Channel re-arm hysteresis trigger on positive edge

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the programmed re-arm/hysteresis level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from lower values to higher
values (rising edge) then the gate starts and the trigger en-
gine will be disarmed. If the programmed re-arm/hysteresis
level is crossed by the channel’s signal from higher values
to lower values (falling edge) the gate stops.

armed

trigger level " .

‘_.. Y, re-arm /hysieresis level

Gate

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from

triggering on wrong edges in noisy signals.

Table 126: Spectrum API: register settings for channel hysteresis re-arm trigger on positive edge

Register Value Direction set to Value

SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM | SPC_TM_HYSTERESIS 21000001h

SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm and hysteresis level relatively to the channel’s input board dependant
range

(c) Spectrum Instrumentation GmbH

133

Trigger modes and appendant registers

Channel Trigger

Channel re-arm hysteresis trigger on negative edge

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the programmed re-arm/hysteresis level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from higher values to lower
values (falling edge) then the gate starts and the trigger en-
gine will be disarmed. If the programmed re-arm/hysteresis
level is crossed by the channel’s signal from lower values to
higher values (rising edge) the gate stops.

Gate

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from

triggering on wrong edges in noisy signals.

Table 127: Spectrum API: register settings for channel hysteresis re-arm trigger on negative edge

Register Value Direction set to Value

SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM | SPC_TM_HYSTERESIS 21000002h

SPC_TRIG_CHO_LEVELO 42200 read/write Defines the trigger level relatively to the channel’s input range board dependant

SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm and hysteresis level relatively to the channel’s input board dependant
range

High level hysteresis trigger
This trigger mode will generate an internal gate signal that

can be useful for masking a second trigger event generated Start
by a different mode. The analog input is continuously sam- :
pled with the selected sample rate. T trigger level e
TN T T I o
I the signal is equal or higher than the programmed trigger ! o /| S !
level the gate starts. ____il___";Jl_ __________ L _-}__hﬁfz@iz'zvz';__l____r
I I I I\ : I
When the signal is lower than the programmed hysteresis lev- ' ' ' ' '
el the gate will stop. Gate
As this mode is leveltriggered, the high level at the cards start U
time does trigger the board.
Table 128: Spectrum API: register settings for high-level channel hysteresis trigger
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_HIGH | SPC_TM_HYSTERESIS 20000008h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant

Low level hysteresis trigger

This trigger mode will generate an internal gate signal that
can be useful for masking a second trigger event generated
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

|
|
| -
- T N |_____/|,_ _______ T T T T T T T T ——
N | {
If the signal is equal or lower than the programmed trigger i . . — i
level the gate starts. N LA L | permsae/ L
y | I\ : |
When the signal is higher than the programmed hysteresis - ' ' '
level the gate will stop. Gate
As this mode is leveltriggered, the high level at the cards start U
time does trigger the board.
Table 129: Spectrum API: register settings for low-level channel hysteresis trigger
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_LOW | SPC_TM_HYSTERESIS 20000010h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant

(c) Spectrum Instrumentation GmbH

134

Multi Purpose 1/O Lines

On-board I/O lines (X0, X1, X2)

Multi Purpose 1/0 Lines

On-board 1/0 lines (X0, X1, X2)

The M4i/M4x series cards and the based upon digitizerNETBOX,
generatorNETBOX and hybridNETBOX products have three multi
purpose 1/O lines that can be used for a wide variety of functions to
help the interconnection with external equipment. The functionality of
these multi purpose /O lines can be software programmed and each
of these lines can either be used for input or output.

The multi purpose 1/O lines may be used as status outputs such as
trigger output or internal arm/run as well as for asynchronous 1/0 to
control external equipment as well as additional digital input lines

that are sampled synchronously with the analog data.) H

= T T | N o
The multi purpose 1/O lines are available on the front plate and la- | 1< L‘ [t on]
beled with XO (line 0), X1 (line 1) and X2 (line 2). As default these =

lines are switched off.

Image 58: trigger overview with multi-purpose lines marked

~, As default (power-on and after reset command) the 1/O capable lines are switched off and hence are not
?,Q.f actively driven. Hence the on-board 10k Ohm pull-up resistors are pulling these lines to logic HIGH. If a logic
) LOW is required, external lower-value (1k Ohm) pull-down resistors might be used.

Please be careful when programming these lines as an output whilst maybe still being connected with an
external signal source, as that may damage components either on the external equipment or on the card

itself.

Programming the behavior

Each multi purpose 1/O line can be individually programmed. Please check the available modes by reading the SPCM_X0_AVAILMODES,
SPCM_X1_AVAILMODES and SPCM_X2_AVAILMODES register first. The available modes may differ from card to card and may be en-

hanced with new driver/firmware versions to come.

Table 130: Spectrum API: multi-purpose 1/O lines registers and available register settings

Register Value Direction Description

SPCM_XO_AVAILMODES 47210 read Bitmask with all bits of the below mentioned modes showing the available modes for (XO)
SPCM_X1_AVAILMODES 47211 read Bitmask with all bits of the below mentioned modes showing the available modes for (X1)
SPCM_X2_AVAILMODES 47212 read Bitmask with all bits of the below mentioned modes showing the available modes for (X2)
SPCM_X0_MODE 47200 read/write Defines the mode for (XO). Only one mode selection is possible to be set at a time
SPCM_X1_MODE 47201 read/write Defines the mode for (X1). Only one mode selection is possible to be set at a time
SPCM_X2_MODE 47202 read/write Defines the mode for (X2). Only one mode selection is possible to be set at a time

SPCM_XMODE_DISABLE 00000000h | No mode selected. Output is tristate (default setup)

SPCM_XMODE_ASYNCIN 00000001h | Connector is programmed for asynchronous input. Use SPCM_XX_ASYNCIO to read data asynchronous as shown in
next chapter.

SPCM_XMODE_ASYNCOUT 00000002h | Connector is programmed for asynchronous output. Use SPCM_XX_ASYNCIO to write data asynchronous as shown
in next chapter.

SPCM_XMODE_DIGIN 00000004h | A/D cards only:

Connector is programmed for synchronous digital input. For each analog channel, one digital channel X0/X1/X2 is
integrated into the ADC data stream. Depending on the ADC resolution of your card the resulting merged samples
can have different formats. Please check the ,Sample format” chapter for more details. Please note that automatic
sign extension of analog data is ineffective as soon as one digital input line is activated and the software must prop-
erly mask out the digital bits.

SPCM_XMODE_DIGOUT 00000008h | D/A cards only:

Connector is programmed for synchronous digital output. Digital channels can be ,included” within the analog sam-
ples and synchronously replayed along. Requires additional MODE bits to be set along with this flag, as explained
later on.

SPCM_XMODE_TRIGOUT 00000020h | Connector is programmed as trigger output and shows the trigger detection. The trigger output goes HIGH as soon as
the trigger is recognized. After end of acquisition it is LOW again. In Multiple Recording/Gated Sampling/ABA
mode it goes LOW after the acquisition of the current segment stops. In FIFO single mode the trigger output is HIGH
until FIFO mode is stopped.

SPCM_XMODE_DIGIN2BIT 00000080h | Connector is programmed for digital input. For each analog channel, two digital channels X0/X1/X2 are integrated
into the ADC data stream. Depending on the ADC resolution of your card the resulting merged samples can have dif-
ferent formats. Please check the data format chapter to see more details. Please note that automatic sign extension of
analog data is ineffective as soon as one digital input line is activated and the software must properly mask out the
digital bits.

SPCM_XMODE_RUNSTATE 00000100h | Connector shows the current run state of the card. If acquisition/output is running the signal is HIGH. If card has
stopped the signal is LOW.

SPCM_XMODE_ARMSTATE 00000200h | Connector shows the current ARM state of the card. If the card is armed and ready to receive a trigger the signal is
HIGH. If the card isn’t running or the card is still acquiring pretrigger data or the trigger has been detected the signal
is LOW.

SPCM_XMODE_REFCLKOUT 00001000h | Connector reflects the internally generated PLL reference clock in the range of 10 to 62.5 MHz.

SPCM_XMODE_CONTOUTMARK 00002000h | Generator Cards only: outputs a HIGH pulse as continuous marker signal for continuous replay mode. The marker sig-

nal length is 2 of the programmed memory size.

(c) Spectrum Instrumentation GmbH 135

Multi Purpose 1/O Lines On-board I/O lines (X0, X1, X2)

SPCM_XMODE_SYSCLKOUT 00004000h | Connector reflects the internally generated system clock in the range of 2.5 up to 156.25 MHz.

SPCM_XMODE_PULSEGEN 00080000h | A/D and D/A cards only (optional):
Connector reflects the output of the same index pulse generator (XO output from pulse generator O, X1 from pulse gen-
erator 1 etc.). For details on the pulse generator option please consult the “Pulse Generator (Option)” chapter.

Sung Please note that a change to the SPCM_X0_MODE, SPCM_X1_MODE or SPCM_X2_MODE will only be updated

‘:QF with the next call to either the M2CMD_CARD_START or M2CMD_CARD_WRITESETUP register. For further de-
) tails please see the relating chapter on the M2CMD_CARD registers.

Using asynchronous 1/0

To use asynchronous 1/O on the multi purpose 1/O lines it is first necessary to switch these lines to the desired asynchronous mode by pro-
gramming the above explained mode registers. As a special feature asynchronous input can also be read if the mode is set to trigger input
or digital input.

Table 131: Spectrum API: asynchronous 1/O register settings of the multi-purpose 1/O registers

Register Value Direction Description

SPCM_XX_ASYNCIO 47220 read/write Connector X0 is linked to bit O of the register, connector X1 is linked to bit 1 while connector X2 is

linked to bit 2 of this register. Data is written/read immediately without any relation to the currently
used sampling rate or mode. If a line is programmed to output, reading this line asynchronously will
return the current output level.

Example of asynchronous write and read. We write a high pulse on output X1 and wait for a high level answer on input XO:

spcm_dwSetParam_ i32 (hDrv, SPCM_XO0_MODE, SPCM_XMODE_ASYNCIN) ; // X0 set to asynchronous input
spcm_dwSetParam 132 (hDrv, SPCM X1 MODE, SPCM XMODE ASYNCOUT); // X1 set to asynchronous output
spcm_dwSetParam i32 (hDrv, SPCM X2 MODE, SPCM XMODE TRIGOUT) ; // X2 set to trigger output
spcm_dwSetParam i32 (hDrv, SPCM XX ASYNCIO, 0); // programming a high pulse on output

spcm_dwSetParam i32 (hDrv, SPCM XX ASYNCIO, 2);
spcm_dwSetParam_i32 (hDrv, SPCM_XX ASYNCIO, 0);

do {
spcm_dwGetParam 132 (hDrv, SPCM XX ASYNCIO, &lAsyncIn); // read input in a loop
} while ((lAsyncIn & 1) == 0); // until X0 is going to high level

Special behavior of trigger output

As the driver of the M4i/M4x series is the same as the driver for the M2i/M3i series and some old software may rely on register structure of
the M2i/M3i card series, there is a special compatible trigger output register that will work according to the M2i/M3i series style. It is not
recommended to use this register unless you’re writing software for multiple card series:

Table 132: Spectrum API: additional trigger output register for compatibility with older hardware

Register Value Direction Description

SPC_TRIG_OUTPUT 40100 read/write M2i style trigger output programming. Write a ,1” to enable:

- X2 trigger output (SPCM_X2_MODE = SPCM_XMODE_TRIGOUT)
- X1 arm state (SPCM_X1_MODE = SPCM_XMODE_ARMSTATE).

- X0 run state (SPCM_XO_MODE = SPCM_XMODE_RUNSTATE).

Write a ,0” to disable all three outputs:
- SPCM_X0_MODE = SPCM_X1_MODE = SPCM_X2_MODE = SPCM_XMODE_DISABLE

The SPC_TRIG_OUTPUT register overrides the multi purpose 1/O settings done by SPCM_X0_MODE, SPCM_X-
A 1_MODE and SPCM_X2_MODE and vice versa. Do not use both methods together from within one program.

(c) Spectrum Instrumentation GmbH 136

Multi Purpose 1/O Lines On-board I/O lines (X0, X1, X2)

Synchronous digital inputs

The cards of the M4i.22xx series allow to optionally record synchronous digital channels along with analog acquisition.The table below
shows the related registers and the values that correspond with the different possibilities. This mode, when set, changes the sample format
for all active channels according to the table further below:

Table 133: Spectrum API: multi-purpose 1/O register settings for setup as synchronous digital inputs

Register Value Direction Description
SPCM_XO_AVAILMODES 47210 read Bitmask with all bits of the below mentioned modes showing the available modes for (XO)
SPCM_X1_AVAILMODES 47211 read Bitmask with all bits of the below mentioned modes showing the available modes for (X1)
SPCM_X2_AVAILMODES 47212 read Bitmask with all bits of the below mentioned modes showing the available modes for (X2)
SPCM_X0_MODE 47200 read/write Defines the mode for (X0). Only one mode selection is possible to be set at a time
SPCM_X1_MODE 47201 read/write Defines the mode for (X1). Only one mode selection is possible to be set at a time
SPCM_X2_MODE 47202 read/write Defines the mode for (X2). Only one mode selection is possible to be set at a time
SPCM_XMODE_DISABLE 00000000h | No mode selected. Output is tristate (default setup)
SPCM_XMODE_DIGIN 00000004h | A/D cards only:
Connector is programmed for synchronous digital input. For each analog channel, one digital channel X0/X1/X2 is
integrated into the ADC data stream. Depending on the ADC resolution of your card the resulting merged samples
can have different formats. Please check the ,Sample format” chapter for more details. Please note that automatic
sign extension of analog data is ineffective as soon as one digital input line is activated and the software must prop-
erly mask out the digital bits.

The driver will automatically scale the analog samples prior to inserting the digital channels to keep the channel at the maximum possible
resolution.

Sample Format
The card is using 8 bit A/D samples, that are stored in twos complement in one 8 bit data byte. 8 bit resolution means that data is ranging

from -128...to...+127:

Table 134: data sample format in standard mode and with digital inputs enable

Standard Mode Digital inputs enabled
SPCM_XMODE_DIGIN
M4i.22xx M4i.22xx
Data bit 8 bit ADC resolution 7 bit ADC resolution
D7 ADx Bit 7 22x4, 22x2 (4 Ch models):
Ch3: Digital bit 0 (X0)
Ch2: Digital bit 2 (X2)
Ch1: Digital bit 1 (X1)
ChO: Digital bit 0 (XO)
22x3, 22x1 (2 Ch models):
Ch1: Digital bit 1 (X0)
ChO: Digital bit 0 (X2)
22x0 (1 Ch models):
ChO: Digital bit O (XO)
Dé ADx Bit 6 ADx Bit 7
D5 ADx Bit 5 ADx Bit 6
D4 ADx Bit 4 ADx Bit 5
D3 ADx Bit 3 ADx Bit 4
D2 ADx Bit 2 ADx Bit 3
D1 ADx Bit 1 ADx Bit 2
DO ADx Bit O (LSB] ADx Bit 1 (LSB)

Please note that automatic sign extension of analog data is ineffective as soon as one digital input line is
activated and the software must properly mask out all the digital bits from the samples.

The following example shows how to enable a single digital channels for all analog channels (four in this example)

// enable acquisition of one digital bit
spcm_dwSetParam i32
spcm_dwSetParam i32
spcm_dwSetParam i32

(hDrv, SPC_CHENABLE,

(hDrv,
(hDrv,

SPCM_X0_MODE,
SPCM X1 MODE,
(hDrv, SPCM_X2_MODE,

// enable all four analog channels
spcm_dwSetParam i32

CHANNELO

CHANNEL1

per analog channel
SPCM_XMODE_DIGIN) ;
SPCM_XMODE DIGIN) ;
SPCM_XMODE_DIGIN) ;

| CHANNEL2

// X0 set to
// X1 set to
// X2 set to

CHANNEL3) ;

synchronous input
synchronous input
synchronous input

(c) Spectrum Instrumentation GmbH

137

Mode Multiple Recording Recording modes

Mode Multiple Recording

The Multiple Recording mode allows the acquisition of data .
blocks with multiple trigger events without restarting the hard- Pre:Post

ware. : 5 5
The on-board memory will be divided into several segments of : '

the same size. Each segment will be filled with data when a trig- Input ﬂVf:\ AL ﬂ\f;\ Ay qﬂ\ﬁ\ A
ger event occurs (acquisition mode). yppeny RSV AURIRY

Trigger

As this mode is totally controlled in hardware there is a very Memory an~nlNan.nlNon.n
small re-arm time from end of one segment until the trigger de- U | A RUTERVATAT |
tection is enabled again. You'll find that re-arm time in the tech-
nical data section of this manual.

< Segment —
The following table shows the register for defining the structure ~ /mage 59: Drawing of Multiple Recording acquisition

of the segments to be recorded with each trigger event.

Table 135: Spectrum API: software registers for Multiple Recording mode setup

Register Value Direction Description

SPC_POSTTRIGGER 10100 read/write Acquisition only: defines the number of samples to be recorded per channel after the trigger event.

SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Recording segment: the total number of samples to be recorded per channel
after detection of one trigger event including the time recorded before the trigger (pre trigger).

Each segment in acquisition mode can consist of pretrigger and/or posttrigger samples. The user always has to set the total segment size
and the postirigger, while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

nels. When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN.

When using Multiple Recording the maximum pretrigger is limited depending on the number of active chan- f
Please have a look at the table further below to see the maximum pretrigger length that is possible.

Recording modes

Standard Mode

With every detected trigger event one data block is filled with data. The length of one multiple recording segment is set by the value of the
segment size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Multiple Recording. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Table 136: Spectrum API: card mode register and multiple recording settings

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_STD_MULTI 2 Enables Multiple Recording for standard acquisition.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

Table 137: Spectrum API: memory and loop registers with related multiple recording settings

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.
FIFO Mode

The Multiple Recording in FIFO Mode is similar to the Multiple Recording in Standard Mode. In contrast to the standard mode it is not nec-
essary fo program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block
by the driver as described under FIFO single mode example earlier in this manual. These blocks are online available for further data process-
ing by the user program. This mode significantly reduces the amount of data to be transferred on the PCI bus as gaps of no interest do not
have to be transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Multiple Recording.
The advantage of Multiple Recording in FIFO mode is that you can stream data online to the host system. You can make real-time data pro-
cessing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Multiple Recording. For
detailed information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Table 138: Spectrum API: card mode register and multiple replay FIFO mode settings

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_FIFO_MULTI 32 Enables Multiple Recording for FIFO acquisition.

(c) Spectrum Instrumentation GmbH 138

Mode Multiple Recording

Limits of pre trigger, post trigger, memory size

The number of segments to be recorded must be set separately with the register shown in the following table:

Table 139: Spectrum API: loops register settings when using Multiple Replay FIFO mode

Register Value Direction Description
SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.

1

. [4G-1]

Defines the total segments to be recorded.

Limits of pre trigge

r, post tri

imi P gger, p gger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Table 140: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step | Min | Max | Step | Min Max Step | Min | Max | Step | Min | Max | Step
1 Ch Standard Single 64 | Mem 32 32 |Mem-32 [32 [32 [8G-32 32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem 32 32 | 8k | 32 32 | Mem/2-32 | 32 Jé4 Mem/2 |32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 Mem 32 32 [sk [32 32 [Mem32 [32 not used not used
Standard Average For the limits in this mode please refer to the dedicated chapter in this manual,
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) |4G-1 1
FIFO Multi/ABA not used 32 |8k 32 32 | 8G32 | 32 64 [pretpost |32 JO(o) [4G-1 |1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [sc-32 [32 not used 0 [4G-1 |1
FIFO Average For the limits in this mode :>|e<ﬁefer to the dedicated chapter in this manual.
2 Ch Standard Single 64 Mem/2 32 32 I Mem/2 - 32 I 32 32 8G-32 32 not used not used
(defined by mem and post)
Standard Multi/ABA [64 [Mem/2 |32 |32 sk [32 32 [Mem/432 | 32 64 [Mem/a [32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 |[Mem/2 [32 32 [sk [32 |32 [Mem/232 [32 not used not used
Standard Average For the |imi_ts, in this mode :>|ea_se refer to the dedicated chapter in this manual.
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) |4G-1 1
FIFO Multi/ABA not used 32 8k 32 32 | 8G-32 | 32 o4 pre+post | 32 0 () [4G-1 1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [8G-32 [32 not used 0 [46-1 |1
FIFO Average For the limits in this mode please refer to the dedicated chapter in this manual.
4 Ch Standard Single 64 Mem/4 |32 32 [Mem/4-32 [32 32 8G-16 32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem/4 |32 32 | 8k | 32 32 | Mem/4-32 | 32 Jé4 Mem/8 |32 not used
(defined by segment and post) | (Limited by max pretfrigger)
Standard Gate 64 |Mem/a |32 [32 sk [32 132 [Mem/4-16 [32 not used not used
Standard Average For the limits in this mode please refer to the dedicated chapter in this manual.
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0w [4G-1 1
FIFO Multi/ABA not used 32 |8k 32 32 | 8632 | 32 64 [pretpost |32 [0 [4G-1 |1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [s8c-32 [32 not used 0 [4G-1 |1

FIFO Average

For the limits in this mode please refer to the dedicated chapter in this manual.

All figures listed here are given in samples. An entry of [8G - 32] means [8 GSamples - 32] = 8,589,934,560 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
2 GSample 8 GSample
(Option: M5i.xxx-MEM8GS)
Mem 2 GSample 8 GSample
Mem / 2 1 GSample 4 GSample
Mem / 4 512 MSample 2 GSample
Mem / 8 256 MSample 1 GSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

(c) Spectrum Instrumentation GmbH

139

Mode Multiple Recording Trigger Modes

Multiple Recording and Timestamps Start iriggert | Trigger2 rigger3
Multiple Recording is well matching with the timestamp option. If timestamp X |—| l—‘ 1—|
recording is activated each trigger event and therefore each Multiple Re- Trigger : 5 ;

cording segment will get timestamped as shown in the drawing on the right. Input
Please keep in mind that the trigger events are timestamped, not the begin-
ning of the acquisition. The first sample that is available is at the time position
of [Timestamp - Pretfrigger]. > Stamp3

The programming details of the timestamp option is explained in an extra

Image 60: drawing of Multiple Recording Acquisition with Timestamps
chapter.

Trigger Modes

When using Multiple Recording all of the card’s trigger modes can be used including the software trigger. For detailed information on the
available trigger modes, please take a look at the relating chapter earlier in this manual.

(c) Spectrum Instrumentation GmbH 140

Mode Multiple Recording Programming examples

Programming examples

The following example shows how to set up the card for Multiple Recording in standard mode.

spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD MULTI); // Enables Standard Multiple Recording

spcm_dwSetParam i64 (hDrv, SPC_SEGMENTSIZE, 1024); // Set the segment size to 1024 samples

spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 768); // Set the posttrigger to 768 samples and therefore
// the pretrigger will be 256 samples
spcm_dwSetParam i64 (hDrv, SPC _MEMSIZE, 4096); // Set the total memsize for recording to 4096 samples

// so that actually four segments will be recorded

spcm dwSetParam i32 (hDrv, SPC_TRIG EXTO MODE, SPC TM POS); // Set trigmode to ext. TTL mode (rising edge)
spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ; // and enable it within the trigger OR-mask

The following example shows how to set up the card for Multiple Recording in FIFO mode.

spcm_dwSetParam_ i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO MULTI) ; // Enables FIFO Multiple Recording

spcm_dwSetParam 164 (hDrv, SPC SEGMENTSIZE, 2048); // Set the segment size to 2048 samples

spcm_dwSetParam i64 (hDrv, SPC_POSTTRIGGER, 1920); // Set the posttrigger to 1920 samples and therefore
// the pretrigger will be 128 samples

spcm dwSetParam i64 (hDrv, SPC_LOOPS 256); // 256 segments will be recorded

spcm_dwSetParam i32 (hDrv, SPC_TRIG_EXTO_MODE, SPC_TM NEG) ; // Set trigmode to ext. TTL mode (falling edge)
spcm _dwSetParam i32 (hDrv, SPC_TRIG ORMASK, SPC TMASK EXTO); // and enable it within the trigger OR-mask

(c) Spectrum Instrumentation GmbH 141

Mode Gated Sampling Acquisition modes

Mode Gated Sampling

The Gated Sampling mode allows the data acquisition controlled by an

external or an internal gate signal. Data will only be recorded if the pro- Pre: Post i JE L
grammed gate condition is true. When using the Gated Sampling acqui- P 1 : e
sition mode it is in addition also possible to program a pre- and/or Gate [L : S
postirigger for recording samples prior to and/or after the valid gate. A |\ ‘

Input Unv AVRY IURYAAY ﬂUn\//x\\} VnU
This chapter will explain all the necessary software register to set up the | /2
card for Gated Sampling properly. Memory ANANAA N n

VAAY

The section on the allowed trigger modes deals with detailed description
on the different trigger events and the resulting gates.
Image 61: Drawing of Gated Sampling mode
When using Gated Sampling the maximum pretrigger is limited as shown
in the technical data section. When the programmed value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN. &

Table 141: Spectrum API: registers and settings for Gated Sampling mode

Register Value Direction Description
SPC_PRETRIGGER 10030 read/write Defines the number of samples to be recorded per channel prior to the gate start.
SPC_POSTTRIGGER 10100 read/write Defines the number of samples to be recorded per channel after the gate end.

Acquisition modes

Standard Mode

Data will be recorded as long as the gate signal fulfils the programmed gate condition. At the end of the gate interval the recording will be
stopped and the card will pause until another gates signal appears. If the total amount of data to acquire has been reached, the card stops
immediately. For that reason the last gate segment is ended by the expiring memory size counter and not by the gate end signal. The total

amount of samples to be recorded can be defined by the memsize register. The table below shows the register for enabling Gated Sampling.
For detailed information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Table 142: Spectrum API: card mode register and settings for Gated Sampling standard mode

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_STD_GATE 4 Enables Gated Sampling for standard acquisition.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

Table 143: Spectrum API: memsize and loops register and register settings for Gated Replay mode

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.
FIFO Mode

The Gated Sampling in FIFO Mode is similar to the Gated Sampling in Standard Mode. In contrast fo the Standard Mode you cannot program
a certain total amount of samples to be recorded, but two other end conditions can be set instead. The acquisition can either run until the
user stops it by software (infinite recording), or until a programmed number of gates has been recorded. The data is read continuously by
the driver. This data is online available for further data processing by the user program. The advantage of Gated Sampling in FIFO mode is
that you can stream data online to the host system with a lower average data rate than in conventional FIFO mode without Gated Sampling.
You can make realtime data processing or store a huge amount of data to the hard disk. The table below shows the dedicated register for
enabling Gated Sampling in FIFO mode. For detailed information how to setup and start the card in FIFO mode please refer to the according
chapter earlier in this manual.

Table 144: Spectrum API: card mode register and Gated Sampling FIFO mode settings

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_FIFO_GATE 64 Enables Gated Sampling for FIFO acquisition.

The number of gates to be recorded must be set separately with the register shown in the following table:

Table 145: Spectrum API: Gated Sampling FIFO mode loops register settings

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of gates to be recorded
0 Recording will be infinite until the user stops it.
1..[4G-1] Defines the total number of gates to be recorded.

(c) Spectrum Instrumentation GmbH 142

Mode Gated Sampling

Limits of pre trigger, post trigger, memory size

Limits of pre trigge

r, post tri

imi P gger, p gger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Table 146: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step | Min | Max | Step | Min Max Step | Min | Max | Step | Min | Max | Step
1 Ch Standard Single 64 | Mem 32 32 |Mem-32 |32 [32 [8G-32 32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem 32 32 | 8k | 32 32 | Mem/2-32 | 32 Jé4 Mem/2 |32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 Mem 32 32 [sk [32 32 [Mem32 [32 not used not used
Standard Average For the limits in this mode please refer to the dedicated chapter in this manual,
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) [4G-1
FIFO Multi/ABA not used 32 |8k 32 32 | 8632 | 32 64 [prerpost (32 foo) [4G-1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 32 [8G-32 [32 not used 0(x) [4G-1
FIFO Average For the limits in this mode :>|e<ﬁefer to the dedicated chapter in this manual.
2 Ch Standard Single 64 Mem/2 32 32 | Mem/2 - 32 | 32 32 8G-32 32 not used not used
(defined by mem and post)
Standard Multi/ABA [64 [Mem/2 |32 |32 sk [32 32 [Mem/432 | 32 64 [Mem/a [32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 [Mem/2 [32 [32 sk [32 32 [Mem/2:32 [32 not used not used
Standard Average For the |imi_ts, in this mode :>|ea_se refer to the dedicated chapter in this manual.
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) |4G-1
FIFO Multi/ABA not used 32 8k 32 32 | 8G-32 | 32 o4 pre+post | 32 0 () [4G-1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [8G-32 [32 not used 0(x) [4G-1
FIFO Average For the limits in this mode please refer to the dedicated chapter in this manual.
4 Ch Standard Single 64 Mem/4 |32 32 [Mem/4-32 [32 32 8G-16 32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem/4 |32 32 | 8k | 32 32 | Mem/4-32 | 32 Jé4 Mem/8 |32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 |Mem/a |32 [32 sk [32 132 [Mem/4-16 [32 not used not used
Standard Average For the limits in this mode please refer to the dedicated chapter in this manual.
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0w [4G-1
FIFO Multi/ABA not used 32 |8k 32 32 | 8632 | 32 64 [pretpost [32 fO(x) [4G-1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 [sk [32 |32 [s8c-32 [32 not used 0(x) [4G-1

FIFO Average

For the limits in this mode please refer to the dedicated chapter in this manual.

All figures listed here are given in samples. An entry of [8G - 32] means [8 GSamples - 32] = 8,589,934,560 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
2 GSample 8 GSample
(Option: M5i.xxx-MEM8GS)
Mem 2 GSample 8 GSample
Mem / 2 1 GSample 4 GSample
Mem / 4 512 MSample 2 GSample
Mem / 8 256 MSample 1 GSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

(c) Spectrum Instrumentation GmbH

143

Mode Gated Sampling Limits of pre trigger, post trigger, memory size

Gate-End Alignment

Due to the structure of the on-board memory, the length of a gate will be rounded up until the next card specific alignment:

Table 147: Spectrum API: gate end alignement in Gated Sampling mode

M2i + M2i-exp M4i + M4x M2p
Active Channels 8bit 12/14/16 bit 8bit 14/16 bit A/D and D/A DIO
16bit

1 channel 4 Samples 2 Samples 32 Samples 16 Samples 8 Samples -

2 channels 2 Samples 1 Samples 16 Samples 8 Samples 4 Samples -

4 channels 1 Sample 1 Samples 8 Samples 4 Samples 2 Samples -

8 channels - 1 Samples - - 1 Samples -

16 channels - 1 Samples - - - 8 Samples
32 channels - - - - - 4 Samples

So in case of a M4i.22xx card with 8bit samples and one active channel, the gate-end can only stop at 32Sample boundaries, so that up to
31 more samples can be recorded until the posttrigger starts. The timestamps themselves are not affected by this alignment.

Gated Sampling and Timestamps

Gated Sampling and the timestamp mode fit very good together. If timestamp
recording is activated each gate will get timestamped as shown in the draw-
ing on the right. Both, beginning and end of the gate interval, are times-
tamped. Each gate segment will therefore produce two timestamps
(Timestamp1 and Timestamp2) showing start of the gate interval and end of
the gate interval. By taking both timestamps into account one can read out the
time position of each gate as well as the length in samples. There is no other
way to examine the length of each gate segment than reading out the times-
tamps.

Gate

Input

SWS_’;

famj

Please keep in mind that the gate signals are timestamped, not the beginning
and end of the acquisition. The first sample that is available is at the time po-
sition of [Timestamp 1 - Pretrigger]. The length of the gate segment is [Timestamp2 - Timestamp1 + Alignment + Pretrigger + Posttrigger]. The
last sample of the gate segment is at the position [Timestamp2 + Alignment + Posttrigger]. When using the standard gate mode the end of
recording is defined by the expiring memsize counter. In standard gate mode there will be an additional timestamp for the last gate segment,
when the maximum memsize is reached!

Image 62: Drawing of Gated Sampling mode and Timestamp positions

The programming details of the timestamp mode are explained in an extra chapter.

(c) Spectrum Instrumentation GmbH 144

Mode Gated Sampling Trigger

Detailed description of the external analog trigger modes

For all external analog trigger modes shown below, either the OR mask or the AND must contain the external trigger to activate the external
input as frigger source:.

Table 148: Spectrum API: trigger mask registers and available register settings

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.
SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.
SPC_TMASK_EXTO 2h Enables the main external (analog) trigger O for the mosk.-
SPC_TMASK_EXT1 4h Enables the secondary external [onolog_] trigger O for the mask.

The following pages explain the available modes in detail. All modes that only require one single trigger level are available for both external
trigger inputs. All modes that require two trigger levels are only available for the main external trigger input (ExtO).

Trigger on positive edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by Start
the trigger signal from lower values to higher values (rising [

edge) then the gate starts. T — Tingeravel

_%JI _\R ____________ T N T T T T TR
When the signal crosses the programmed trigger level from : | | | Iy
higher values to lower values (falling edge) then the gate]]] i
will stop. : | | :

: | | — | |
As this mode is purely edge-triggered, the high level at the
! G

cards start time does not trigger the board. ate >

Table 149: Spectrum API: trigger register settings for trigger on positive edge

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_POS 1h
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_POS 1h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trig_ger level in mV mV

Trigger on negative edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by Start
the trigger signal from higher values to lower values (falling !

edge) then the gate starts. ‘%:AR _______ L TN Triggerevel ___h}__
i

When the signal crosses the programmed trigger from low-
er values to higher values (rising edge) then the gate will

-vY

stop.

As this mode is purely edge-triggered, the low level at the Gate

cards start time does not frigger the board. >

L

Table 150: Spectrum API: trigger register settings for trigger on negative edge
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_NEG 2h
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_NEG 2h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV

(c) Spectrum Instrumentation GmbH 145

Mode Gated Sampling

Trigger

Re-arm trigger on positive edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the trigger signal from lower values to higher
values (rising edge) then the gate starts will be detected and
the trigger engine will be disarmed. A new trigger event is
only detected if the trigger engine is armed again.

If the programmed trigger level is crossed by the external
signal from higher values to lower values (falling edge) the
gate stops.

armed
1
|

trigger level :/ \
| |
| |
T T

Gate

The re-arm frigger modes can be used to prevent the board from triggering on wrong edges in noisy signals.

Table 151: Spectrum API: trigger register settings for re-arm trigger on positive edge

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_POS | SPC_TM_REARM 01000001h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the desired trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Defines the re-arm level in mV mV

Re-arm trigger on negative edge

The trigger input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the trigger signal from higher values to lower
values (falling edge) then the gate starts and the trigger en-
gine will be disarmed. A new trigger event is only detected,
if the trigger engine is armed again.

If the programmed trigger level is crossed by the external
signal from lower values to higher values (rising edge) the
gate stops.

Gate

[]

The re-arm trigger modes can be used to prevent the board from triggering on wrong edges in noisy signals.

Table 152: Spectrum API: trigger register settings for re-arm trigger on negative edge

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_EXTO_LEVELO 42320 read/write Defines the re-arm level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the desired trigger level in mV mV

Window trigger for entering signals

The trigger input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal enters the window from the outside to the
inside, the gate will start. When the signal leaves the win-
dow from the inside to the outside, the gate will stop.

As this mode is purely edge-triggered, the signal outside the
window at the cards start time does not trigger the board.

Gate

:

|ower |eve|

Table 153: Spectrum API: trigger register settings for window trigger on entering signals

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

(c) Spectrum Instrumentation GmbH

146

Mode Gated Sampling

Trigger

Window trigger for leaving signals

The trigger input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in-
side, a trigger event will be detected.

When the signal leaves the window from the inside to the
outside, the gate will start. When the signal enters the win-

upper level / -

—_——— - ——
I

dow from the outside to the inside, the gate will stop. | e i
As this mode is purely edge-triggered, the signal within the Gafe | | ’—L
window at the cards start time does not trigger the board. L >
i
Table 154: Spectrum API: trigger register settings for window trigger on leaving signals
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV
High level trigger
The external input is continuously sampled with the selected
sample rate. If the signal is equal or higher than the pro- Start
i |
grammed trigger level the gate starts.) -
7[1_ R~ i N Triggerevel /7
When the signal is lower than the programmed trigger level 1 i i i "
the gate will stop. L : : | l
o [[[[
Lol | | | i
As this mode is level-riggered, the high level at the cards start I : : : :
time does trigger the board. ro ' ' — ' '
Gate
t
Table 155: Spectrum API: trigger register settings for high-level trigger
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_HIGH 00000008h
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_HIGH 00000008h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
Low level trigger
The external input is continuously sampled with the selected
sample rate. If the signal is equal or lower than the pro- ST?”
grammed trigger level the gate starts. :
_7[__'_ ________ 2 N Triggerlevel ™\
When the signal is higher than the programmed trigger level ! /I/ ! i v
the gate will stop. | | | | >
[[[[
| | | | t
As this mode is leveltriggered, the high level at the cards start ' : : :
time does frigger the board. [' ' — '
Gate |
i
Table 156: Spectrum API: trigger register settings for low-level trigger
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_LOW 00000010h
SPC_TRIG_EXT1_MODE 40511 read/write SPC_TM_LOW 00000010h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
(c) Spectrum Instrumentation GmbH 147

Mode Gated Sampling Trigger

In window trigger
The external input is continuously sampled with the selected Start
sample rate. The upper and the lower level define a window.

i —
When the signal enters the window from the outside to the in- | —x_____ S et |&i _ vpperlevel : S __
side, the gate will start. Al | |
i/ | | e~
| | / | T
When the signal leaves the window from the inside to the out- | ===~ 4/ E— B I v imvel
side, the gate will stop. . 1 | ! :
Lo Lo | |
As this mode is leveltriggered, the signal inside the window
) L Gate
at the cards start time does trigger the board. |—‘ >
t
Table 157: Spectrum API: trigger register settings for in-window trigger
Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_INWIN 00000080h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV
Outside window trigger
The external input is continuously sampled with the selected Start
sample rate. The upper and the lower level define a window. [
I —
| —
When the signal leaves the window from the inside to the out- | — ____JI.____/I _________ vppsrlowl A _/____\\I_

side, the gate will start.

i
| |
I I -
[[\ [;
When the signal enters the window from the outside to the in- | ==~~~ R S S—— AN T T T T T A e e = e
| |
|

side, the gate will stop. - i

As this mode is levelHriggered, the signal outside the window
at the cards start time does trigger the board. Gate J—l_f _‘ L.

Table 158: Spectrum API: trigger register settings for outside-window trigger

Register Value Direction set to Value
SPC_TRIG_EXTO_MODE 40510 read/write SPC_TM_OUTSIDEWIN 00000100h
SPC_TRIG_EXTO_LEVELO 42320 read/write Set it to the upper trigger level in mV mV
SPC_TRIG_EXTO_LEVEL1 42330 read/write Set it to the lower trigger level in mV mV

(c) Spectrum Instrumentation GmbH 148

Mode Gated Sampling Trigger
Channel triggers modes
For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):.
Table 159: Spectrum API: channel trigger OR mask register
Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask
Channel trigger on positive edge
The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by Start
’ . . . I
the channel’s signal from lower values to higher values (ris- |
. |
ing edge) the gate starts. _%I_ I i Tiggerevel "\
| i i | v
When the signal crosses the programmed trigger level from i : : : N
higher values to lower values (falling edge) then the gate : : : v
will stop. ! ! ! !
| | — | |
As this mode is purely edge-triggered, the high level at the =
cards start time does not trigger the board. — L
i
Table 160: Spectrum API: trigger register mode and level setup for trigger on positive edge
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS Th
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

Channel trigger HIGH level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or higher than the pro- Start
. |
grammed trigger level the gate starts. |
I
T' — .
. . . Triggerlevel -\
When the signal is lower than the programmed trigger level ‘7[‘} T iy R N Ty T
the gate will stop. ' : : : ly
Do I I T
As this mode is leveltriggered, the high level at the cards o ! ! ! !
start time does trigger the board. [| | — | |
Gate
+
Table 161: Spectrum API: trigger register mode and level setup for trigger on high level
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_HIGH 8h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

Channel trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by Start
’ . . . I
the channel’s signal higher values to lower values (falling |
|
edge) the gate starts. _7[_—_ ________ LN Tiggerewel T\
i I i v
When the signal crosses the programmed trigger level from i : : _
lower values to higher values (rising edge) then the gate will : : t
stop. : :
| — |
As this mode is purely edgetriggered, the low level at the =
cards start time does not trigger the board. — 5
i
Table 162: Spectrum API: trigger register mode and level setup for trigger on negative edge
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG 2h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

(c) Spectrum Instrumentation GmbH

149

Mode Gated Sampling Trigger

Channel trigger LOW level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or lower than the pro- Start
grammed trigger level the gate starts. |

i
B ! a Triggerlevel
When the signal is higher than the programmed trigger lev- ‘%_BR _______ = _/__ R _3_

el the gate will stop.

-vY

As this mode is leveltriggered, the high level at the cards
start time does trigger the board. —

Gate |

=

Table 163: Spectrum API: trigger register mode and level setup for trigger on low level

Register Value Direction set to Value

SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_LOW 10h

SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
—

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected

. armed armed
sample rate. If the programmed re-arm level is crossed from | ;
lower to higher values, the trigger engine is armed and ! —.

waiting for trigger. _'Lig_gf'_l"_“’_'_:_/f _____ g NI B,/ ff__:lx_
— : |

If the programmed trigger level is crossed by the channel’s

H H einA adAal than | o — — L A [S I I T
signal from lower values to higher values (rising edge) then / ———=s X\/

the gate starts and the trigger engine will be disarmed.

If the programmed trigger level is crossed by the channel’s

signal from higher values to lower values (falling edge) the Gate .

gate stops. t

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from
triggering on wrong edges in noisy signals.

Table 164: Spectrum API: trigger register mode and level setup for trigger on positive edge with re-arm level

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 01000001h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm level relatively to the channel’s input range board dependent

Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from | |
higher to lower values, the trigger engine is armed and

waiting for trigger. N ’E'E"_"_"’!"’_'_/[___ ____________
If the programmed trigger level is crossed by the channel’s

signal from higher values to lower values (falling edge) then 7Zt;g_g;r_|e_w;_\: ————— — —_—_7/ ——————— \\\M\“ — %_
| |
|

the gate starts and the trigger engine will be disarmed.

If the programmed trigger level is crossed by the channel’s

signal from lower values to higher values (rising edge) the Cate -

gate stops. t

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from
triggering on wrong edges in noisy signals.

Table 165: Spectrum API: trigger register mode and level setup for trigger on negative edge with re-arm level

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Defines the re-arm level relatively to the channel’s input range board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm level relatively to the channel’s input range board dependent

(c) Spectrum Instrumentation GmbH 150

Mode Gated Sampling Trigger

Channel window trigger for entering signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. | —

When the signal enters the window from the outside to the
inside, the gate will start.

i
|
| -
| |
_____ I S . ________/______|________T
| level
When the signal leaves the window from the inside to the / i i x___r/ i i cwErEE
outside, the gate will stop. Lo | |
As this mode is purely edge-triggered, the signal outside the Gate 5
window at the cards start time does not trigger the board. t

Table 166: Spectrum API: trigger register mode and level setup for trigger on signal entering window

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel's input range. board dependent

Channel window trigger for leaving signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. | —
NP S o/ A, W— L et S AL
When the signal leaves the window from the inside to the ' ' !
outside, the gate will start.

q
i

N\
[

When the signal enters the window from the outside to the
inside, the gate will stop.

As this mode is purely edgetriggered, the signal within the Gate | | .

window at the cards start time does not trigger the board. t

Table 167: Spectrum API: trigger register mode and level setup for trigger on signal leaving window

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependent

Channel window trigger for inner signals

The analog input is continuously sampled with the selected

sample rate. The upper and the lower level define a win-

dow. ! .
|

When the signal enters the window from the outside to the :
inside, the gate will start. '

When the signal leaves the window from the inside to the
outside, the gate will stop.

As this mode is leveltriggered, the signal inside the window Cate [] -

at the cards start time does trigger the board. t

|
|
|
|
|
|
I
|
-1
I
IS
|
I
I
|
|
L
I
|
I
I
|
|
I
I
|
|
N
|
I
I
|
|
|

Table 168: Spectrum API: trigger register mode and level setup for trigger on signal inside window

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_INWIN 00000080h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependent

(c) Spectrum Instrumentation GmbH 151

Mode Gated Sampling Trigger

Channel window trigger for outer signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win- i
dow. | —
I R S A, N— vpperlevel Ll _/_'Lf__
When the signal leaves the window from the inside to the ' ' '
outside, the gate will start.

| lower level
|

When the signal enters the window from the outside to the ! !

inside, the gate will stop.

S
i

As this mode is leveltriggered, the signal outside the win-

dow at the cards start time does trigger the board. t

Table 169: Spectrum API: trigger register mode and level setup for trigger on signal outside window

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_OUTSIDEWIN 00000100h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel's input range. board dependent

Channel hysteresis trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by Start
the channel’s signal from lower values to higher values (ris-

ing edge) the gate starts. . trigger level

When the signal crosses the programmed hysteresis level

from higher values to lower values (falling edge) then the

gate will stop.

II s |
[|
— |

As this mode is purely edge-riggered, the high level at the - —_
cards start time does not trigger the board. i

Table 170: Spectrum API: trigger register mode and level setup for trigger on positive edge with hysteresis

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_HYSTERESIS 20000001h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependent

Channel hysteresis trigger HIGH level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or higher than the pro- Start
grammed trigger level the gate starts.

When the signal is lower than the programmed hysteresis
level the gate will stop.

Il s |
[N |

As this mode is leveltriggered, the high level at the cards
start time does trigger the board.

Gate

Table 171: Spectrum API: trigger register mode and level setup for trigger on high level with hysteresis

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_HIGH | SPC_TM_HYSTERESIS 20000008h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependent

(c) Spectrum Instrumentation GmbH 152

Mode Gated Sampling Trigger

Channel hysteresis trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal higher values to lower values (falling
edge) the gate starts.

trigger level

When the signal crosses the programmed hysteresis level
from lower values to higher values (rising edge) thenthe | — ~ ——~ =

. : N |
gate will stop. N _ N |

As this mode is purely edgeriggered, the low level at the

cards start time does not trigger the board. i

Table 172: Spectrum API: trigger register mode and level setup for trigger on negative edge with hysteresis

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_HYSTERESIS 20000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependent

Channel hysteresis trigger LOW level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or lower than the pro- Start
grammed trigger level the gate starts.

i
|
-~ inggerlevel | - e
When the signal is higher than the programmed hysteresis = % I_____’i_ _______ Y
level the gate will stop. ! ! ! !
________ N hyderesislewel S |
As this mode is leveltriggered, the high level at the cards : : N 4 :
start time does trigger the board. I [| |
Gate
t
Table 173: Spectrum API: trigger register mode and level setup for trigger on low level with hysteresis
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_LOW | SPC_TM_HYSTERESIS 20000010h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependent

Channel re-arm hysteresis trigger on positive edge

The analog input is continuously sampled with the selected

sample rate. If the programmed re-arm/hysteresis level is armed armed
crossed from lower to higher values, the trigger engine is _ — -
armed and waiting for trigger. . Ingger level

If the programmed trigger level is crossed by the channel’s
signal from lower values to higher values (rising edge) then ====ti===s Fe============ o=, fe=—==—=====
the gate starts and the trigger engine will be disarmed. i - :

|

If the programmed re-arm/hysteresis level is crossed by the
channel’s signal from higher values to lower values (falling Cate
edge) the gate stops. t

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from
triggering on wrong edges in noisy signals.

Table 174: Spectrum API: trigger register mode and level setup for trigger on positive edge with re-arm level and hysteresis

Register Value Direction set to Value

SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM | SPC_TM_HYSTERESIS 21000001h

SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependent

SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm and hysteresis level relatively to the channel’s input board dependent
range

(c) Spectrum Instrumentation GmbH 153

Mode Gated Sampling Programming examples

Channel re-arm hysteresis trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm/hysteresis level is
crossed from higher to lower values, the trigger engine is
armed and waiting for trigger.

armed armed

If the programmed trigger level is crossed by the channel’s _
signal from higher values to lower values (falling edge) then —sr==————o
the gate starts and the trigger engine will be disarmed.

If the programmed re-arm/hysteresis level is crossed by the
channel’s signal from lower values to higher values [rising i
edge) the gate stops. t

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from
triggering on wrong edges in noisy signals.

Table 175: Spectrum API: trigger register mode and level setup for trigger on negative edge with re-arm level and hysteresis

Register Value Direction set to Value

SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM | SPC_TM_HYSTERESIS 21000002h

SPC_TRIG_CHO_LEVELO 42200 read/write Defines the re-arm level relatively to the channel’s input range board dependent

SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm and hysteresis level relatively to the channel’s input board dependent
range

Programming examples

The following examples shows how to set up the card for Gated Sampling in standard mode for Gated Sampling in FIFO mode.

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_GATE) ; // Enables Standard Gated Sampling
spcm_dwSetParam 164 (hDrv, PRETRIGGER, 256) ; // Set the pretrigger to 256 samples
spcm_dwSetParam i64 (hDrv, POSTTRIGGER, 2048); // Set the posttrigger to 2048 samples
spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, 8192); // Set the total memsize for recording to 8192 samples

spcm_dwSetParam i32 (hDrv, SPC_TRIG_EXTO_MODE, SPC_TM POS); // Set triggermode to ext. TTL mode (rising edge)
spcm_dwSetParam 132 (hDrv, SPC_TRIG EXTO0 LEVELO, 1500); // Set trigger level to +1500 mv
spcm_dwSetParam i32 (hDrv, SPC_TRIG ORMASK, SPC TMASK EXTO); // and enable it within the trigger OR-mask

spcm_dwSetParam 132 (hDrv, SPC_CARDMODE, SPC_REC_FIFO GATE); // Enables FIFO Gated Sampling

spcm_dwSetParam i64 (hDrv, PRETRIGGER, 128); // Set the pretrigger to 128 samples
spcmﬁdeetParamﬁi64 (hDrv, POSTTRIGGER, 512); // Set the posttrigger to 512 samples
spcm_dwSetParam i64 (hDrv, SPC_LOOP, 1024); // 1024 gates will be recorded

spcm_dwSetParam 132 (hDrv, SPC TRIG EXT0 MODE, SPC TM NEG); // Set triggermode to ext. TTL mode (falling edge)
spcm_dwSetParam i32 (hDrv, SPC_TRIG EXTO0 LEVELO, -1500); // Set trigger level to -1500 mV
spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ; // and enable it within the trigger OR-mask

(c) Spectrum Instrumentation GmbH 154

Timestamps General information

Timestamps

General information

The timestamp function is used to record trigger events relative to the beginning of the measurement, relative to a fixed time-zero point or
synchronized to an external reset clock. The reset clock can come from a radio clock, a GPS signal or from any other external machine.

The timestamp is internally realized as a very wide counter that is running with the currently used sampling rate. The counter is reset either
by explicit software command or depending on the mode by the start of the card. On receiving the trigger event the current counter value is
stored in an extra FIFO memory.

This function is designed as an enhancement to the Multiple Recording mode and is also used together with the Gated Sampling and ABA
mode, but can also be used with plain single acquisitions.

Each recorded timestamp consists of the number of samples that has been counted since the last
counter reset has been done. The actual time in relation to the reset command can be easily calcu-
lated by the formula on the right. Please note that the timestamp recalculation depends on the cur-
rently used sampling rate. Please have a look at the clock chapter to see how to read out the
sampling rate.

‘= Timestamp

" Sampling rate

If you want to know the time between two timestamps, you can simply calculate this by the for- Timestamp, , 1 - Timestamp
mula on the right. At =

Sampling rate
The following registers can be used for the timestamp function:

Table 176: Spectrum API: timestamp related register and available timestamp commands

Register Value Direction Description
SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit O to 7. Returned value is expressed as a UTC time.
SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7
SPC_TIMESTAMP_TIMEOUT 47045 read/write Set's a timeout in milli seconds for waiting of an reference clock edge. Writing a zero disables the
timeout. Default value is zero.
SPC_TIMESTAMP_AVAILMODES 47001 read Returns all available modes as a bitmap. Modes are listed below
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET Th The counters are reset and the local PC time is stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIME-
STAMP_STARTDATE registers. Only usable with mode TSMODE_STANDARD
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command SPC_TS_RESET or SPC_TS_RESET_WAITREFCLOCK.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.
SPC_TS_RESET_WAITREFCLK 8h Similar as SPC_TS_RESET, but aimed at SPC_TSCNT_REFCLOCKxxx modes: The counters are reset then the driver

waits for the reference edge as long as defined by the timestamp timeout time. After detecting the edge, the local PC
time is stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIMESTAMP_STARTDATE registers. Only usable
with mode TSMODE_STANDARD

SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

SPC_TSCNT_REFCLOCKPOS 200h Counter is split, upper part is running with external reference clock positive edge, lower part is running with sampling
clock

SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock

SPC_TSXIOACQ_ENABLE 1000h Enables the trigger synchronous acquisition of the multi-purpose inputs with every stored timestamp in the upper 64
bit. See Multi-purpose 1/O chapter for details on these inputs.

SPC_TSFEAT_NONE 0 No additional timestamp is created. The total number of stamps is only trigger related.

SPC_TSFEAT_STORE1STABA 10000h Enables the creation of one additional timestamp for the first A area sample when using the optional ABA (dual-time-
base) mode.

SPC_TSFEAT_TRGSRC 80000h Reding this flag from the SPC_TIMESTAMP_AVAILMODES indicates that the card is capable of encoding the trigger

source into the timestamp.
Writing this flag to the SPC_TIMESTAMP_CMD register enables the storage of the trigger source in the upper 64 bit of
the timestamp value.

Writing of SPC_TS_RESET and SPC_TS_RESET WAITREFCLK to the command register can only have an effect on

the counters, if the cards clock generation is already active and the timestamp mode has been written to the
hardware. This is the case when the card either has already done an acquisition with enabled timestamps

after the last reset or if the clock setup and timestamp mode has already been actively transferred to the card by
issuing the M2CMD_CARD_WRITESETUP command.

(c) Spectrum Instrumentation GmbH 155

Timestamps Timestamp modes

Example for setting timestamp mode:

The timestamp mode must consist of one of the mode constants, one of the counter and one of the feature constants:

// setting timestamp mode to standard using internal clocking
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT INTERNAL | SPC_TSFEAT NONE) ;

// setting timestamp mode to start reset mode using internal clocking
spcm_dwSetParam_ i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STARTRESET | SPC_TSCNT_ INTERNAL | SPC_TSFEAT NONE) ;

// setting timestamp mode to standard using external reference clock with positive edge
spcm_dwSetParam_ i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT REFCLOCKPOS | SPC_TSFEAT_NONE) ;

Timestamp modes

Standard mode

In standard mode the timestamp counter is set fo zero once by writing the TS_RESET command to the command register. After that command
the counter counts continuously independent of start and stop of acquisition. The timestamps of all recorded trigger events are referenced to
this common zero time. With this mode you can calculate the exact time difference between different recordings and also within one acqui-
sition (if using for example Multiple Recording).

Trigger | I .| I

Card - ----4 Trig ? | Acquisition 1 |' ----1Trig? | Acquisition 2 |' - 1Trig ?| Acquisition3 |- ---- -
A . A . .
Ti P [77]78]79]0o]o1[o2]03]0a]05]0s[07[08f09]10[11]12]13[14] 1 5[16]17]18]1 9] 20]21] 22] 23] 24] 25] 26] 27[28] 29] 30[31 32] 33[3a[35] 36| 37] 38] 39]40f a1 [a2]43[44] a5] a6 47] 48] 49]
Counter H H H
Timestamps
TS RESET| [CARD START CARD_START CARD_START

Image 63: drawing of timestamp acquisition in standard mode in relation to card start and trigger detection

The following table shows the valid values that can be written to the timestamp command register for this mode:

Table 177: Spectrum API: timestamp commands for standard mode

Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET 1h The timestamp counter is set to zero
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Please keep in mind that this mode only work sufficiently as long as you don’t change the sampling rate
between two acquisitions that you want to compare. A

StartReset mode

In StartReset mode the timestamp counter is set fo zero on every start of the card. After starting the card the counter counts continuously. The
timestamps of one recording are referenced to the start of the recording. This mode is very useful for Multiple Recording and Gated Sampling
(see according chapters for detailed information on these two optional modes).

Trigger]]
Card - ----4 Trig ? | Acquisition 1 |' ----1Trig? | Acquisition 2 |' - 1Trig ?| Acquisition3 |- ---- -
A ' A ' 4 '
Ti P [77]78]79]80] 0001 [02]03]0a]05]0s]07}08]09] 10]1 1]12]13]14]1 5[00]01]02]03]0aO5[0s 07 [08]09] 10]11]12]13]14] 1 5]16[00]01]02[03] 04 O5] 06 {0708 OS] 10 11[12]1 3] 14]1 5]
Counter H H H
Timestamps
ICARD_START CARD_START CARD_START

Image 64: drawing of timestamp acquisition in startreset mode in relation to card start and trigger detection

(c) Spectrum Instrumentation GmbH 156

Timestamps Timestamp modes

The following table shows the valid values that can be written to the timestamp command register.

Table 178: Spectrum API: timestamp commands for star-reset mode

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Refclock mode

In addition to the counter counting the samples a second separate counter is utilized. An additional external signal is used, which affects both
counters and needs to be fed in externally. This external reference clock signal will reset the sample counter and also increase the second
counter. The second counter holds the number of the clock edges that have occurred on the external reference clock signal and the sample
counter holds the position within the current reference clock period with the resolution of the sampling rate.

This mode can be used to obtain an absolute time reference when using an external radio clock or a GPS receiver. In that case the higher
part is counting the seconds since the last reset and the lower part is counting the position inside the second using the current sampling rate.

Please keep in mind that as this mode uses an additional external signal and can therefore only be used
when connecting an reference clock signal on the related connector on the card: &

* X0 on M4i/M4x/M5i and related digitizerNETBOX products
* X1 on M2p and related digitizerNETBOX products

The counting is initialized with the timestamp reset command. Both counters will then be set to zero.

Reset Signal
Trigger [L [1 L[

" L 1 L
Card - ---- Trig ? | Acquisition 1 I' ---1Trig? | Acquisition 2 |- - [Trig ?l Acquisition 3 | """
A | ! A ' A ' '
T ' v . v
P XX [: o1 | 02,
Counter [F7[72[79[00]01 [o2 |03 |64 05 [06 [o7 [08 o510 11 [1 2|00 |01 [02]03 [04 05 [06 [o7 [o8 [0S 10 [12[13[1[1 516 [17 18] 9 |20 21 [22 |23 24 [25 |00 o1 [02 03 o4 [05 [0 [o7 [oe o9
v
Timestamps
TS_RESET | ICARD_START | CARD_START CARD_START

Image 65: drawing of timestamp acquisition in refclock mode in relation to card start and trigger detection

The following table shows the valid values that can be written to the timestamp command register for this mode:

Table 179: Spectrum API: timestamp commands for refclock mode

Register Value Direction Description
SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit 0 to 7
SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7
SPC_TIMESTAMP_TIMEOUT 47045 read/write Sets a timeout in milli seconds for waiting for a reference clock edge
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET 1h The counters are reset and the local PC time is stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIME-
STAMP_STARTDATE registers.
SPC_TS_RESET_WAITREFCLK 8h Similar as SPC_TS_RESET, but aimed at SPC_TSCNT_REFCLOCKxxx modes: The counters are reset then the driver

waits for the reference edge as long as defined by the timeout time. After detecting the edge, the local PC time is
stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIMESTAMP_STARTDATE registers.

SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.

SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.

SPC_TSCNT_REFCLOCKPOS 200h Counter is split, upper part is running with external reference clock positive edge, lower part is running with sampling
clock

SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock

To synchronize the external reference clock signal with the PC clock it is possible to perform a timestamp reset command which waits a
specified time for the occurrence of the external clock edge. As soon as the clock edge is found the function stores the current PC time and
date which can be used to get the absolute time. As the timestamp reference clock can also be used with other clocks that don’t need to be
synchronized with the PC clock the waiting time can be programmed using the SPC_TIMESTAMP_TIMEOUT register.

(c) Spectrum Instrumentation GmbH 157

Timestamps Reading out the timestamps

Example for initialization of timestamp reference clock and synchronization of a seconds signal with the PC clock:

spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE STANDARD | SPC_TSCNT_ REFCLOCKPOS) ;

spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP TIMEOUT, 1500);

if (ERR_TIMESTAMP SYNC == spcm dwSetParam i32 (hDrv, SPC TIMESTAMP CMD, SPC TS RESET WAITREFCLK))
printf ("Synchronization with external clock signal failed\n");

// now we read out the stored synchronization clock and date

int32 1SyncDate, 1lSyncTime;

spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP STARTDATE, &lSyncDate);

spcm_dwGetParam 132 (hDrv, SPC_TIMESTAMP STARTTIME, &lSyncTime); // expressed as UTC time

// and print the start date and time information (European format: day.month.year hour:minutes:seconds)
printf ("Start date: %02d.%02d.%04d\n", 1lSyncDate & Oxff, (lSyncDate >> 8) & Oxff, (lSyncDate >> 16) & Oxffff);
printf ("Start time: %02d:%02d:%02d\n", (1SyncTime >> 16) & Oxff, (1SyncTime >> 8) & Oxff, 1SyncTime & Oxff);

Reading out the timestamps

General

The timestamps are stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out timestamps using DMA
transfer similar to the DMA transfer of the main sample data DMA transfer. The card has three completely independent busmaster DMA en-
gines in hardware allowing the simultaneous transfer of both timestamp and sample data.

As seen in the picture there are separate FIFOs holding ABA (if available) and timestamp data.

ABA | g B HW Data FIFO Buffer
FIFQ Scatter-Gather [€ {complete memory)
DMA Engine
= <— i
FIFO
Interrupt
Driver
DMA Control
Engine
"""" v Y T T T T T T Eem 7T T T HaRdshake” T glication
A l i Applicati Application Applicatidn Data Buffer
ABABuffer Ti {up to seeral GByte of PC memory)
Buffer

Image 66: Overview of acquisition data, ABA data and timestamp data DMA transfer

Although an M4i is shown here, this applies to Mdx, M2p and M5i cards as well. Each FIFO has its own DMA channel, the way data is
handled by the DMA engine is similar for both kinds of extra FIFOs and is also very similar fo the main sample data transfer engine. Therefore
additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for extra transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

Table 180: Spectrum API: extra DMA commands (ABA and Timestamp)

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.
M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.
M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.
M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.

(c) Spectrum Instrumentation GmbH 158

Timestamps Reading out the timestamps

The extra FIFO data transfer can generate one of the following status information:.

Table 181: Spectrum APUI: extra DMA status (ABA and Timestamp)

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

Data Transfer using DMA

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Exira data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

Definition of the transfer buffer

Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR _CARDTOPC, 0, pvBuffer, 0, lLenOfBufferInBytes);

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

M5i cards only:
On MS5i cards the ILenOfBufferinBytes parameter needs to be an integer multiple of 64 bytes. &

Buffer handling

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set'’s parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Table 182: Spectrum API: ABA and Timestamp DMA buffer handling registers

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation

SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred

timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation
SPC_TS_AVAIL_CARD_LEN 222 write After finishing the job with the new available timestamp data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the SPC_XXX_AVAIL _-
CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL _USER_LEN) is sticking to the de-

fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get A

notice of it if the notify size is programmed to a higher value.

Remarks

* The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.

® As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

(c) Spectrum Instrumentation GmbH 159

Timestamps Reading out the timestamps

bytes still stick to the defined notify size!
e If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

int8* pcData = (int8*) pvAllocMemPageAligned (1lBufSizeInBytes):;

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1BufSizelInBytes):;

do
{
// we wait for the next data to be available. After this call we get at least 4k of data to proceed
dwError = spcmﬁdeetParamfiBZ (hDrv, SPC_M2CMD, M2CMD EXTRA STARTDMA | M2CMD_EXTRA WAITDMA) ;

if (!dwError)

{

// 1f there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_TS AVAIL USER LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC TS AVAIL USER POS, &lBytePos);

printf (“We now have %d new bytes available\n”, 1AvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + lAvailBytes) >= 1BufSizeInBytes)
1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function gets a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TS_AVAIL_ CARD_LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

the hardware using busmaster DMA this is not critical as long as the application data buffers are large

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by f
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is unacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
This is similar to the above explained DMA buffer transfer. The value ,notify size” is ignored and should be set to 4k (4096).

Buffer handlin
The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or SPC_ABA_AVAIL_US-
ER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that has been read. In min-

imum this will be one DWORD = 4 bytes.

(c) Spectrum Instrumentation GmbH 160

Timestamps Reading out the timestamps

Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

int8* pcData = (int8%*) pvAllocMemPageAligned (1lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1lBufSizelInBytes);
// we start the polling mode

dwError = spcmﬁdeetParamfiBZ (hDrv, SPC_M2CMD, M2CMD_EXTRA POLL) ;

// this is our polling loop

do
{
spcm_dwGetParam_ i32
spcm_dwGetParam i32

(hDrv,
(hDrv,

SPC_TS_AVAIL_USER_LEN,
SPC_TS_AVAIL_USER POS,

&1AvailBytes) ;
&1BytePos) ;

if (lAvailBytes > 0)
{
printf (“We now have %d new bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);
// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1BufSizeInBytes)

1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);
// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TS AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Comparison of DMA and polling commands

This chapter shows you how small the difference in programming is between the DMA and the polling mode:

DMA mode Polling mode

Define the buffer

Start the transfer
Wait for data
Available bytes?
Min available bytes
Current position?
Free buffer for card

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...);
spem_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA)
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA)
spem_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes);
programmed notify size

spem_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, IBytes);

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
not in polling mode

spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);

4 bytes

spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, IBytes);

Data format

Each timestamp is 128 bit long and internally mapped to two consecutive 64 bit (8 bytes) values. The lower 64 bit (counter value) contains
the number of clocks that have been recorded with the currently used sampling rate since the last counter-reset has been done. The matching
time can easily be calculated as described in the general information section at the beginning of this chapter.

The values the counter is counting and that are stored in the timestamp FIFO represent the moments the trigger event occurs internally. Com-
pared to the real external trigger event, these values are delayed. This delay is fix and therefore can be ignored, as it will be identical for all
recordings with the same setup.

Standard data format
When internally mapping the timestamp from 128 bit to two 64 bit values, the unused upper é4 bits are filled up with zeros.

Table 183: Spectrum API: timestamp sample format for standard mode

Timestamp Mode 16" [|11th [10t ot 8™ byte 7' byte 6" byte s5th 4th grd | gnd | qst
byte byte | byte | byte byte | byte | byte | byte | byte

Standard/StartReset Oh 64 bit wide Timestamp

Refclock mode Oh 24 bit wide Refclock edge counter (seconds counter) | 40 bit wide Timestamp

Extended timestamp data format
Sometimes it is useful to store the level of additional external static signals together with a recording, such as e.g. control inputs of an external
input multiplexer or settings of other external equipment. When programming a special flag the upper 64 bit of every 128 bit timestamp

(c) Spectrum Instrumentation GmbH 161

Timestamps Reading out the timestamps

value is not (as in standard data mode) filled up with leading zeros, but with the values of either the digital inputs (X3, X2, X1) or optionally
also (X10 ..X3). The following table shows the resulting 128 bit timestamps.

Table 184: Spectrum API: timestamp sample format for extended mode

Timestamp Mode 16th |« |14t |13t | .. | oth 8th byte 7' byte 6'" byte sth | gh | grd | ond | st
byte byte | byte byte byte | byte | byte | byte | byte

Standard/StartReset Oh Extra Data Word 64 bit wide Timestamp

Refclock mode Oh Extra Data Word 24 bit wide Refclock edge counter (seconds counter) I 40 bit wide Timestamp

The above mentioned ,Extra Data Word” contains the following 40bit wide data, depending on the selected timestamp data format:

Table 185: Spectrum API: timestamp extra data word format

Timestamp Data Format Bit | ... Bit | Bit | Bit | Bit | Bit | ... Bit | Bit | ... Bit | Bit | Bit | Bit | ... Bit
39 32 (31 |.. 26 | 25 16 |15 13 (12 [11 10 0

no special data format is set Oh

SPC_TSXIOACQ_ENABLE X10 .. X3 (option) | Oh X2 .. X0 Oh

SPC_TSFEAT_TRGSRC Oh Trigger source bit- Oh Trigger source bit-
mask PXI sources) mask (ChO .. Force)
(see table below) (see table below)

SPC_TSXIOACQ_ENABLE | SPC_TS- | X10 .. X3 (option) Oh Trigger source bit- X2 .. X0 Oh Trigger source bit-

FEAT_TRGSRC mask PXI sources) mask (ChO .. Force)
(see table below) (see table below)

stalled. For cards where this option is not installed, Bits 39 down to 32 are always zero.
Depending on the chosen mode for acquiring digital data (see Multi-Purpose 1/0 chapter for details) either
group (X2..X0) or (X10..X3) are active as digital input lines, whilst the inactive group is always zero.

The multi-purpose lines X10...X3 are only available when the additional digital 1/0 option (DigSMA) is in- f

The trigger sources are encoded as follows:

SPC_TRGSRC_MASK_CHO Th | Set when a trigger event occurring on channel O was leading to final trigger event.
SPC_TRGSRC_MASK_CH1 2h | Set when a trigger event occurring on channel 1 was leading to final trigger event.
SPC_TRGSRC_MASK_CH2 4h | Set when a trigger event occurring on channel 2 was leading to final trigger event.
SPC_TRGSRC_MASK_CH3 8h | Set when a trigger event occurring on channel 3 was leading to final trigger event.
SPC_TRGSRC_MASK_EXTO 100h | Set when a trigger event occurring on external trigger(ExtO) was leading to final trigger event.
SPC_TRGSRC_MASK_EXT1 200h | Set when a trigger event occurring on external trigger(Ext1) was leading to final trigger event.
SPC_TRGSRC_MASK_FORCE 400h | Set when a trigger event occurring by using the force trigger command is leading to final trigger event.
SPC_TRGSRC_MASK_PXIO 10000h | M4x only: Set when a trigger event occurring on PXI trigger O was leading to final trigger event.
SPC_TRGSRC_MASK_PXI1 20000h | M4x only: Set when a trigger event occurring on PXI trigger 1 was leading to final trigger event.
SPC_TRGSRC_MASK_PXI2 40000h | M4x only: Set when a trigger event occurring on PXI trigger 2 was leading to final trigger event.
SPC_TRGSRC_MASK_PXI3 80000h | M4x only: Set when a trigger event occurring on PXI trigger 3 was leading to final trigger event.
SPC_TRGSRC_MASK_PXI4 100000h | M4x only: Set when a trigger event occurring on PXI trigger 4 was leading to final trigger event.
SPC_TRGSRC_MASK_PXI5 200000h | M4x only: Set when a trigger event occurring on PXI trigger 5 was leading to final trigger event.
SPC_TRGSRC_MASK_PXIé 400000h | M4x only: Set when a trigger event occurring on PXI trigger 6 was leading to final trigger event.
SPC_TRGSRC_MASK_PXI7 800000h | M4x only: Set when a trigger event occurring on PXI trigger 7 was leading to final trigger event.
SPC_TRGSRC_MASK_PXISTAR 1000000h | M4x only: Set when a trigger event occurring on PXI star-trigger was leading to final trigger event.
SPC_TRGSRC_MASK_PXIDSTARB 2000000h | M4x only: Set when a trigger event occurring on PXI DStarB was leading to final trigger event.

Selecting the timestamp data format

Table 186: Spectrum API: timestamp data format register

Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSXIOACQ_ENABLE 1000h Enables the trigger synchronous acquisition of the X0...X2 or X3...X10 inputs with every stored timestamp in the upper
64 bit.
SPC_TSFEAT_TRGSRC 80000h Enables the storage of the trigger source in the upper 64 bit of the timestamp value.

The selection between the different data format for the timestamps is done with a flag that is written to the timestamp command register. As
this register is organized as a bitffield, the data format selection is available for all possible timestamp modes and different data modes can
be combined.

(c) Spectrum Instrumentation GmbH 162

Timestamps Combination of Memory Segmentation Options with Timestamps

Combination of Memory Segmentation Options with Timestamps

This topic should give you a brief overview how the timestamp option interacts with the options Multiple Recording and ABA mode for which
the timestamps option has been made.

Multiple Recording and Timestamps Start riggert | TriggerZ —_—
Multiple Recording is well matching with the timestamp option. If timestamp : :,—‘ i
recording is activated each trigger event and therefore each Multiple Re- Trigger [_| : I_|

cording segment will get timestamped as shown in the drawing on the right. ingson
Please keep in mind that the trigger events are timestamped, not the begin-

ning of the acquisition. The first sample that is available is at the time position

of [Timestamp - Pretfrigger].

Stamp3

The programming details of the timestamp option is explained in an extra
Image 67: drawing of Multiple Recording Acquisition with Timestamps

chapter.

The following example shows the setup of the Multiple Recording mode together with activated timestamps recording and a short display of

the acquired timestamps. The example doesn’t care for the acquired data itself and doesn’t check for error:

// setup of the Multiple Recording mode
spcm _dwSetParam i32 (hDrv, SPC_CARDMODE, SPC REC STD MULTI); // Enable Standard Multiple Recording

spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, 1024); // Segment size is 1 kSamples, Posttrigger is 768
spcm_dwSetParam 164 (hDrv, SPC_POSTTRIGGER, 768) ; // samples and pretrigger therefore 256 samples.
spcm_dwSetParam i64 (hDrv, SPC MEMSIZE, 4096) ; // 4 kSamples in total acquired -> 4 segments

// setup the Timestamp mode and make a reset of the timestamp counter
SpcmﬁdeetParamﬁi32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_ STANDARD | SPC_TSCNT_ INTERNAL) ;
spcm_dwSetParam 132 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_ RESET) ;

// now we define a buffer for timestamp data and start the acquistion. Each timestamp is 128 bit = 16 bytes.
int64* pllStamps = (int64*) pvAllocMemPageAligned (16 * 4);

spcm_dwDefTransfer i64 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 0, (void*) pllStamps, 0, 4 * 16);
SpcmﬁdeetParamﬁi}2 (hDrv, SPCiMZCMD, M2CMD7CARD75TART | M2CMD7CARD7ENABLETRIGGER | MZCMDiEXTRAisTARTDMA);

// we wait for the end timestamps transfer which will be received if all segments have been recorded
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD EXTRA WAITDMA) ;

// as we now have the timestamps we just print them and calculate the time in milli seconds
// for simplicity only the lower 64 bit part of the 128 bit stamp is used, hence only every
// second array element of pllStamps is used here.

int64 llSamplerate;

double dTime ms;

spcm_dwGetParam_ i64 (hDrv, SPC_SAMPLERATE, &llSamplerate);

for (int 1 = 0; 1 < 4; 1i++4)
{
dTime ms = 1000.0 * pllStamps[2 * i] / llSamplerate);

printf ("#%d: %$I64d samples = %.3f ms\n", i, pllStamps[2 * i], dTime ms);
}

Gate-End Alignment

Due fo the structure of the on-board memory, the length of a gate will be rounded up until the next card specific alignment:

Table 187: Spectrum API: gate end alignement in Gated Sampling mode

M2i + M2i-exp M4i + M4x M2p
Active Channels 8bit 12/14/16 bit 8bit 14/16 bit A/D and D/A DIO
16bit

1 channel 4 Samples 2 Samples 32 Samples 16 Samples 8 Samples -

2 channels 2 Samples 1 Samples 16 Samples 8 Samples 4 Samples -

4 channels 1 Sample 1 Samples 8 Samples 4 Samples 2 Samples -

8 channels - 1 Samples - - 1 Samples -

16 channels - 1 Samples - - - 8 Samples
32 channels - - - - - 4 Samples

So in case of a M4i.22xx card with 8bit samples and one active channel, the gate-end can only stop at 32Sample boundaries, so that up to
31 more samples can be recorded until the posttrigger starts. The timestamps themselves are not affected by this alignment.

(c) Spectrum Instrumentation GmbH 163

Timestamps Combination of Memory Segmentation Options with Timestamps

Gated Sampling and Timestamps

Gated Sampling and the timestamp mode fit very good together. If timestamp
recording is activated each gate will get timestamped as shown in the draw-
ing on the right. Both, beginning and end of the gate inferval, are times-
tamped. Each gate segment will therefore produce two timestamps
(Timestamp1 and Timestamp2) showing start of the gate interval and end of Input
the gate interval. By taking both timestamps into account one can read out the

time position of each gate as well as the length in samples. There is no other

way to examine the length of each gate segment than reading out the times- : :
tamps. Stamps—>

famj

Gate

Please keep in mind that the gate signals are timestamped, not the beginning
and end of the acquisition. The first sample that is available is at the time po-
sition of [Timestamp - Pretrigger]. The length of the gate segment is [Timestamp2 - Timestamp1 + Alignment + Pretrigger + Postirigger]. The
last sample of the gate segment is at the position [Timestamp2 + Alignment + Posttrigger]. When using the standard gate mode the end of
recording is defined by the expiring memsize counter. In standard gate mode there will be an additional timestamp for the last gate segment,
when the maximum memsize is reached!

Image 68: Drawing of Gated Sampling mode and Timestamp positions

The programming details of the timestamp mode are explained in an extra chapter.

The following example shows the setup of the Gated Sampling mode together with activated timestamps recording and a short display of the
acquired timestamps. The example doesn’t care for the acquired data itself and doesn’t check for error:

// setup of the Gated Sampling mode

spcm_dwSetParam 132 (hDrv, SPC CARDMODE, SPC REC STD GATE); // Enables Standard Gated Sampling
spcm_dwSetParam i64 (hDrv, SPC_PRETRIGGER, 32); // 32 samples to acquire before gate start
spcm_dwSetParam 164 (hDrv, SPC_POSTTRIGGER, 32) ; // 32 samples to acquire before gate end
spcm dwSetParam 164 (hDrv, SPC MEMSIZE, 4096) ; // 4 kSamples in total acquired

// setup the Timestamp mode and make a reset of the timestamp counter
spcm_dwSetParam i32 (hDrv, SPC TIMESTAMP CMD, SPC TSMODE STANDARD | SPC_TSCNT_ INTERNAL) ;
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TS_RESET) ;

// now we define a buffer for timestamp data and start acquistion, each timestamp is 128 bit = 16 bytes

// as we don’t know the number of gate intervals we define the buffer quite large

int64* pllStamps = (int64*) pvAllocMemPageAligned (16 * 1000);

spcm_dwDefTransfer i64 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 0, (void*) pllStamps, 0, 1000 * 16);
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD CARD START | M2CMD CARD ENABLETRIGGER | M2CMD EXTRA STARTDMA) ;

// we wait for the end of timestamps transfer and read out the number of timestamps that have been acquired
int32 1lAvailTimestampBytes;

spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD EXTRA WAITDMA) ;

spcm_dwSetParam i32 (hDrv, SPC TS AVAIL USER LEN, &lAvailTimestampBytes);

// as we now have the timestamps we just print them and calculate the time in milli seconds
// for simplicity only the lower 64 bit part of the 128 bit stamp is used, hence only every
// second array element of pllStamps is used here.

int64 llSamplerate, 1llLen, 11Align;

double dTime ms;

spcm_dwGetParam_i64 (hDrv, SPC_SAMPLERATE, &llSamplerate) ;

spcm_dwGetParam i64 (hDrv, SPC_GATE LEN ALIGNMENT, &11Align);

// each even 128 bit timestamp is the start position of a gate segment each odd stamp is the end position
for (int i = 0; (i < (lAvailTimestampBytes / 16)) && (i < 1000); i++)

{

dTime _ms = 1000.0 * pllStamps([4 * i] / llSamplerate;

llLen = pllStamps([4 * i + 2] - pllStamps[4 * i] + 32 + 32; // (stop - start) + pre + post
if ((llLen % 11Align) != 0)
llLen = (llLen + 11Align) - (llLen % 11Align); // correct for alignment

printf ("#%d: Start %$I164d samples = %.3f ms", i, pllStamps[4 * i], dTime_ms) ;
printf (" (Len = %I64d samples)\n", llLen);
}

(c) Spectrum Instrumentation GmbH 164

Timestamps Combination of Memory Segmentation Options with Timestamps

ABA Mode and Timestamps

The ABA mode is well matching with the timestamp option. If timestamp
recording is activated, each trigger event and therefore each B time base

* Pre | Post
segment will get time tamped as shown in the drawing on the right. [—|
Trigger - : :
Please keep in mind that the trigger events - located in the B area - are time ; ; ;
tamped, not the beginning of the acquisition. The first B sample that is L ‘ ‘ ‘ ‘ ‘ ‘
available is at the time position of [Timestamp - Pretrigger]. Input R ! il il
The first A area sample is related to the card start and therefore in a fixed
but various settings dependent relation to the timestamped B sample. To : :
bring exact relation between the first A area sample (and therefore all AT B A
9 p
area A samples) and the B area samples it is possible to let the card stamp ~ Image 69: Drawing of ABA mode
the first A area sample automatically after the card start. The following ta-
ble shows the register to enable this mode:
Table 188: Spectrum API: timestamp command register and ABA mode settings
Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp setup including mode and additional features
SPC_TSFEAT_MASK FOOOOh Mask for the feature relating bits of the SPC_TIMESTAMP_CMD bitmask.
SPC_TSFEAT_STORE1STABA 10000h Enables storage of one additional timestamp for the first A area sample (B time base related) in addition to the trigger
related timestamps.
SPC_TSFEAT_NONE Oh No additional timestamp is created. The total number of stamps is only frigger related.

This mode is compatible with all existing timestamp modes. Please keep in mind that the timestamp counter is running with the B area time-
base.

// normal timestamp setup (e.g. setting timestamp mode to standard using internal clocking)
uint32 dwTimestampMode = (SPC_TSMODE STANDARD | SPC_TSMODE DISABLE) ;

// additionally enable index of the first A area sample
dwTimestampMode |= SPC_TSFEAT STORE1STABA;

spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, dwTimestampMode) ;

The programming details of the ABA mode and timestamp modes are each explained in an dedicated chapter in this manual.

(c) Spectrum Instrumentation GmbH 165

ABA mode (dual timebase) General information

ABA mode (dual timebase)

General information

The ABA mode allows the acquisition of data with a dual timebase. In case of trigger event the inputs are sampled very fast with the pro-
grammed sampling rate. This part is similar to the Multiple Recording option. But instead of having no data in between the segments one has
the opportunity to continuously sample the inputs with a slower sampling rate the whole time. Combining this with the recording of the
timestamps gives you a complete acquisition with a dual timebase as shown in the drawing.

Pre : Post

Trigger

]

Input bk P 1 I\ LAY ™ AW.L J-LV NI VY

Y

<—B—>< A

Image 70: overview of ABA mode data acquisition with slow A-data and fast B-data

As seen in the drawing the area around the trigger event is sampled between pretrigger and posttrigger with full sampling speed (area B of
the acquisition). Outside of this area B the input is sampled with the slower ABA clock (area A of the acquisition). As changing sampling
clock on the fly is not possible there is no real change in the sampling speed but area A runs continuously with a slow sampling speed without
stopping when the fast sampling takes place. As a result one gets a continuous slow sampled acquisition (area A) with some fast sampled
parts (area B)

The ABA mode is available for standard recording as well as for FIFO recording. In case of FIFO recording ABA and the acquisition of the
fast sampled segments will run continuously until it is stopped by the user.

A second possible application for the ABA mode is the use of the ABA data for slow monitoring of the inputs while waiting for an acquisition.
In that case one wouldn’t record the timestamps but simply monitor the current values by acquiring ABA data.

The ABA mode needs a second clock base. As explained above the acquisition is not changing the sampling clock but runs the slower ac-
quisition with a divided clock. The ABA memory setup including the divider value can be programmed with the following registers

Table 189: Spectrum API: ABA mode relevant registers and register settings

Register Value Direction Description
SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Recording segment: the number of samples to be record after each trigger event.
SPC_POSTTRIGGER 10030 read/write Defines the number of samples to be recorded after each trigger event.
SPC_ABADIVIDER 10040 read/write Programs the divider which is used to sample slow ABA data:
For 12 bit, 14 bit and 16 bit cards : between 16 and 131056 in steps of 16
For 8 bit cards : between 32 and 262112 in steps of 32

The resulting ABA clock is then calculated by sampling rate / ABA divider.

Each segment can consist of pretrigger and/or posttrigger samples. The user always has to set the total segment size and the postirigger,
while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

of active channels. When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIG-

When using ABA mode or Multiple Recording the maximum pretrigger is limited depending on the number f
GERLEN.

Standard Mode

With every detected trigger event one data block is filled with data. The length of one ABA segment is set by the value of the segmentsize
register. The fotal amount of samples to be recorded is defined by the memsize register.

(c) Spectrum Instrumentation GmbH 166

ABA mode (dual timebase) Limits of pre trigger, post trigger, memory size

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling standard ABA mode. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Table 190: Spectrum API: card mode programming register and setup for ABA mode

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
SPC_REC_STD_ABA 8h Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with pro-
grammed sampling rate the inputs are sampled continuously with a slower sampling speed.

The total number of samples to be recorded to the on-board memory in standard mode is defined by the SPC_MEMSIZE register.

Table 191: Spectrum APl: memory size register and available register settings

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded.
FIFO Mode

The ABA FIFO Mode is similar to the Multiple Recording FIFO mode. In contrast to the standard mode it is not necessary to program the
number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block by the driver as described
under Single FIFO mode example earlier in this manual. These blocks are online available for further data processing by the user program.
This mode significantly reduces the average data transfer rate on the PCI bus. This enables you to use faster sample rates then you would be
able to in FIFO mode without ABA.

Table 192: Spectrum API: card mode programming register and setup for ABA FIFO mode

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
SPC_REC_FIFO_ABA 80h Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sam-
pling clock.
SPC_REC_FIFO_SINGLE_MONITOR | 80h Continuous data acquisition with just one trigger event together with continuous data acquisition with a slower sam-
pling clock.
Combination of SPC_REC_FIFO_SINGLE mode with additional slower sampling clock data stream for monitoring pur-
poses (same as Adata of SPC_REC_FIFO_ABA mode).

The number of segments to be recorded must be set separately with the register shown in the following table:

Table 193: Spectrum API: loops programming register and available register settings

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.
1..[4G-1] Defines the total segments to be recorded.

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Table 194: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step | Min | Max | Step | Min Max Step | Min | Max | Step | Min | Max | Step
1Ch Standard Single 64 | Mem 32 32 [Mem-32 32 [32 [8G-32 |32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem 32 32 I 8k I 32 32 | Mem/2-32 32 |44 Mem/2 32 not used
(defined by segment and post) | (Limited by max pretrigger)
Standard Gate 64 Mem 32 32 I 8k I 32 32 I Mem-32 I 32 not used not used
Standard Average For the limits in this mode please refer to the decliccﬂe_d‘I hapter in this munugl_.
FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) [4G-1 1
FIFO Multi/ABA not used 32 8k 32 32 | 8G-32 | 32 |64 pre+post | 32 0(w) [4G-1 1
(defined by segment and post) | (Limited by max pretrigger)
FIFO Gate not used 32 |8k [32 32 [8c-32 [32 not used 0 [46-1 |1
FIFO Average For the limits in this mode please refer to the dedicated chapter in this manual.
2 Ch Standard Single 64 |[Mem/2 [32 [32 [Mem/2-32 [32 [32 [8G-32 32 not used not used
(defined by mem and post)
Standard Multi/ABA | 64 Mem/2 32 32 | 8k | 32 32 Mem/4-32 32 |44 Mem/4 | 32 not used
(defined by segment and post) | (Limited by max pretrigger)

(c) Spectrum Instrumentation GmbH 167

ABA mode (dual timebase) Reading out ABA data

Table 194: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step | Min Max Step | Min Max Step | Min | Max Step | Min | Max Step

Standard Gate 64 Mem/2 |32 32 8k 32 32 Mem/2-32 |32 not used not used

Standard Average For the limits in this mode please refer to the dedicated chapter in this manual,

FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) [4G-1 1

FIFO Multi/ABA not used 32 |8k 32 32 | 8632 | 32 64 [prerpost (32 foo) [4G-1 1
(defined by segment and post) | (Limited by max pretrigger)

FIFO Gate not used 32 |8k [32 32 [8G-32 [32 not used 0@ [46-1 |1

FIFO Average For the limits in this mode please refer to the dedicated chapter in this manual.

4 Ch Standard Single 64 Mem/4 |32 32 | Mem/4-32 |32 32 8G-16 32 not used not used
(defined by mem and post)

Standard Multi/ABA [64 [Mem/4 32 |32 sk [32 32 [Mem/432 | 32 J64 [Mem/8 |32 not used
(defined by segment and post) | (Limited by max pretrigger)

Standard Gate 64 Mem/4 | 32 32 [sk [32 32 [Mem/4-16 [32 not used not used

Standard Average For the |imi_ts, in this mode :>|ea_se refer to the dedicated chapter in this manual.

FIFO Single not used 32 8k 32 not used 64 8G-32 |32 0 (o) |4G-1 1

FIFO Multi/ABA not used 32 8k 32 32 | 8G-32 | 32 o4 pre+post | 32 0 () [4G-1 1
(defined by segment and post) | (Limited by max pretrigger)

FIFO Gate not used 32 [sk [32 |32 [8G-32 [32 not used 0 [46-1 |1

FIFO Average For the limits in this mode please refer to the dedicated chapter in this manual.

Al figures listed here are given in samples. An entry of [8G - 32] means [8 GSamples - 32] = 8,589,934,560 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
2 GSample 8 GSample
(Option: M5i.xxx-MEMBGS!
Mem 2 GSample 8 GSample
Mem / 2 1 GSample 4 GSample
Mem / 4 512 MSample 2 GSample
Mem / 8 256 MSample 1 GSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Example for setting ABA mode:

The following example will program the standard ABA mode, will set the fast sampling rate to 100 MHz and acquire 2k segments with Tk
pretrigger and Tk posttrigger on every rising edge of the trigger input. Meanwhile the inputs are sampled continuously with the ABA mode
with a ABA divider set to 5000 resulting in a slow sampling clock for the A area of 100 MHz / 5000 = 20 kHz:

// setting the fast sampling clock as internal 100 MHz
spcm_dwSetParam i32 (hDrv, SPC_CLOCKMODE, SPC CM INTPLL) ;
spcm_dwSetParam i64 (hDrv, SPC_SAMPLERATE, 100000000);

// enable the ABA mode and set the ABA divider to 5000 -> 100 MHz / 5000 = 20 kHz
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC REC STD ABA);
spcm_dwSetParam_i32 (hDrv, SPC_ABADIVIDER, 5000);

// define the segmentsize, pre and posttrigger and the total amount of data to acquire
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 16384);

spcm_dwSetParam i64 (hDrv, SPC_SEGMENTSIZE, 2048);

spcm_dwSetParam i64 (hDrv, SPC_POSTTRIGGER, 1024);

// set the trigger mode to external with positive edge
spcm_dwSetParam i32 (hDrv, SPC_TRIG ORMASK, SPC TMASK EXTO);
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXTO_MODE, SPC_TM POS);

Reading out ABA data

General

The slow ,A” data is stored in an additional FIFO that is located in hardware on the card. This additional FIFO can read out slow ,A” data
using DMA transfer similar to the DMA transfer of the main sample data DMA transfer. The card has three completely independent busmaster
DMA engines in hardware allowing the simultaneous transfer of both ,A” and sample data, as well as optionally timestamp data. The sample
data itself is read out as explained before using the standard DMA routine.

(c) Spectrum Instrumentation GmbH 168

ABA mode (dual timebase) Reading out ABA data

As seen in the picture there are separate FIFOs holding ABA (if available) and timestamp data.

ABA | B HW Data FIFO Buffer
FIFO Scatter-Gather |*€ > { plete memory)
DMA Engine
T <— -
FIFO
Inlerrupté
Driver
DMA Control
Engine
——————— d '----;""""'Eéﬁré""u}ﬁ&h?-l?e_______ TTTTTTTTITIITTTT T T hpplication
Apr l . ".1 plicati Application Applicatidn Data Buffer
ABAIBuffer Timestamp {up to sejeral GByte of PC memory)
Buffer

Image 71: Overview of acquisition data, ABA data and timestamp data DMA transfer

Although an M4i is shown here, this applies to M4x, M2p and M5i cards as well. Each FIFO has its own DMA channel, the way data is
handled by the DMA engine is similar for both kinds of extra FIFOs and is also very similar to the main sample data transfer engine. Therefore
additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for extra transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

Table 195: Spectrum API: extra DMA commands (ABA and Timestamp)

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.
M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.
M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afferwards.
M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.

The extra FIFO data transfer can generate one of the following status information:.

Table 196: Spectrum APUI: extra DMA status (ABA and Timestamp)

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

Data Transfer using DMA

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Exira data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

Definition of the transfer buffer

Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 0, pvBuffer, 0, lLenOfBufferInBytes);

(c) Spectrum Instrumentation GmbH 169

ABA mode (dual timebase) Reading out ABA data

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

M5i cards only:
On MS5i cards the ILenOfBufferinBytes parameter needs to be an integer multiple of 64 bytes. &

Buffer handling

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware exira FIFO buffer and on the other hand it is handled by the user who set's parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Table 197: Spectrum API: ABA and Timestamp DMA buffer handling registers

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation

SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred

timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation
SPC_TS_AVAIL_CARD_LEN 222 write After finishing the job with the new available timestamp data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the SPC_XXX_AVAIL -
CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get &
notice of it if the notify size is programmed to a higher value.

Remarks

® The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.

® As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

(c) Spectrum Instrumentation GmbH 170

ABA mode (dual timebase) Reading out ABA data

bytes still stick to the defined notify size!
e If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

int8* pcData = (int8*) pvAllocMemPageAligned (1lBufSizeInBytes):;

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1BufSizelInBytes):;

do
{
// we wait for the next data to be available. After this call we get at least 4k of data to proceed
dwError = spcmﬁdeetParamfiBZ (hDrv, SPC_M2CMD, M2CMD EXTRA STARTDMA | M2CMD_EXTRA WAITDMA) ;

if (!dwError)

{

// 1f there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_TS AVAIL USER LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC TS AVAIL USER POS, &lBytePos);

printf (“We now have %d new bytes available\n”, 1AvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + lAvailBytes) >= 1BufSizeInBytes)
1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function gets a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TS_AVAIL_ CARD_LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

the hardware using busmaster DMA this is not critical as long as the application data buffers are large

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by f
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is unacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
This is similar to the above explained DMA buffer transfer. The value ,notify size” is ignored and should be set to 4k (4096).

Buffer handlin
The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or SPC_ABA_AVAIL_US-
ER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that has been read. In min-

imum this will be one DWORD = 4 bytes.

(c) Spectrum Instrumentation GmbH 171

ABA mode (dual timebase) Reading out ABA data

Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

int8* pcData = (int8%*) pvAllocMemPageAligned (1lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1lBufSizelInBytes);

// we start the polling mode
dwError = spcmﬁdeetParamfiBZ (hDrv, SPC_M2CMD, M2CMD_EXTRA POLL) ;

// this is our polling loop

do
{
spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL USER_LEN, &lAvailBytes);
spcm_dwGetParam_ i32 (hDrv, SPC_TS_AVAIL USER POS, &lBytePos);

if (lAvailBytes > 0)
{
printf (“We now have %d new bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1BufSizeInBytes)
1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TS AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Comparison of DMA and polling commands

This chapter shows you how small the difference in programming is between the DMA and the polling mode:

DMA mode Polling mode
Define the buffer spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...); spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...);
Start the transfer spem_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA) spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
Wait for data spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA) not in polling mode
Available bytes? spem_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
Min available bytes | programmed notify size 4 bytes
Current position? spem_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &IBytes);
Free buffer for card | specm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, [Bytes); spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, IBytes);

ABA Mode and Timestamps

The ABA mode is well matching with the timestamp option. If imestamp . . .
recording is activated, each trigger event and therefore each B time base " Pre : Post
segment will get time tamped as shown in the drawing on the right. f—|

Trigger : - :

Please keep in mind that the trigger events - located in the B area - are time : : L ‘ ‘ ‘ ‘ J ‘
il

tamped, not the beginning of the acquisition. The first B sample that is
available is at the time position of [Timestamp - Pretrigger]. Input

The first A area sample is related to the card start and therefore in a fixed
but various seftings dependent relation to the timestamped B sample. To

bring exact relation between the first A area sample (and therefore all
area A samples) and the B area samples it is possible to let the card stamp ~ Image 72: Drawing of ABA mode
the first A area sample automatically after the card start. The following ta-

ble shows the register to enable this mode:

Table 198: Spectrum API: timestamp command register and ABA mode settings

Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp setup including mode and additional features
SPC_TSFEAT_MASK FOOOOh Mask for the feature relating bits of the SPC_TIMESTAMP_CMD bitmask.
SPC_TSFEAT_STORE1STABA 10000h Enables storage of one additional timestamp for the first A area sample (B time base related) in addition to the trigger
related timestamps.
SPC_TSFEAT_NONE Oh No additional timestamp is created. The total number of stamps is only trig_ger related.

(c) Spectrum Instrumentation GmbH 172

ABA mode (dual timebase) Reading out ABA data

This mode is compatible with all existing timestamp modes. Please keep in mind that the timestamp counter is running with the B area time-
base.

// normal timestamp setup (e.g. setting timestamp mode to standard using internal clocking)
uint32 dwTimestampMode = (SPC_TSMODE_ STANDARD | SPC_TSMODE_ DISABLE) ;

// additionally enable index of the first A area sample
dwTimestampMode |= SPC_TSFEAT_STORE1STABA;

spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, dwTimestampMode) ;

The programming details of the ABA mode and timestamp modes are each explained in an dedicated chapter in this manual.

(c) Spectrum Instrumentation GmbH 173

Pulse Generator (Firmware Option) General Information

Pulse Generator (Firmware Option)

General Information

The pulse generator module provides a versatile timing synchroniza-
tion interface between the acquisition/replay functionality of the card
and external equipment.

The module consists of four pulse generators, where each generator
allows for (in)dependent generation of individual pulses, pulse trains
or a continuous stream of pulses that can be output on a Multi-Pur-
pose |/O Line, greatly enhancing the versatility of the XIO lines.

The versatile trigger capabilities allow for external or internal trigger-
ing. Moreover, the pulse generators can trigger each other, hence al-rmmersmrm - =

ital Input N Pl S
lowing for cascading of up to four pulse repetition time scales. e pE——

|
< | [[Acymehrancus owr <« fen |
Enable Trigger Outpur

The outputs of the pulse generators are intrinsically synchronized to
the card acquisition/replay functionality and its sampling clock,
hence allowing for reproducible enabling or switching of external
signals (e.g., for signal actuating). Other use cases might be pulse
broadening, pulse delaying, or just pulse generation.

Image 73: overview block diagram of multi-purpose 1/O lines and pulse generators

The generation of the pulse trains and timing signals is performed inside the FPGA of the card and is working in parallel to any other func-
tionality of the card (such as data acquisition or replay), and hence not reducing the performance.

Feature Overview

Four pulse generators are available

Single-shot, multiple repetitions or continuous/infinite repetition of pulses

Individual control of pulse length/duty cycle

External or internal triggering/starting individually for each pulse generator

Individual trigger delay per pulse generator allowing for phase shifting

Internal cascading of pulse generators possible allowing up to four repetition time scales.

The “standard” modes of the multi purpose /O lines are still available, as described in the “Multi Purpose 1/O Lines” section. This chapter
focuses on the additional functionality, available with the pulse generator firmware option installed.

The multi purpose I/O lines are available on the front plate and labelled with X0 (line 0), X1 (line 1), and X2 (line 2). As default these lines
are switched off.

~. As default (power-on and after reset command) the 1/O capable lines are switched off and hence are not
?,Q.f actively driven. Hence the on-board 10k Ohm pull-up resistors are pulling these lines to logic HIGH. If a logic
) LOW is required, external lower-value (1k Ohm) pull-down resistors might be used.

Please be careful when programming these lines as an output whilst maybe still being connected with an
A external signal source, as that may damage components either on the external equipment or on the card
itself.

(c) Spectrum Instrumentation GmbH 174

Pulse Generator (Firmware Option) Principle of Operation

Principle of Operation

Card Run
Card Arm

1

MUX1 SRC ___

MUX1 INVERT __ _ PulseGen(i)

available
Card Trigger :::.r xollg;(ill;i
XIO In (3..0)
PulseGen(3..0)
Software
1
MUX2_SRC ___

MUX2 INVERT __ _

Image 74: overview block diagram of the pulse generator
All of the four available pulse generator units are identical in their feature set and individually programmable.
As shown above, each unit consists of:

A dedicated trigger setup consisting of two multiplexers MUX1 and MUX2 combining various signals

A programmable inverter on the output of each multiplexer

A static logic AND gate combining the outputs of both multiplexers to form a trigger/gate for the pulse generating unit
The pulse generating unit itself with its trigger signal driven by the AND gate

A final programmable output inverter

The pulse generator unit is clocked with an FPGA internal clock, which is a divided version derived from the acquisition or generation sam-
pling rate. Since the division ratio is depending on the used card type, the number of active channels and the sampling rate, an dedicated
read only register allows to read out the frequency value by the following register:

Table 199: Spectrum API: pulse generator clock frequency read register

SPC_XIO_PULSEGEN_CLOCK 602000 read Returns the clock driving the pulse generator in Hz.

The following short excerpt shows which parameters need to be defined first and how to read out the clock rate at which the pulse generator
units then are clocked:

// first set up the parameters, that influence the pulse generator’s clock rate
spcm_dwSetParam 132 (hCard, SPC_CHENABLE, CHANNELO); // channel enable
spcm_dwSetParam i64 (hCard, SPC_SAMPLERATE, MEGA(1)); // desired acquisition/generation sampling rate

// afterwards read out the divided clock rate, clocking the pulse generator units
int64 llPulseGenClock Hz = 0;
spcm_dwGetParam i64 (hCard, SPC_XIO PULSEGEN_CLOCK, &llPulseGenClock Hz);

See the end of this chapter for a more complete example setup of a pulse generator unit.

Changing the card settings while pulse generators are active will cause a stop and restart of the pulse gen-
A erators automatically issued by the driver to the pulse generators.

(c) Spectrum Instrumentation GmbH 175

Pulse Generator (Firmware Option) Setting up the Pulse Generator

Setting up the Pulse Generator

Enabling, disabling and resetting a pulse generator

Each pulse generator unit can be enabled and disabled separately:

Table 200: Spectrum API: pulse generator enable registers

Register Value Direction Description

SPC_XIO_PULSEGEN_ENABLE 601500 read/write Bitmask to enable any combination of the four different pulse generators.
SPCM_PULSEGEN_ENABLEO Th Enable pulse generator 0. When disabled, the output (prior to the output inverter) is set to logic LOW.
SPCM_PULSEGEN_ENABLE1 2h Enable pulse generator 1. When disabled, the output (prior to the output inverter) is set to logic LOW.
SPCM_PULSEGEN_ENABLE2 4h Enable pulse generator 2. When disabled, the output (prior to the output inverter) is set to logic LOW.
SPCM_PULSEGEN_ENABLE3 8h Enable pulse generator 3. When disabled, the output (prior to the output inverter) is set to logic LOW.

Disabling a unit will act as a reset dedicated to this single unit. A disabled pulse generator will output a logic LOW prior to the programmable
output inverter, hence with an active output inverter the final output of a disabled pulse generator will be logically HIGH.

Defining the basic pulse parameters

The two basic properties for generating a (repetitive] pulsed output is to define the length (or period) and define how much of the waveform

should the output be HIGH:

Cok [1L [LT LT LI LI LI LIy rerererereyerererer
Output |_

<--HIGH Time = 4 clocks -->

<-- LEN = Period = 7 clocks -->

Image 75: timing diagram illustrating the basic pulse parameters

The pulse generator will upon start (trigger) first set the output HIGH for the programmed amount of time. Afterwards it will set the waveform
LOW for the remaining time until the programmed length (period) has been reached. As a result, the number of clock cycles during which
the output is LOW calculates to: LOW = LEN - HIGH. In the example above with LEN = 7 and HIGH = 4, the signal will be LOW for the
remaining 3 clock cycles.

The following table shows the registers required to set the total length of the pulse to be generated. The length is defined in clock cycles:

Table 201: Spectrum API: pulse generator length/period register

Register Value Direction Description

SPC_XIO_PULSEGEN_AVAILLEN_MIN 602001 read Returns the minimum length (period) of the pulse generator’s output pulses in clock cycles.
SPC_XIO_PULSEGEN_AVAILLEN_MAX 602002 read Returns the maximum length (period) of the pulse generator’s output pulses in clock cycles.
SPC_XIO_PULSEGEN_AVAILLEN_STEP 602003 read Returns the step size the pulse generator’s output pulses in clock cycles.
SPC_XIO_PULSEGENO_LEN 601001 read/write Define the length of the pulse period generated by pulse generator O in clock cycles.
SPC_XIO_PULSEGENT_LEN 601101 read/write Define the length of the pulse period generated by pulse generator 1 in clock cycles.
SPC_XIO_PULSEGEN2_LEN 601201 read/write Define the length of the pulse period generated by pulse generator 2 in clock cycles.
SPC_XIO_PULSEGEN3_LEN 601301 read/write Define the length of the pulse period generated by pulse generator 3 in clock cycles.

The second parameter that needs to be defined is the amount of clock pulses that force the output to a logic HIGH. The following table shows
the registers required to set the total length of the pulse to be generated:

Table 202: Spectrum API: pulse generator HIGH time registers

Register Value Direction Description

SPC_XIO_PULSEGEN_AVAILHIGH_MIN 602004 read Returns the minimum HIGH time of the pulse generator’s output pulses in clock cycles.
SPC_XIO_PULSEGEN_AVAILHIGH_MAX 602005 read Returns the maximum HIGH time of the pulse generator’s output pulses in clock cycles.
SPC_XIO_PULSEGEN_AVAILHIGH_STEP 602006 read Returns the step size the pulse generator’s HIGH time in clock cycles.
SPC_XIO_PULSEGENO_HIGH 601002 read/write Define the HIGH time for the pulse generated by pulse generator O in clock cycles.
SPC_XIO_PULSEGEN1_HIGH 601102 read/write Define the HIGH time for the pulse generated by pulse generator 1 in clock cycles.
SPC_XIO_PULSEGEN2_HIGH 601202 read/write Define the HIGH time for the pulse generated by pulse generator 2 in clock cycles.
SPC_XIO_PULSEGEN3_HIGH 601302 read/write Define the HIGH time for the pulse generated by pulse generator 3 in clock cycles.

These two settings alone allow for the creation of periodic signals with the freely programmable duty cycle. Setting the HIGH time to half the
LEN will result is a clock-like signal with half the time being HIGH and half the time being LOW, hence having a 50% duty-cycle signal.

Since the output of the pulse generator can only change with every edge of its clock input, the speed of this clock ultimately defines the gran-
ularity at which the pulses can be configured. The lower the period of the generated pulse signal the finer this granularity becomes with
regards to the output signal frequency.

For example, when creating an output with the maximum output frequency of Clk/2 (with LEN = 2 and HIGH = 1), the only possible remaining
configuration is a duty-cycle of 50%. And with a output at frequency with Clk/3 (with LEN=3 and HIGH either 1 or 2) the duty-cycle is either
33% or 66%, but cannot be 50%.

(c) Spectrum Instrumentation GmbH 176

Pulse Generator (Firmware Option)

Setting up the Pulse Generator

In addition to defining the length/period of a single pulse, one can also define how often a pulse should be replayed repeatedly. The choice
can be made between repeating the pulses infinitely (until being explicitly stopped) or to pre-define a number of repetitions:

Table 203: Spectrum API: pulse generator loops/pulse repetition registers

Register Value Direction Description
SPC_XIO_PULSEGEN_AVAILLOOPS_MIN 602010 read Returns the minimum number of times, the output of a pulse generator can be repeated.
SPC_XIO_PULSEGEN_AVAILLOOPS_MAX 602011 read Returns the maximum number of times, the output of a pulse generator can be repeated.
SPC_XIO_PULSEGEN_AVAILLOOPS_STEP 602012 read Returns the step size when defining the repetition of pulse generator’s output.
SPC_XIO_PULSEGENO_LOOPS 601004 read/write Define the number of repetitions of the output period when triggered for pulse generator 0.
SPC_XIO_PULSEGEN1_LOOPS 601104 read/write Define the number of repetitions of the output period when triggered for pulse generator 1.
SPC_XIO_PULSEGEN2_LOOPS 601204 read/write Define the number of repetitions of the output period when triggered for pulse generator 2.
SPC_XIO_PULSEGEN3_LOOPS 601304 read/write Define the number of repetitions of the output period when triggered for pulse generator 3.
0 Upon a trigger event the output of the pulse generator will run infinitely until b;ng disabled or reset.
1..[4G-2] Upon a trigﬁer event the output period will replayed the defined number of times.

Delaying (phase shifting) the Outputs

As mentioned above the pulse generator will always start with the first portion of the period to be HIGH and then will set the output LOW for
the remaining number of cycles within the chosen length.

When using the delay, it is possible to delay the initial HIGH portion of the pulse generator(s) by a defined amount of clock cycles. This in
combination with a common starting point (start/trigger) allows for the generation of phase shifted signals as shown below for two of the

pulse generators. Both are set up with identical LEN and HIGH parameters, but the additional delay for pulse generator O (PGenO) is kept at
the default of zero clock cycles, whilst PGen1is delayed by 5 clock cycles:

PGen0 | I | L
PGen1

<-- DELAY = 5 clocks -->

Image 76: timing diagram illustrating delaying a pulse generator output

The amount of additional delay can be set individually for each pulse generator, by using the following registers:

Table 204: Spectrum API: pulse generator delay/phase shift registers

Register Value Direction Description

SPC_XIO_PULSEGEN_AVAILDELAY_MIN 602007 read Returns the minimum delay of the pulse generator’s output in clock cycles.
SPC_XIO_PULSEGEN_AVAILDELAY_MAX 602008 read Returns the maximum delay of the pulse generator’s output in clock cycles.
SPC_XIO_PULSEGEN_AVAILDELAY_STEP 602009 read Returns the step size of the pulse generator’s output delay in clock cycles.
SPC_XIO_PULSEGENO_DELAY 601003 read/write Define how much the output of pulse generator O is delayed after trigger in clock cycles.
SPC_XIO_PULSEGENT_DELAY 601103 read/write Define how much the output of pulse generator 1 is delayed after trigger in clock cycles.
SPC_XIO_PULSEGEN2_DELAY 601203 read/write Define how much the output of pulse generator 2 is delayed after trigger in clock cycles.
SPC_XIO_PULSEGEN3_DELAY 601303 read/write Define how much the output of pulse generator 3 is delayed after trigger in clock cycles.

Defining the trigger behavior

Each pulse generator can be set up to react on its trigger input in three different ways, depending on the application’s need:

Table 205: Spectrum API: pulse generator mode registers with their available settings

Register Value Direction Description

SPC_XIO_PULSEGENO_MODE 601000 read/write Defines the behavior of pulse generator O on how to react on its frigger event.
SPC_XIO_PULSEGEN1_MODE 601100 read/write Defines the behavior of pulse generator 1 on how to react on its frigger event.
SPC_XIO_PULSEGEN2_MODE 601200 read/write Defines the behavior of pulse generator 2 on how to react on its trigger event.
SPC_XIO_PULSEGEN3_MODE 601300 read/write Defines the behavior of pulse generator 3 on how to react on its trigger event.

SPCM_PULSEGEN_MODE_GATED 1

Pulse generator will start if the trigger condition or “gate” is met and will stop, if either the gate becomes inactive or
the defined number of LOOPS have been generated. Will reset its loop counter, when the gate becomes LOW.

SPCM_PULSEGEN_MODE_TRIGGERED 2

The pulse generator will start if the trigger condition is met and will replay the defined number of loops before re-arm-
ing itself and waiting for another trigger event. Changes in the trigger signal while replaying will be ignored.

SPCM_PULSEGEN_MODE_SINGLESHOT

w

The pulse generator will start if the trigger condition is met and will replay the defined number of loops once.

For simplicity, the waveforms below will show the modes principle, without any additionally programmed delay, and also omitting the intrinsic

pipeline delay from the trigger event to the output's reaction.

(c) Spectrum Instrumentation GmbH

177

Pulse Generator (Firmware Option) Setting up the Pulse Generator

Continuously triggered output

After enabling the pulse generator, it will detect trigger events. Upon each trigger, the programmed number of pulses are generated, as
defined by the LEN, HIGH, DELAY and LOOPS parameters explained above. After finishing the programmed number of triggers, it will au-
tomatically arm itself again and wait for the next trigger.

In contrast to the Gated mode (see below), once a trigger has been detected the trigger input is ignored and the pulse train will finish inde-
pendent from any activity on the trigger input. Only when is has finished the current generation, a new trigger will be detected:

Trigger | I I I I
Output I I I I I I | I I | I I I | [

[{LEN=2, HIGH=1, LOOP=3 } [| {LEN=2, HIGH=1, LOOP=3} [

Image 77: timing diagram illustrating the pulse generator triggered output mode

Single Shot triggering
This mode is similar to the triggered mode, but after enabling the pulse generator it will only detect one single trigger. Upon that trigger, the
programmed number of pulses are generated, as defined by the LEN, HIGH, DELAY and LOOPS parameters explained above:

Clock
Trigger I I I I I

Output I I | I | I I
| {LEN=2, HIGH=1, LOOP=3} [
Image 78: timing diagram illustrating the pulse generator single-shot triggered output mode

Afterwards the pulse generator will not detect any further triggers, until being reset by re-enabling:

Continuously gated Output

After enabling the pulse generator, it will detect trigger events. Upon each trigger, the programmed number of pulses are generated, as
defined by the LEN, HIGH, DELAY and LOOPS parameters explained above and as long as the trigger condition or gate is still valid (HIGH).
If the gate ends, this will stop the output and reset all internal counters back fo start. So, each time the gate turns HIGH, the sequence (number

of pulses as defined by the LEN, HIGH, DELAY and LOOPS) starts again from its beginning:

Trigger I— I
Output I_I I_ I_ I I I I I I

<-- Gate End <-- Gate End {LEN=2, HIGH=1, LOOP=3} |

Image 79: timing diagram illustrating the pulse generator gated output mode

Configuring the pulse generator’s trigger source

The various possible signals that can logically be combined to form a trigger event for a pulse generator are split up into two portions each
consisting of a multiplexer (MUX).

Multiplexer 1
The first multiplexer, MUX1, selects between two different sources and also allows to be completely unused by utilizing a logical ‘1" or HIGH
level, being transparent to the following AND condition combining the two multiplexers:

Table 206: Spectrum API: pulse generator trigger MUX registers with their available settings

Register Value Direction Description

SPC_XIO_PULSEGENO_MUX1_SRC 601005 read/write Selects the input source for MUX1 for pulse generator 0.

SPC_XIO_PULSEGENT_MUX1_SRC 601105 read/write Selects the input source for MUX1 for pulse generator 1.

SPC_XIO_PULSEGEN2_MUX1_SRC 601205 read/write Selects the input source for MUX1 for pulse generator 2.

SPC_XIO_PULSEGEN3_MUX1_SRC 601305 read/write Selects the input source for MUX1 for pulse generator 3.
SPCM_PULSEGEN_MUX1_SRC_UNUSED | O Inputs of MUX1 are not used in creating the trigger condition and instead a static logic HIGH is used for MUX1.
SPCM_PULSEGEN_MUX1_SRC_RUN 1 This input of MUX1 reflects the current run state of the card. If acquisition/output is running the signal is HIGH. If

card has stopped the signal is LOW.
The signal is identical to XIO output using SPCM_XMODE_RUNSTATE.

SPCM_PULSEGEN_MUX1_SRC_ARM 2 This input of MUX1 reflects the current ARM state of the card. If the card is armed and ready to receive a trigger
the signal is HIGH. If the card isn’t running or the card is still acquiring pretrigger data or the trigger has already
been detected. the signal is LOW.

The signal is identical to XIO output using SPCM_XMODE_ARMSTATE.

By having the two status lines ARM and RUN available as input, it is either possible to generate pulses depending only on the card’s RUN
or ARM state (e.g., currently running or currently not running enabling the inverter of MUX1 output) or to mask other trigger conditions from
MUX2 to only be passed upon the card’s acquisition/replay RUN or ARM state.

(c) Spectrum Instrumentation GmbH 178

Pulse Generator (Firmware Option) Setting up the Pulse Generator

Multiplexer 2

The second multiplexer can be transparent and hence unused or allows to select various sources for starting the pulse creation:

Allowing a start command issued by the application software by issuing a force trigger command

Any one of the other pulse generator unit outputs to create pulses or pulse trains with up to four repetition time scales
The card’s acquisition or replay trigger output

An external logic signal coming in from any of the multi-purpose XIO input capable lines

Table 207: Spectrum API: pulse generator trigger MUX2 registers with their available settings

Register Value Direction Description

SPC_XIO_PULSEGENO_MUX2_SRC 601006 read/write Selects the input source for MUX2 for pulse generator O.

SPC_XIO_PULSEGEN1_MUX2_SRC 601106 read/write Selects the input source for MUX2 for pulse generator 1.

SPC_XIO_PULSEGEN2_MUX2_SRC 601206 read/write Selects the input source for MUX2 for pulse generator 2.

SPC_XIO_PULSEGEN3_MUX2_SRC 601306 read/write Selects the input source for MUX2 for pulse generator 3.
SPCM_PULSEGEN_MUX2_SRC_UNUSED 0 No input of MUX2 is used in creating the trigger condition for the pulse generator. A static logic HIGH is

used, so that the MUX output is transparent for the following AND gate.

SPCM_PULSEGEN_MUX2_SRC_SOFTWARE 1 This input reflects the positive edge generated by issuing the SPCM_PULSEGEN_CMD_FORCE command.
SPCM_PULSEGEN_MUX2_SRC_CARDTRIGGER | 2 This input of MUX2 reflects the trigger detection of the acquisition/replay. The trigger output goes HIGH as

soon as the card’s main trigger is recognized. After end of acquisition/replay it is LOW again. In Multiple
Recording/Gated Sampling/ABA mode it goes LOW after the acquisition of the current segment stops. In
FIFO single mode the trigger output is HIGH until FIFO mode is stopped.

The signal is identical to what a XIO output is providing when using SPCM_XMODE_TRIGOUT.

SPCM_PULSEGEN_MUX2_SRC_PULSEGENO 3 Input to MUX2 is set to output of pulse generator 0/1/2 or 3.
SR N M AC s | 4| [ie o el p g v o fs eyt s
SPCM_PULSEGEN_MUX2_SRC_PULSEGEN2 5 Selecting its own pulse generator’s output as a trigger (loopback) is not allowed and will lead to a driver
SPCM_PULSEGEN_MUX2_SRC_PULSEGEN3 | 6 erer
SPCM_PULSEGEN_MUX2_SRC_XIO0 7 Input to MUX2 is set to the input signal coming in from multi-purpose line of XO.

M2p: Since X0 is an output only, it therefore is not allowed to be used as an input.
SPCM_PULSEGEN_MUX2_SRC_XIO1 8 Input to MUX2 is set to the input signal coming in from multi-purpose line of X1.
SPCM_PULSEGEN_MUX2_SRC_XIO2 9 Input to MUX2 is set to the input signal coming in from multi-purpose line of X2.
SPCM_PULSEGEN_MUX2_SRC_XIO3 10 Input to MUX2 is set to the input signal coming in from multi-purpose line of X3.

M4i/M4x: Since X3 is not available, it therefore is not allowed to be used as an input.

The output of the following command register is connected to all pulse generator units in parallel in a synchronous fashion:

Table 208: Spectrum API: pulse generator command register for trigger forcing by software

Register Value Direction Description
SPC_XIO_PULSEGEN_COMMAND 601501 write only Executes a command for the pulse generator option.
SPCM_PULSEGEN_CMD_FORCE Th Generate a single rising edge, that is common for all pulse generator engines. This allows to start/trigger the output
of all enabled pulse generators synchronously by issuing a software command.

This allows to start any number of pulse generators set to MUX2_SRC_SOFTWARE to be started at the same instant even from software, useful
when requiring pulses with a known and static phase relation.

~. Please note that the Trigger/Gate input to the “Pulse Generation” portion is always HIGH-active. Depending

?,Q.f on the selected pulse generator configuration it is triggering on the rising edge or the logic HIGH state. The

) two programmable inverters at the multiplexer outputs can be used to trigger on the falling edge or a logical
LOW instead.

To access the three programmable inverters and to optionally change whether triggering on a rising edge (the trigger signal changing its
state from LOW to HIGH) or on the valid level (the trigger being logically HIGH), following registers can be used:

Table 209: Spectrum API: pulse generator additional configuration registers with the available settings

Register Value Direction Description
SPC_XIO_PULSEGENO_CONFIG 601007 read/write Bitmask with additional configuration for pulse generator O.
SPC_XIO_PULSEGEN1_CONFIG 601107 read/write Bitmask with additional configuration for pulse generator 1.
SPC_XIO_PULSEGEN2_CONFIG 601207 read/write Bitmask with additional configuration for pulse generator 2.
SPC_XIO_PULSEGEN3_CONFIG 601307 read/write Bitmask with additional configuration for pulse generator 3.
SPCM_PULSEGEN_CONFIG_MUX1_INVERT 1h When bit is set, the output of MUX1 is logically inverted.
SPCM_PULSEGEN_CONFIG_MUX2_INVERT 2h When bit is set, the output of MUX2 is logically inverted.
SPCM_PULSEGEN_CONFIG_INVERT 4h When bit is set, the output of the pulse generator is logically inverted.
SPCM_PULSEGEN_CONFIG_HIGH 8h As default the pulse generator’s trigger input is sensitive only to a rising edge. When using this configura-
tion, the input will not look for an active edge, but rather detect a HIGH level. This is similar to the distinc-
tion of the card’s main trigger modes, when choosing between SPC_TM_POS and SPC_TM_HIGH.

(c) Spectrum Instrumentation GmbH 179

Pulse Generator (Firmware Option)

Setting up the Pulse Generator

Since the register is implemented as a bitmask, any combination of the above configuration flags is possible.

int32 1lPulseGenConfig

spcm_dwSetParam_i32 (hCard,

// enable the inverters on MUX1 and MUX2 outputs for pulse generator 2
(SPCM_PULSEGEN CONFIG MUX1 INVERT | SPCM PULSEGEN CONFIG MUX2 INVERT) ;

SPC_XIO PULSEGEN2_ CONFIG, lPulseGenConfig);

Configuring Multi Purpose lines to output generated pulses

Each of the up to four on-board multi purpose I/O lines can be programmed to output the pulses generated by its corresponding pulse gen-
erator unit, making it available for any external devices.

Please check the available modes by reading the SPCM_XO_AVAILMODES, SPCM_X1_AVAILMODES, SPCM_X2_AVAILMODES and

SPCM_X3_AVAILMODES register first. The available modes may differ from card to card and may be enhanced with new driver/firmware

versions to come.

Table 210: Spectrum API: XIO lines and mode software registers with their reduced to the settings required for outputting pulses

Register Value Direction Description
SPCM_XO_AVAILMODES 600300 read Bitmask with all bits of the below mentioned modes showing the available modes for (XO)
SPCM_X1_AVAILMODES 600301 read Bitmask with all bits of the below mentioned modes showing the available modes for (X1)
SPCM_X2_AVAILMODES 600302 read Bitmask with all bits of the below mentioned modes showing the available modes for (X2)
SPCM_X3_AVAILMODES 600303 read Bitmask with all bits of the below mentioned modes showing the available modes for (X3)
SPCM_X0_MODE 600200 read/write Defines the mode for (XO). Only one mode selection is possible to be set at a time
SPCM_X1_MODE 600201 read/write Defines the mode for (X1). Only one mode selection is possible to be set at a time
SPCM_X2_MODE 600202 read/write Defines the mode for (X2). Only one mode selection is possible to be set at a time
SPCM_X3_MODE 600203 read/write Defines the mode for (X3). Only one mode selection is possible to be set at a time

SPCM_XMODE_DISABLE 00000000h | No mode selected. Output is tristate (default setup)

For all other modes please see chapter “Multi Purpose 1/O Lines”.

SPCM_XMODE_PULSEGEN 00080000h | A/D and D/A cards only (optional):

Connector reflects the output of the same index pulse generator (X1 can output pulses from pulse generator 1, X2 can

output pulses from pulse generator 2, ... efc.).

On M4i/M4x cards with three XIO lines (XO, X1, X2) and four pulse generators, pulses from pulse generator 3 can-

not be output, but can still be used in cascading configurations to trigger another pulse generator.
—

~ Please note that a change to the SPCM_X0_MODE, SPCM_X1_MODE, SPCM_X2_MODE or SPCM_X3_MODE will
\:Q.f only be updated with the next call to either the M2CMD_CARD_START or M2CMD_CARD_WRITESETUP register.
| For further detdils please see the relating chapter on the M2CMD_CARD registers.

(c) Spectrum Instrumentation GmbH

180

Pulse Generator (Firmware Option) Programming Example

Programming Example

The following example shows in principle, the steps required for generating a single, repetitive pulse with one of the pulse generators and
how to output that pulse on the matching multi-purpose 1/O line:

// First we set up the channel selection and the clock.
// For this example we enable only one channel to be able to use max sampling rate on all card types.
spcm_dwSetParam i32 (hCard, SPC_CHENABLE, CHANNELO) ;

// Read out the max. supported sampling rate
int64 11MaxSR = 0;
spcm_dwGetParam i64 (hCard, SPC PCISAMPLERATE, &11MaxSR);

// ... and use this as the card’s sampling rate
spcm_dwSetParam i64 (hCard, SPC SAMPLERATE, 11MaxSR);

// Read out the clock, at which the pulse generator will run with the above set sampling rate.
int64 1lPulseGenClock Hz = 0;
spcm_dwGetParam_i64 (hCard, SPC_XIO_ PULSEGEN_CLOCK, &llPulseGenClock Hz);

// Configure X0 to output signal from corresponding pulse generator 0
spcm_dwSetParam_i32 (hCard, SPCM X0 MODE, SPCM_XMODE_ PULSEGEN) ;

// Setup pulse generator 0 (output on X0)

// to generate a continuous signal with 1 MHz and ~50% duty-cycle

int32 lLenForlMHz = static cast < int32 > (llPulseGenClock Hz / MEGA(1l));
spcmﬁdeetParamﬁiBZ (hCard, SPC7X107PULSEGEN07MODE, SPCMﬁPULSEGENiMODEiTRIGGERED);
spcm_dwSetParam i32 (hCard, SPC_XIO_PULSEGENO_LEN, lLenForlMHz) ;

// An integer division by 2 will be truncated if lLenForlMHz is an odd number,
// resulting in a slightly shorter HIGH than LOW time.
spcm_dwSetParam i32 (hCard, SPC_XIO PULSEGENO_ HIGH, lLenForlMHz / 2);

// Set LOOPS to 0: repeat infinitely
spcm_dwSetParam i32 (hCard, SPC_XIO_ PULSEGENO_ LOOPS, O0);

// Configure pulse generator to be triggered/started by software force command
spcm_dwSetParam i32 (hCard, SPC_XIO PULSEGENO MUX1 SRC, SPCM PULSEGEN MUX1 SRC UNUSED) ;
spcm_dwSetParam _i32 (hCard, SPC_XIO PULSEGENO MUX2 SRC, SPCM PULSEGEN MUX2 SRC_SOFTWARE) ;

// Enable the selected pulse generator and hence arm its trigger detection
SpcmﬁdeetParamﬁi32 (hCard, SPC_XIO PULSEGEN_ ENABLE, SPCMﬁPULSEGENiENABLEO);

// Write the settings to the card:

// This will update the clock section to generate the programmed frequencies
// (SPC_SAMPLERATE) and also write the pulse generator settings to the card.
spcm_dwSetParam i32 (hCard, SPC_M2CMD, M2CMD_CARD WRITESETUP) ;

// Start all armed pulse generators (in this case just one) by a software command
spcm_dwSetParam i32 (hCard, SPC_XIO PULSEGEN COMMAND, SPCM PULSEGEN CMD FORCE) ;

// Wait until a key is pressed
printf ("\nPress a key to stop the pulse generator(s) ");
cGetch ();

// Stop all running pulse generators
spcm_dwSetParam i32 (hCard, SPC_XIO PULSEGEN ENABLE, O0);
spcm_dwSetParam_i32 (hCard, SPC_M2CMD, M2CMD_CARD_WRITESETUP) ;

Spectrum provides a dedicated programming example for the pulse generator feature as part of the stand-
ard example package. This example is showing different and more complex configurations than shown
above, e.g., cascading of multiple pulse generators for more complex pulse generation time scales.

(c) Spectrum Instrumentation GmbH 181

Option Star-Hub (M3i and M4i only) Star-Hub introduction

Option Star-Hub (M3i and M4i only)

Star-Hub introduction

The purpose of the Star-Hub is to extend the number of channels available for acquisition or generation by interconnecting multiple cards and
running them simultaneously.

The Star-Hub option allows to synchronize several cards of the same M3i/M4i series that are mounted within one host system (PC):

® For the M3i series there are the two different versions available: a small version with 4 connectors (option SH4) for synchronizing up to
four cards and a big version with 8 connectors (option SH8) for synchronizing up to eight cards.

® For the M4i series there are the two different mechanical versions available, with 8 connectors for synchronizing up to eight cards.

The Star-Hub allows synchronizing cards of the same family only. It is not possible to synchronize cards of
different families! A

Both versions are implemented as a piggy -back module that is mounted to one of the cards. For details on how to install several cards in-
cluding the one carrying the Star-Hub module, please refer to the section on hardware installation.

Either which of the two available Star-Hub options is used, there will be no phase delay between the sampling clocks of the synchronized
cards and either no delay between the trigger events. The card holding the Star-Hub is automatically also the clock master. Any one of the
synchronized cards can be part of the trigger generation.

Star-Hub trigger engine

The trigger bus between an M3i/M4i card and the Star-Hub option consists of several lines. Some of them send the trigger information from
the card’s trigger engine to the Star-Hub and some receives the resulting trigger from the Star-Hub. All trigger events from the different cards
connected are combined with OR on the Star-Hub.

While the returned trigger is identical for all synchronized cards, the sent out trigger of every single card depends on their trigger seftings.

Star-Hub clock engine

The card holding the Star-Hub is the clock master for the complete system. If
you need fo feed in an external clock to a synchronized system the clock has [quartz 1

=
to be connected to the master card. Slave cards cannot generate a Star-Hub | (pregrammable) Rl
system clock. As shown in the drawing on the right the .clock master can use [go—— =
either the programmable quartz 1 or the external clock input to be broadcast | (option) PLL

to all other cards. —1

Clock
Input O_l

Clock

O Output

All cards including the clock master itself receive the distributed clock with
equal phase information. This makes sure that there is no phase delay be-
tween the cards. e e T e e s |

to Slave(s) :
|

Table 211: star-hub clock overview diagram

Software Interface

The software interface is similar to the card software interface that is explained earlier in this manual. The same functions and some of the
registers are used with the Star-Hub. The Star-Hub is accessed using its own handle which has some extra commands for synchronization
setup. All card functions are programmed directly on card as before. There are only a few commands that need to be programmed directly
to the Star-Hub for synchronization.

The software interface as well as the hardware supports multiple Star-Hubs in one system. Each set of cards connected by a Star-Hub then
runs fotally independent. It is also possible to mix cards that are connected with the Star-Hub with other cards that run independent in one
system.

Star-Hub Initialization

The interconnection between the Star-Hubs is probed at driver load time and does not need to be programmed separately. Instead the cards
can be accessed using a logical index. This card index is only based on the ordering of the cards in the system and is not influenced by the
current cabling. It is even possible to change the cable connections between two system starts without changing the logical card order that
is used for Star-Hub programming.

The Star-Hub initialization must be done AFTER initialization of all cards in the system. Otherwise the inter-
connection won’t be received properly. A

(c) Spectrum Instrumentation GmbH 182

Option Star-Hub (M3i and M4i only) Software Interface

The Star-Hubs are accessed using a special device name ,sync” followed by the index of the star-hub to access. The Star-Hub is handled
completely like a physical card allowing all functions based on the handle like the card itself.

Example with 4 cards and one Star-Hub (no error checking to keep example simple)

drv_handle hSync;
drv_handle hCard([4];

for (i = 0; 1 < 4; i++)
{
sprintf (s, "/dev/spcm&%d", 1i);
hCard[i] = spcm_hOpen (s);
}
hSync = spcm_hOpen ("syncO");

spcm_vClose (hSync);
for (i = 0; i < 4; i++)
spcm_vClose (hCard[i]);

Example for a digitizerNETBOX or generatorNETBOX with two internal digitizer/generator modules, This example is also suitable for
accessing a remote server with two cards installed:

drv_handle hSync;
drv_handle hCard([2];

for (i = 0; i < 2; i++4)
{
sprintf (s, "TCPIP::192.168.169.14::INST%d::INSTR", 1i);
hCard[i] = spcm hOpen (s);
}
hSync = spcm_hOpen ("syncQ");

spcm_vClose (hSync);
for (i = 0; i < 2; i++)
spcm_vClose (hCard[i]);

When opening the Star-Hub the cable interconnection is checked. The Star-Hub may return an error if it sees internal cabling problems or if
the connection between Star-Hub and the card that holds the Star-Hub is broken. It can’t identify broken connections between Star-Hub and
other cards as it doesn’t know that there has to be a connection.

The synchronization setup is done using bit masks where one bit stands for one recognized card. All cards that are connected with a Star-
Hub are internally numbered beginning with 0. The number of connected cards as well as the connections of the star-hub can be read out
after initialization. For each card that is connected to the star-hub one can read the index of that card:

Table 212: Spectrum API: star-hub related registers for reading detected connections

Register Value Direction Description

SPC_SYNC_READ_NUMCONNECTORS 48991 read Number of connectors that the Star-Hub offers at max. (available with driver V5.6 or newer)

SPC_SYNC_READ_SYNCCOUNT 48990 read Number of cards that are connected to this Star-Hub

SPC_SYNC_READ_CARDIDXO 49000 read Index of card that is connected to star-hub logical index O (mask 0x0001)

SPC_SYNC_READ_CARDIDX1 49001 read Index of card that is connected to star-hub logical index 1 (mask 0x0002)

read

SPC_SYNC_READ_CARDIDX7 49007 read Index of card that is connected to star-hub logical index 7 (mask 0x0080)

SPC_SYNC_READ_CARDIDX8 49008 read M2i only: Index of card that is connected to star-hub logical index 8 (mask 0x0100)

read

SPC_SYNC_READ_CARDIDX15 49015 read M2i only: Index of card that is connected to star-hub logical index 15 (mask 0x8000)

SPC_SYNC_READ_CABLECONO read Returns the index of the cable connection that is used for the logical connection 0. The cable connec-
tions can be seen printed on the PCB of the star-hub. Use these cable connection information in case
that there are hardware failures with the starhub cabeling.

49100 read

SPC_SYNC_READ_CABLECON15 49115 read Returns the index of the cable connection that is used for the logical connection 15.

In standard systems where all cards are connected to one star-hub reading the star-hub logical index will simply return the index of the card
again. This results in bit O of star-hub mask being 1 when doing the setup for card O, bit 1 in star-hub mask being 1 when setting up card 1

(c) Spectrum Instrumentation GmbH 183

Option Star-Hub (M3i and M4i only) Software Interface

and so on. On such systems it is sufficient to read out the SPC_SYNC_READ_SYNCCOUNT register to check whether the star-hub has found
the expected number of cards to be connected.

spcm_dwGetParam i32 (hSync, SPC_SYNC_READ_ SYNCCOUNT, &lSyncCount) ;
for (i = 0; i < 1lSyncCount; i++)
{
spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ CARDIDX0 + i, &lCardIdx);
printf ("star-hub logical index %d is connected with card %d\n“, i, 1lCardIdx);

}

In case of 4 cards in one system and all are connected with the star-hub this program excerpt will return:

is connected with card 0
is connected with card 1
is connected with card 2
is connected with card 3

star-hub logical index
star-hub logical index
star-hub logical index
star-hub logical index

WN o

Let's see a more complex example with two Star-Hubs and one independent card in one system. Star-Hub A connects card 2, card 4 and
card 5. Star-Hub B connects card O and card 3. Card 1 is running completely independent and is not synchronized at all:

card Star-Hub connection card handle star-hub handle card index in star-hub mask for this card in
star-hub

card O - /dev/spcmO 0 (of star-hub B) 0x0001

card 1 - /dev/spem1 -

card 2 starhub A /dev/spcm2 syncO 0 (of starhub A) 0x0001

card 3 star-hub B /dev/spcm3 syncl 1 (of star-hub B) 0x0002

card 4 - /dev/spcm4 1 (of star-hub A) 0x0002

card 5 - /dev/spcm5 2 (of star-hub A) 0x0004

Now the program has to check both star-hubs:

for (j = 0; j < lStarhubCount; j++)

{

spcm_dwGetParam i32 (hSync[j], SPC_SYNC READ SYNCCOUNT, &lSyncCount);

for (i = 0; i < 1lSyncCount; i++)
{
spcm_dwGetParam i32 (hSync[j], SPC_SYNC READ CARDIDX0 + i, &l1CardIdx);
printf ("star-hub %c logical index %d is connected with card %d\n“, (!j ? 'A’ : 'B’), i, 1lCardIdx);
}

printf ("\n");

}

In case of the above mentioned cabling this program excerpt will return:

star-hub A logical index 0 is connected with card 2
star-hub A logical index 1 is connected with card 4
star-hub A logical index 2 is connected with card 5

star-hub B logical index 0 is connected with card 0
star-hub B logical index 1 is connected with card 3

For the following examples we will assume that 4 cards in one system are all connected to one star-hub to keep things easier.

Setup of Synchronization

The synchronization setup only requires one additional register to enable the cards that are synchronized in the next run

Table 213: Spectrum API: synchronization enable mask register

Register Value Direction Description
SPC_SYNC_ENABLEMASK 49200 read/write Mask of all cards that are enabled for the synchronization

The enable mask is based on the logical index explained above. It is possible to just select a couple of cards for the synchronization. All other
cards then will run independently. Please be sure to always enable the card on which the star-hub is located as this one is a must for the
synchronization.

(c) Spectrum Instrumentation GmbH 184

Option Star-Hub (M3i and M4i only) Software Interface

In our example we synchronize all four cards. The star-hub is located on card #2 and is therefor the clock master

spcm_dwSetParam i32 (hSync, SPC_SYNC_ENABLEMASK, O0x000F); // all 4 cards are masked

// set the clock master to 100 MS/s internal clock
spcm_dwSetParam i32 (hCard[2], SPC_CLOCKMODE, SPC_CM INTPLL);
spcm_dwSetParam i32 (hCard[2], SPC_SAMPLERATE, MEGA(100));

// set all the slaves to run synchronously with 100 MS/s

spcm_dwSetParam i32 (hCard[0], SPC_SAMPLERATE, MEGA(100));
spcm_dwSetParam i32 (hCard[1l], SPC_SAMPLERATE, MEGA(100));
spcm_dwSetParam i32 (hCard[3], SPC_SAMPLERATE, MEGA (100));

Setup of Trigger

Setting up the trigger does not need any further steps of synchronization setup. Simply all trigger seftings of all cards that have been enabled
for synchronization are connected together. All trigger sources and all trigger modes can be used on synchronization as well.

Having positive edge of external trigger on card O to be the trigger source for the complete system needs the following setup:

spcm_dwSetParam 132 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_ EXTO) ;
spcm_dwSetParam i32 (hCard[0], SPC_TRIG EXTO MODE, SPC TM POS);

spcm_dwSetParam i32 (hCard[1], SPC_TRIG ORMASK, SPC_TM NONE) ;
spcm_dwSetParam i32 (hCard[2], SPC_TRIG ORMASK, SPC_TM NONE) ;
spcm_dwSetParam_ i32 (hCard[3], SPC_TRIG_ORMASK, SPC_TM NONE) ;

Assuming that the 4 cards are analog data acquisition cards with 4 channels each we can simply setup a synchronous system with all channels
of all cards being trigger source. The following setup will show how to set up all trigger events of all channels to be OR connected. If any of
the channels will now have a signal above the programmed trigger level the complete system will do an acquisition:

for (i = 0; 1 < 1SyncCount; i++)
{
int32 1AllChannels = (SPC_TMASKO CHO | SPC_TMASKO CH1 | SPC_TMASK CH2 | SPC_TMASK CH3);
spcm_dwSetParam i32 (hCard[i], SPC_TRIG_CH ORMASKO, 1lAllChannels);
for (j = 0; j < 2; j++)
{

// set all channels to trigger on positive edge crossing trigger level 100
spcm_dwSetParam i32 (hCard([i], SPC_TRIG_CHO_MODE + j, SPC_TM POS);
spcm_dwSetParam i32 (hCard[i], SPC_TRIG_CHO_ LEVELO + j, 100);

}

Run the synchronized cards

Running of the cards is very simple. The star-hub acts as one big card containing all synchronized cards. All card commands have to be
omitted directly to the star-hub which will check the setup, do the synchronization and distribute the commands in the correct order to all
synchronized cards. The same card commands can be used that are also possible for single cards:

Table 214: Spectrum API: star-hub synchronization commands

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above
M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some

internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the setftings can be
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER | 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER | 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

All other commands and settings need to be send directly to the card that it refers to.

(c) Spectrum Instrumentation GmbH 185

Option Star-Hub (M3i and M4i only) Software Interface

This example shows the complete setup and synchronization start for our four cards:

spcm_dwSetParam i32 (hSync, SPC_SYNC_ENABLEMASK, O0x000F); // all 4 cards are masked

// to keep it easy we set all card to the same clock and disable trigger
for (i = 0; 1 < 4; i++)
{
spcm_dwSetParam_i32 (hCard[i], SPC_CLOCKMODE, SPC_CM INTPLL);
spcm_dwSetParam i32 (hCard[i], SPC_SAMPLERATE, MEGA (100)) ;
spcm_dwSetParam i32 (hCard[i], SPC_TRIG ORMASK, SPC_TM NONE);
}

// card 0 is trigger master and waits for external positive edge
spcm_dwSetParam i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK EXTO) ;
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_EXTO MODE, SPC_TM POS);

// start the cards and wait for them a maximum of 1 second to be ready

spcmﬁdeetParamﬁi32 (hSync, SPC_TIMEOUT, 1000);

spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD START | M2CMD_CARD_ENABLETRIGGER) ;

if (spcm_dwSetParam_ i32 (hSync, SPC_M2CMD, M2CMD_CARD_WAITREADY) == ERR_TIMEOUT)
printf ("Timeout occured - no trigger received within time\n")

Using one of the wait commands for the Star-Hub will return as soon as the card holding the Star-Hub has
reached this state. However when synchronizing cards with different memory sizes there may be other cards &
that still haven’t reached this level.

SH-Direct: using the Star-Hub clock directly without synchronization

Starting with driver version 1.26 build 1754 it is possible to use the clock from the Star-Hub just like an external clock and running one or
more cards totally independent of the synchronized card. The mode is by example useful if one has one or more output cards that run con-
tinuously in a loop and are synchronized with Star-Hub and in addition fo this one or more acquisition cards should make multiple acquisitions
but using the same clock.

For all M2i cards is is also possible to run the ,slave” cards with a divided clock. Therefore please program a desired divided sampling rate
in the SPC_SAMPLERATE register (example: running the Star-Hub card with 10 MS/s and the independent cards with 1 MS/s). The sampling
rate is automatically adjusted by the driver to the next matching value.

What is necessary?

All cards need to be connected to the Star-Hub

The card(s) that should run independently can not hold the Star-Hub

The card(s) with the Star-Hub must be setup to synchronization even if it's only one card

The synchronized card(s) have to be started prior to the card(s) that run with the direct Star-Hub clock

Setup
At first all cards that should run synchronized with the Star-Hub are set-up exactly as explained before. The card(s) that should run inde-
pendently and use the Star-Hub clock need to use the following clock mode:

Table 215: Spectrum API: clock mode register and settings for SH Direct mode

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_SHDIRECT 128 Uses the clock from the Star-Hub as if this was an external clock

When using SH_Direct mode, the register call to SPC_CLOCKMODE enabling this mode must be written before
initiating a card start command to any of the connected cards. Also it is not allowed to be modified later in &
the programming sequence to prevent the driver from calculating wrong sample rates.

(c) Spectrum Instrumentation GmbH 186

Option Star-Hub (M3i and M4i only)

Software Interface

Example

In this example we have one generator card with the Star-Hub mounted running in a continuous loop and one acquisition card running inde-

pendently using the SH-Direct clock.

// setup of the generator card

// Setup of the acquisition card
spcm_dwSetParam i32 (hCard[1],
spcm_dwSetParam i32 (hCard[1],
spcm_dwSetParam i32 (hCard[1],
spcm_dwSetParam i32 (hCard[1],
spcm_dwSetParam_ i32 (hCard[1],

// now start the generator card (sync!)

spcm_dwSetParam_i32 (hSync,

spcm_dwSetParam i32 (hSync, SPC_M2CMD,

// start first acquisition
spcm_dwSetParam i32

// process data

// start next acquistion
spcm_dwSetParam_ i32

// process data

SPC_TIMEOUT,

(hCard[1], SPC_M2CMD, M2CMD CARD START

spcm_dwSetParam i32 (hCard[0], SPC_CARDMODE, SPC_REP STD SINGLE) ;

spcm dwSetParam i32 (hCard[0], SPC LOOPS, 0); // infinite data replay
spcm_dwSetParam_i32 (hCard[0], SPC_CLOCKMODE, SPC_CM INTPLL);

spcm_dwSetParam i32 (hCard[0], SPC_SAMPLERATE, MEGA(1));

spcm_dwSetParam i32 (hCard[0], SPC_TRIG ORMASK, SPC TM SOFTWARE) ;

spcm_dwSetParam i32 (hSync, SPC_SYNC_ENABLEMASK, 0x0001); // card 0 is the generator card

spcm _dwSetParam i32 (hSync, SPC_SYNC CLKMASK, 0x0001); // only for M2i/M3i cards: set ClkMask

(waiting for external trigger)
SPC_CARDMODE,
SPC_CLOCKMODE,
SPC_SAMPLERATE, MEGA(1));
SPC_TRIG ORMASK, SPC_TMASK EXTO);
SPC_TRIG EXTO MODE, SPC_TM POS);

SPC_REC_STD SINGLE);
SPC_CM_SHDIRECT) ;

first and then the acquisition card
1000) ;

M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER) ;

| M2CMD_CARD_ENABLETRIGGER | M2CMD CARD WAITREADY) ;

(hCard[1], SPC_M2CMD, M2CMD_CARD_ START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD WAITREADY) ;

Error Handling

The Star-Hub error handling is similar to the card error handling and uses the function spcm_dwGetErrorinfo_i32. Please see the example in
the card error handling chapter to see how the error handling is done.

(c) Spectrum Instrumentation GmbH

187

Mode Block Average (Firmware Option)

Overview

Mode Block Average (Firmware Option)

Overview

General Information
The Block Average Module improves the fidelity of any repetitive signal

by removing its random noise components. The Module allows multiple
single acquisitions fo be made, accumulated and averaged. The pro-

cess reduces random noise improving the visibility of the repetitive sig-
nal. The averaged signal has an enhanced measurement resolution and

increased signalto-noise (SNR) ratio. | Y

The complete averaging process is performed inside the FPGA of the
digitizer and involves no CPU load at all. Averaging also reduces the
amount of data that needs to be transferred to the host PC further reduc-
ing CPU demand and speeding up measurement times.

—

ADC Data ,\

Input
FIFO

-+

\ Average

— Memory

Output
FIFO

|

|

|

|

| Average Control: Loop + Segments

The Block Average mode is fully compatible with streaming (FIFO) mode

so that the digitizer can accumulate and average signals for hours or Trigger

days without losing a single event. The Module takes advantage of an
advanced trigger circuit, with very fast re-arm time, so that signals can
be averaged at ultra-fast rates going as high as 5 million events per second.

Image 80: block average FPGA option block diagram

The signal processing firmware also includes the standard digitizer firmware so that normal digitizer operation can be performed with no

limitations.

Principle of operation

In Block Average mode the ac- "
rigger

quisition works very similar to the
Multiple Recording mode. A/D Data
The memory is segmented and
with each trigger condition a pre-
defined number of samples, a
segment, is acquired.

— -«
Dead Time between
Consecutive Segments
Averaged Data

The Block A‘/eroge option now Image 81: block average FPGA option - principle of operation
takes a programmable number of

these acquired consecutive data

segments and averages them sample by sample over one another.

Dead Time between
Average Blocks

The result of one averaging operation is a segment with summed values, that has the same length as each original ,RAW" segments, but
each sample now consists of the sum of all samples of the averaged segment at the same location in relation to the trigger signal.

In order to get any meaningful results out of the Block Average operation, a repetitive signal is required along with a stable trigger condition.

(c) Spectrum Instrumentation GmbH

188

Mode Block Average (Firmware Option) Recording modes

Simplified Block Diagram

The following block diagram shows the general structure and data flows of the M4i/M4x/M5i based digitizer hardware. When running in
the standard digitizer configuration the signal processing block simply consists of a bypass, handing the input data to the memory controller
without further calculations.

ADC} > ;
Ch 0 O_’D_U Pretrigger Signal Memory On-Board

ch 1 ADC sl FIFO Processing Controller Memory
Y Firmware [\ L\
Ch 2 ADC » —]| Block] ¢—V
Ch 3 O—W »
-
. § Trigger
Trig 0 O—’l> * Detection
Trig 1 O—b[> >
Timestamp PCl Express
Counter Controller

FPGA -

=45

Image 82: simplified block diagram of FPGA structure with signal processing firmware block

Setting up the Acquisition

The Block Average mode allows the acquisition of data blocks)

with multiple trigger events without restarting the hardware. Pre:Post : :
With each trigger event, one segment will be acquired (as [] 1
shown) and the ,Segment” is then processed by the average : . .
firmware. The on-board memory will be divided into several Input NAAN nNAAN NoAan
segments of the same size to hold the processed data. Each seg- \RrRace YpEanene jtaives
ment will be filled with data from the Averager, if the defined

number of triggered segments have been acquired. Memory
As this mode is totally controlled in hardware there is a very

small re-arm time from end of one segment until the trigger de-

tection is enabled again. You'll find that re-arm time in the tech-
nical data section of this manual.

Trigger

AN NINNAANNAN
Juvvuvu UUUUUIUUU\Jul

< Segment —
Image 83: timing diagram of block average acquistion

The following table shows the register for defining the structure
of the segments to be recorded with each trigger event.

Table 216: Spectrum API: software registers and register settings for programming the block average mode

Register Value Direction Description
SPC_POSTTRIGGER 10100 read/write Defines the number of samples per channel to be recorded after the trigger event.
SPC_SEGMENTSIZE 10010 read/write Size of one triggered segment (in RAW samples) as well as the averaged segment (in 32bit samples).

The total number of samples to be recorded per channel after detection of one trigger event includes
the time recorded before the trigger (pre trigger = segmentsize - posttrigger).

SPC_AVERAGES 10050 read/write Defines the number of triggered segments that are averaged sample per sample over one another.

Each segment consist of pretrigger and posttrigger samples. The user always has to set the total segment size and the postirigger, while the
pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using Block Averaging the maximum pretrigger is limited depending on the number of active channels.
When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN. Please &
have a look at the table further below to see the maximum pretrigger length that is possible.

Recording modes

Standard Mode

With every defected trigger event one data block is filled with data. The length of one triggered segment is set by the value of the segment
size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.

(c) Spectrum Instrumentation GmbH 189

Mode Block Average (Firmware Option) Limits of pre trigger, post trigger, memory size

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Block Average. For detailed infor-
mation on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Table 217: Spectrum API: card mode registers and register settings for standard lock average mode

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode
SPC_REC_STD_AVERAGE 20000h Enables Block Averaging for standard acquisition with 32 bit wide result data.
SPC_REC_STD_AVERAGE_16BIT 80000h Enables Block Averaging for standard acquisition with 16 bit wide result data (8 bit cards only).

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.
FIFO Mode

The Block Averaging in FIFO Mode is similar to the Block Averaging in Standard Mode. In contrast to the standard mode it is not necessary
to program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block by the
driver as described under FIFO single mode example earlier in this manual. These blocks are online available for further data processing by
the user program. This mode significantly reduces the amount of data to be transferred on the PCI bus as gaps of no interest do not have to
be transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Block Averaging.

The advantage of Block Averaging in FIFO mode is that you can stream data online to the host system. You can make realtime data process-
ing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Block Averaging. For detailed
information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.The number of seg-

Table 218: Spectrum API: card mode registers and register settings for FIFO block average mode

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode
SPC_REC_FIFO_AVERAGE 200000h Enables Block Averaging for FIFO acquisition with 32 bit wide result data.
SPC_REC_FIFO_AVERAGE_16BIT | 400000h Enables Block Averaging for FIFO acquisition with 16 bit wide result data. (8 bit ADC cards only)

ments to be recorded must be set separately with the register shown in the following table:

Table 219: Spectrum API: block average mode loop register and register settings

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.
1..[4G-1] Defines the total averaged segments to be recorded.

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind, that each averaged sample needs either 2 bytes (16bit) or 4 bytes (32bit) of memory to be stored. The required size in memory
depends on the selected average mode. The 16bit modes are available only for cards that have RAW 8bit ADC samples. Minimum memory
size as well as minimum and maximum post trigger limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops.

(c) Spectrum Instrumentation GmbH 190

Mode Block Average (Firmware Option)

Trigger Modes

For cards with 12bit, 14bit and 16bit ADC resolution (firmware V14 and above):

Activated Used Memory size Pre trigger Post trigger Segment size Loops Number ofAverages
Channels Mode SPC_MEMSIZE SPC_POSTTRIGGER | SPC_SEGMENTSIZE SPC_LOOPS SPC_AVERAGES
Min | Max | Step | Min | Max | Step | Min Max Step | Min | Max | Step | Min | Max | Step | Min | Max | Step
— — — — —

1Ch Standard Average 132 [1G e T Ja |16 |16 | 128c16|16 |32 | 128] 16 not used 2 ek |1
FIFO Average not used 0 () | 4G-1 | 1

2Ch Standard Average (32 [512M 16 | 1o 1y Lhe | eas]ts |2 | oaie not used 2 |eak |1
FIFO Average not used 0 () | 4G-1 | 1

4Ch Standard Average [32 - [256M 16 |, 1o 116 |he | azcis]16 [a2 | a2]i6 not used 2 |eak |1
FIFO Average not used 0 () | 4G-1 | 1

For cards with 8bit ADC resolution, 32 bit data mode (firmware V14 and above):

Activated Used Memory size Pre trigger Post trigger Segment size Loops Number of Averages
Channels Mode SPC_MEMSIZE SPC_POSTIRIGGER | SPC_SEGMENTSIZE SPC_LOOPS SPC_AVERAGES
Min | Max | Step Min | Max | Step | Min Max Step | Min | Max | Step Min | Max | Step Min | Max | Step
e} ek ek et e ek

1Ch Standard Average J 64 [1G 132 Tao lac |32 [s2 |eas2|s2 fos | oak|32 not used 4 16M |1
FIFO Average not used 0= |4G-1]1

2 Ch Standard Average J o4 [s12M [32 o) 1o |5y fan [amaz|a2 fes | a2k a2 not used 4 |16M |1
FIFO Average not used 0 |4G-1]1

4Ch Standord Average J o4 [256M [32 o) 1o |5y fan [rekaz|a2 fes | 162 not used 4 |1em |1
FIFO Average not used 0 |4G-1]1

For cards with 8bit ADC resolution, 16 bit data mode (firmware V14 and above):

Activated Used Memory size Pre trigger Post trigger Segment size Loops Number of Averages
Channels Mode SPC_MEMSIZE SPC_POSTIRIGGER | SPC_SEGMENTSIZE SPC_LOOPS SPC_AVERAGES
Min | Max | Step | Min | Max | Step | Min Max Step | Min | Max | Step | Min | Max | Step | Min | Max | Step

1¢Ch Standard Average 64 | 2G 132 Yap [ek |32 |a2 | 128k32 |32 |i2s | 128k 6a not used 4 256 |1
FIFO Average not used 0o |4G-1]1

2Ch Standard Average f64 [1G [32 32 |8 |32 [32 64k32 (32 128 | o4k |64 not used 4 256 |1
FIFO Average not used 0fd |4G-1]1

4Ch Stondard Average [64 [s12m [a2 |00 1o 135 l32 | saca2|32 |i2s | a2k |es not used 4 |256 |1
FIFO Average not used 0fd |4G-1]1

Al figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = 8176 samples.

Trigger Modes

When using Block Averaging all of the card’s trigger modes can be used except the software trigger. For detailed information on the available
trigger modes, please take a look at the relating chapter earlier in this manual.

Output Data Format

When using Block Averaging mode the resulting samples will be, depending on the selected average mode, either 16bit signed integer values
(8bit ADC cards using AVERAGE_16BIT mode only) or 32bit signed integer values per channel, that each consist of the sum of a particular
sample over all averaged segments. The following table illustrates this with the first four of 'S+1’ samples of one channel
(AO, A1, A2, A3, ..., Ag) that are N times averaged (summed):

Table 220: Spectrum API: block average mode output sample format

Some|e5 of one segment with segment size S over fime

Triggered Segment No. 1 AO(1) Al(1) A2(1) A3(1) As(1)
Triggered Segment No. 2 A0(2) Al(2) A2(2) A3(2) Ag(2)
ffaggered Segment No. N ;A“O(N) Al (N) XZ(N) ;3(N) ;s(Nl
Resulting averaged Samples N N N N N
> A0() > AlL() > A() > A3(3) > AS(i)
i=1 i=1 i=1 i=1 i=1

So the resulting ,resolution” of the samples increases with the number of averages. For example averaging 16 bit RAW samples two times
results in a final resolution of 17 bit, averaging it four times results in a sample with 18 bit ,resolution”.

By not dividing down the samples by the number of averages in the firmware and providing the user application with the 32 bit/16 bit wide
sums, one can fake full advantage of the enhanced resolution by using proper data formats in the application software.

(c) Spectrum Instrumentation GmbH

191

Mode Block Average (Firmware Option) Data organization

Data organization

Data is organized in a multiplexed way in the transfer buffer the same way as the RAW samples would be. If using 2 channels data of first
activated channel comes first, then data of second channel:

Table 221: Spectrum API: block average mode data organization

Activated Channels ChO [Ch1 | Ch2 | Ch3 | Mode dependent 16bit or 32bit wide averaged samples ordering in buffer memory starting with data offset zero

1 channel X AO Al A2 A3 A4 A5 Ab A7 A8 A9 A10 [A11 | A12 | A13 | A4 | A15 | Al6
1 channel X BO B1 B2 B3 B4 BS B6 B7 B8 B9 B10 |B11 |B12 |B13 |B14 |B15 |B16
1 channel X co Cl C2 C3 C4 C5 Cé c7 Cc8 c9 C10 [C11 [C12 [C13 [C14 [C15 [C16
1 channel X DO D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 | D11 [D12 | D13 |[D14 (D15 [D1é
2 channels X X AO BO Al B1 A2 B2 A3 B3 A4 B4 A5 B5 Ab Bé A7 B7 A8

2 channels X X A0 [CO |Al Cl A2 |C2 |[A3 |C3 |[A4 |C4 |A5 |C5 |A6 |[C6 |A7 |C7 |A8

2 channels X X AO DO Al D1 A2 D2 A3 D3 A4 D4 A5 D5 Ab Dé A7 D7 A8

2 channels X X BO |CO [B1 @ B2 Cc2 |B3 C3 |[B4 |C4 [B5 C5 |B6 |[Cé6 |B7 |[C7 |B8

2 channels X X BO DO B1 D1 B2 D2 B3 D3 B4 D4 B5 D5 Bé Dé B7 D7 B8

2 channels X X CO (DO |CI D1 C2 [D2 |C3 [D3 |C4 [D4 |C5 [D5 [C6& |[D6 [C7 |D7 [C8

4 channels X X X X AO BO CO DO Al Bl Cl D1 A2 B2 C2 D2 A3 B3 C3 D3 A4

The samples are re-named for better readability. AO is sample O of channel O, B4 is sample 4 of channel 1, and so on. The averaged samples
now just have a wider format of 32 bit/16 bit independent of the original RAW sample resolution.

Programming examples

The following example shows how to set up the card for Block Average in standard mode with 32 bit wide output data.

// define some parameters via variables

uint32 dwNoOfChannels = 28 // Two active channels

uint64 gwNumberOfSegments = 4; // four averaged segments will be acquired

uint64 gwSegmentSize = 1024; // Set the segment size to 1024 samples

uint64 gwPosttrigger = 768; // Set the posttrigger to 768 samples and therefore

// the pretrigger will be 256 samples
uint64 gwSetMemsize = gwSegmentSize * gwNumberOfSegments; // calculate memsize

// for averaging the number of bytes per sample is fixed to 4 (32 bit samples
// and memory for all channels is needed

uint64 gwMemInBytes = gwSetMemsize * sizeof (int32) * dwNoOfChannels;

void* pvBuffer = pvAllocMemPageAligned (gwMemInBytes) ;

// set up DMA transfer with the card
spcm_dwDefTransfer 164 (stCard.hDrv, SPCM BUF DATA, SPCM DIR CARDTOPC, 0, pvBuffer, 0, gwMemInBytes);

// configure acquisition

spcm_dwSetParam 132 (hDrv, SPC_CARDMODE, SPC_REC_STD_AVERAGE); // Enables Standard Averaging

spcm_dwSetParam i32 (hDrv, SPC_AVERAGES, 100); // 100 triggered acquisitions will be
// averaged for one output segment

spcm_dwSetParam i64 (hDrv, SPC_SEGMENTSIZE, gwSegmentSize);

spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, gwPosttrigger);

spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, gwSetMemsize) ;

spcm_dwSetParam i32 (hDrv, SPC_TRIG_EXTO_MODE, SPC_TM POS); // Set triggermode to ext. TTL mode (rising edge)
spcm_dwSetParam 132 (hDrv, SPC_TRIG ORMASK, SPC_TMASK EXT0); // and enable it within the trigger OR-mask

The following example shows how to set up the card for Block Average in FIFO mode.

// define some parameters via variables

uint64 qwNumberOfSegments = 256; // 256 averaged segments will be acquired
uint64 gwSegmentSize = 2048; // Set the segment size to 2048 samples
uint64 gwPosttrigger = 1920; // Set the posttrigger to 1920 samples and therefore

// the pretrigger will be 128 samples
// FIFO buffer setup not shown here for simplicity. See FIFO buffer setup in according chapter for details.

// configure acquisition

spcm_dwSetParam 132 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_AVERAGE); // Enables FIFO Averaging

spcm dwSetParam i32 (hDrv, SPC_AVERAGES, 100); // 100 triggered acquisitions will be
// averaged for one output segment

spcm_dwSetParam_ i64 (hDrv, SPC_SEGMENTSIZE, gwSegmentSize);

spcm_dwSetParam i64 (hDrv, SPC_POSTTRIGGER, gwPosttrigger);

spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, gwSetMemsize) ;

spcmﬁdeetParamﬁi64 (hDrv, SPC_LOOPS gqwNumberOfSegments) ;

spcm_dwSetParam i32 (hDrv, SPC_TRIG_EXTO MODE, SPC_TM POS); // Set triggermode to ext. TTL mode (rising edge)
spcm_dwSetParam 132 (hDrv, SPC_TRIG ORMASK, SPC_TMASK EXT0); // and enable it within the trigger OR-mask

(c) Spectrum Instrumentation GmbH 192

Mode Block Statistics (Firmware Option)

Overview

Mode Block Statistics (Firmware Option)

Overview

General Information

The Block Statistics and Peak Detection Module implements a widely
used data analysis and reduction technology in hardware. Each block
is scanned for its minimum and maximum peak and a summary date
set that includes the minimum, maximum, average, timestamps and
position information is stored in memory.

The complete Block Statistics and Peak Detection process is done in-

side the FPGA of the digitizer producing no CPU load at all. This data

reduction process decreases the amount of data that needs fo be trans-
ferred to the host PC further reducing CPU demand and speeding up

measurement times.

The signal processing firmware also includes the standard digitizer

firmware so that normal digitizer operation can be performed with no
limitations.

Waveform Block Statistics

300 my Position Maximum

Min Min
Detect [Pos
ADC Data ,\ T T

| /| FiFo Max Max
Detect

:> Output
FIFO |

Block Statistics

_.|

[statistics Control

|

Trigger| | Timestamp

Image 84: block statistics FPGA option block diagram

Information Set
Average Value
Minimum Value

250 mv/

200 mV

150 mv

100 my

50 my

Trigger Timestamp

Maximum Value)
h Maximum Value

Minimum Position
Maximum Position
Unused
TriggerTimestamp

Average

-50 my Position Minimum

Image 85: Overview of waveform block statistics information results

Minimum Value

64 Bit signed integer
16 Bit signed integer
16 Bit signed integer
32 Bit unsigned integer
32 Bit unsigned integer
32 Bit

64 Bit unsigned integer

The data will be processed per segment by the Block Statistic firmware and reduced to the shown information set. The timestamp data shown
here is the lower 64bit of the ,normal” timestamp mentioned in its own chapter in this manual. For convenience this timestamp is included in
the information set, so that it is not necessary to set up the EXTRA_DMA channels for separate timestamp transfer as mentioned in the times-

tamp chapter.

The timestamp value will stamp the trigger position, after the pre-rigger is recorded. The complete segment consisting of pre trigger and post
trigger is analyzed by the Block Statistics module afterwards. The positions of the minimum and maximum value shown in the drawing above
are counted in samples from the begin of the complete segment - ergo from the begin of the pre trigger.

To combine the timestamp value and the position, the pre trigger value needs to be considered accordingly:

[MinPos(X) in Segment(X)] = [Timestamp(X)] - [Pretrigger] + [Position Minimum(X)]

[MinPos(X+1) in Segment(X+1)] = [Timestamp(X+1)] - [Pretrigger] + [Position Minimum(X+1}]

This enables to properly correlate the positions in time and therefore also calculate the time difference between positions:

[Delta Minimum Position] = MinPos(x+1) - MinPos(X)

(c) Spectrum Instrumentation GmbH

193

Mode Block Statistics (Firmware Option) Recording modes

Simplified Block Diagram

The following block diagram shows the general structure and data flows of the M4i/M4x/M5i based digitizer hardware. When running in
the standard digitizer configuration the signal processing block simply consists of a bypass, handing the input data to the memory controller
without further calculations.

ADC} > ;
Ch 0 O_’D_U Pretrigger Signal Memory On-Board

ch 1 ADC sl FIFO Processing Controller Memory
Firmware
—N —N ¢—'\
Ch2 ADC . —| Block — |
Ch 3 O—W »
-
. § Trigger
Trig 0 O—’l> * Detection
Trig 1 O—b[> >
Timestamp PCl Express
Counter Controller

FPGA -

=45

Image 86: simplified block diagram of FPGA structure with signal processing firmware block

Setting up the Acquisition

The Block Statistic mode allows the acquisition of data blocks with mul-

tiple trigger events without restarting the hardware. Pre:Post ; !
With each trigger event one segment will be acquired (as shown) and Triaaer []] [
this ,Segment” is then processed by the statistics firmware. 99 : :
Inpu' ﬂ/\/\ﬂ ﬂ/&\nﬂ qﬂf:\/\ﬂ
These segments are of pre-defined length very similar to Multiple Record- A (L Ui

ing.

Memory Un\l[\v \;nu UnVﬂU“Vnul UnU[\\J VnU|

As this mode is totally controlled in hardware there is a very small re-
arm time from end of one segment until the trigger defection is enabled
again. You'll find that re-arm time in the technical data section of this ~ Segment -
manual.

Image 87: timing diagram of block statistics acquisition
The following table shows the register for defining the structure of the
segments to be recorded with each trigger event.

Table 222: Spectrum API: software registers and register settings for programming the block statistics mode

Register Value Direction Description
SPC_POSTTRIGGER 10100 read/write Defines the number of samples to be recorded per channel after the trigger event.
SPC_SEGMENTSIZE 10010 read/write Size of one segment. The total number of samples to be recorded per channel after detection of one
trigger event includes the time recorded before the trigger (pre trigger = segmentsize - posttrigger).
— — —

Each segment consist of pretrigger and posttrigger samples. The user always has fo set the total segment size and the postirigger, while the
pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN. Please

When using Block Statistics the maximum pretrigger is limited depending on the number of active channels. f
have a look at the table further below to see the maximum pretrigger length that is possible.

Recording modes

Standard Mode

With every defected trigger event one data block is filled with data. The length of one triggered segment is set by the value of the segment
size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.

(c) Spectrum Instrumentation GmbH 194

Mode Block Statistics (Firmware Option) Limits of pre trigger, post trigger, memory size

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Block Statistic. For detailed infor-
mation on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Table 223: Spectrum API: card mode registers and register settings for standard block statistics mode

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_STD_SEGSTATS 65536 Enables Segment Statistic for standard acquisition.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.
FIFO Mode

The Block Statistic in FIFO Mode is similar to the Block Statistic in Standard Mode. In contrast to the standard mode it is not necessary to
program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block by the driver
as described under FIFO single mode example earlier in this manual. These blocks are online available for further data processing by the
user program. This mode significantly reduces the amount of data to be transferred on the PCl bus as gaps of no interest do not have to be
transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Block Statistic.

The advantage of Segment Statistic in FIFO mode is that you can stream data online to the host system. You can make realtime data process-
ing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Segment Statistic. For detailed
information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Table 224: Spectrum API: card mode registers and register settings for FIFO block statistics mode

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_FIFO_SEGSTATS 1048576 Enables Block Statistic for FIFO acquisition.

The number of segments to be recorded must be set separately with the register shown in the following table:

Table 225: Spectrum API: block statistics mode loop register and register settings

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.
1..[4G-1] Defines the total segments to be recorded.

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. For each
segment and for each channel 32 bytes (256bit) of memory is needed to store the processed data. Minimum memory size as well as minimum
and maximum post trigger limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory.

(c) Spectrum Instrumentation GmbH 195

Mode Block Statistics (Firmware Option) Trigger Modes

For cards with 12bit, 14bit and 16bit ADC resolution:

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min | Max | Step Min Max Step Min ng Step Min ng Step Min | Max Stee ‘

1Ch Standard Statistics 32 |26 |16 16 8k 16 16 32k-16 [16 32 2G 16 not used

FIFO Statistics not used 16 8k 16 32 2G 16 0= |4G-1 |1
2Ch Standard Statistics 32 [i1c 16 16 8k 16 16 16k16 [16 32 16 |16 not used

FIFO Statistics not used 16 8k 16 32 G 16 0= |4G-1 |1
4Ch Standard Statistics 32 [512M |16 16 8k 16 16 8k16 |16 32 512M [16 not used

FIFO Statistics not used 16 8k 16 32 512M [16 0= |4G-1 |1

For cards with 8bit ADC resolution:

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min | ng | St@ Min ng Sk—g Min M&&e Min Max Step Min | Max Ste ‘

1Ch Standard Statistics 32 | 4G | 32 32 8k 32 32 64k-32 | 32 64 4G 32 not used

FIFO Statistics not used 32 8k 32 64 4G 32 0= |4G-1 |1
2 Ch Standard Statistics 32 | 2G | 32 32 8k 32 32 32k-32 | 32 64 2G 32 not used

FIFO Statistics not used 32 8k 32 64 2G 32 0= |4G-1 |1
4 Ch Standard Statistics 32 | 1G | 32 32 8k 32 32 16k-32 | 32 64 1G 32 not used

FIFO Statistics not used 32 8k 32 64 1G 32 0= |4G-1 |1

All figures listed here are given in samples. An entry of [8k - 18] means [8 kSamples - 16] = 8,176 samples.

Trigger Modes

When using Segment Statistic all of the card’s trigger modes can be used including software trigger, for ,,automatic continuous” acquisition.
For detailed information on the available trigger modes, please take a look at the relating chapter earlier in this manual.

Information Set Format

To simplify the access to the processed data in the information set the following structured type has been defined:

// --- define data structure for segment statistic mode
typedef struct

{

int64 1lAvrg: 64; // 8 bytes

intl6 nMin: 16; // 2 bytes

intl6é nMax: 16; // 2 bytes

uint32 dwMinPos: 32; // 4 bytes

uint32 dwMaxPos: 32; // 4 bytes

uint32 Unused: 32; // 4 bytes

uint64 qw Timestamp: 64; // 8 bytes

} SPCM SEGSTAT STRUCT CHx; // 32 bytes in total for one information set of one channel CHx

by setting a mode in the SPC_TIMESTAMP_CMD other than SPC_TSMODE_DISABLE. Please see timestamp chap-

When using the timestamp in any further processing, please make sure to also enable timestamp creation f
ter for further details.

Data organization

Data is organized in a multiplexed way in the transfer buffer similar to as the RAW samples would be in a non Statistic Mode such as Multiple
Recording. If using 2 channels data of first activated channel comes first, then data of second channel:

Table 226: Spectrum API: block statistics mode data organization

ﬂvated Channels § ChO | Ch1 | Ch2 | Ch3 | 32bytes informa_ﬁon set ordering in buffer memory s arting with da_ta offset zero
1 channel X AO Al A2 A3 A4 A5 Ab A7 A8 A9 A10 [A11 | A12 | A13 | A14 | A15 [Al6
1 channel X BO B1 B2 B3 B4 B5 Bé B7 B8 B9 B10 |B11 |B12 |B13 |B14 |B15 |B16
1 channel X co |[CI C2 |[C3 |C4 |[C5 |C6 [C7 |C8 |C9 |[CI10 |CI11 [Cl12 |C13 [Cl14 |C15 [Cl6
1 channel X DO D1 D2 D3 D4 D5 Dé D7 D8 D9 D10 | D11 [D12 | D13 |[D14 (D15 [D1é
2 channels X X AO BO Al B1 A2 B2 A3 B3 A4 B4 A5 BS A6 B6 A7 B7 A8
2 channels X X AO (6(0] Al Cl A2 C2 A3 C3 A4 C4 A5 C5 Ab Cé A7 c7 A8
2 channels X X AO DO Al D1 A2 D2 A3 D3 A4 D4 A5 D5 A6 D6 A7 D7 A8
2 channels X X BO ([0] B1 Cl B2 C2 B3 C3 B4 C4 B5 C5 Bé Cé B7 c7 B8
2 channels X X BO DO B1 D1 B2 D2 B3 D3 B4 D4 BS D5 B6 D6 B7 D7 B8
2 channels X X CO DO Cl D1 C2 D2 C3 D3 C4 D4 C5 D5 Cé Dé C7 D7 C8
4 channels X X X X A0 BO CO DO Al B1 Cl1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4

The samples are re-named for better readability. AO is the information set of the first segment of channel O, B4 is the information set fifth
segment of channel 1, and so on. The information sets now just have a wider format of 32bytes per segment per channel, independent of
the original RAW sample resolution.

(c) Spectrum Instrumentation GmbH 196

Mode Block Statistics (Firmware Option) Programming examples

Programming examples

The following example shows how to set up the card for Block Statistic in standard mode.

// define structure for more easy data access to all channels

typedef struct
{
SPCM_SEGSTAT_ STRUCT CHx pst_Channel[2];
} SPCM_SEGSTAT STRUCT_2CH;

// define some parameters via variables

uint32 dwNoOfChannels = 2; //
uint64 gwNumberOfSegments = 4; //
uint64 gwSegmentSize = 1024; //
uint64 gwPosttrigger = 768; //

//

Two active channels

four segments will be acquired

Set the segment size to 1024 samples

Set the posttrigger to 768 samples and therefore
the pretrigger will be 256 samples

uint64 gwSetMemsize = gwSegmentSize * gwNumberOfSegments; // calculate memsize

// for each information set the number of bytes is fixed to 32bytes

// and memory for all channels and all segments is needed

uint64 gwMemInBytes = gwNumberOfSegments * dwNoOfChannels * sizeof (SPCM SEGSTAT STRUCT CHX);
void* pvBuffer = (void*) pvAllocMemPageAligned (gwMemInBytes) ;

// configure acquisition

spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC REC STD SEGSTATS); // Enables Block/Segment Statistic
spcm_dwSetParam i64 (hDrv, SPC_SEGMENTSIZE, gwSegmentSize);
spcm_dwSetParam i64 (hDrv, SPC_ POSTTRIGGER, gwPosttrigger);
spcm_dwSetParam i64 (hDrv, SPC_MEMSIZE, gwSetMemsize) ;

// explicitly set timestamp mode to any other value than SPC_TSMODE_DISABLE
spcm_dwSetParam_ i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_ STARTRESET) ;

// set up DMA transfer with the card
spcm_dwDefTransfer i64 (stCard.hDrv, SPCM BUF DATA, SPCM DIR CARDTOPC, 0, pvBuffer, 0, gwMemInBytes);

// ... Card start and transfer start not shown here for simplicity

// casting the buffer for easy data access
SPCM_SEGSTAT_STRUCT_ZCH* ppstData = (SPCM_SEGSTAT_STRUCT_ZCH*) pvBuffer;

// read out data of every segment (Min, Max, and Average only to keep things simple)
for (uinté64 gwSegment = 0; gwSegment < gwNumberOfSegments; gwSegment++)
for (uint32 dwChannel = 0, (uint64) dwChannel < dwNoOfChannels; dwChannel++)
printf ("\nSegment %.2d: Min: %7.4d Max:%7.4d, TS:%16l1lx, Avrg; %f",

gwSegment,
ppstData[gwSegment] .pst_Channel [dwChannel] .nMin,
ppstData[gwSegment] .pst Channel [dwChannel] .nMax,
ppstData[gwSegment] .pst_Channel [dwChannel] .gw_Timestamp,
((double) (ppstData[dwSegment].pst_Channel [dwChannel].llAvrg) / (double) gwSegmentSize)) ;

(c) Spectrum Instrumentation GmbH 197

Option Embedded Server Accessing the Embedded Server

Option Embedded Server

The option turns the digitizerNETBOX/generatorNETBOX/hybridNETBOX in a powerful PC that al-

| g;?:ﬁ lows to run own programs on a small and remote data acquisition system. The device is enhanced
2 by more memory, a powerful CPU, a freely accessable internal SSD and a remote software develop-
l ment access method.
- . ' The digitizerNETBOX/generatorNETBOX/hybridNETBOX can either run connected to LAN or it can

run totally independent, storing/replaying data to/from the internal SSD. The original digitizerNET-
gzzge 88: diagram of Embedded Server op- BOX/generatorNETBOX/hybridNETBOX remote instrument functionality is still 100% available. Run-
ning the embedded server option it is possible to pre<calculate results based on the acquired data,
pre-calculate generator data, store acquisitions locally and to transfer just the required data or results parts in a client-server based software
structure. A different example for the digitizerNETBOX embedded server is surveillance/logger application which can run totally independent
for days and send notification emails only over LAN or offloads stored data as soon as it's connected again.

Access to the embedded server is done through a standard text based Linux shell based on the ssh secure shell.

Accessing the Embedded Server

Access to the Embedded Server is only available if that particular option is installed. As this option is a combination of hardware features
and software access a later update with that options needs some factory work. As long as no one uses the embedded server connection and
no programs are placed in the autostart folder, the device will behave just like a standard digitizerNETBOX, generatorNETBOX or
hybridNETBOXand can be used as a remote LXI device.

SSH Connection

The embedded server is accessed using a standard SSH (secure shell) connection. Please install a

; i ; ; A porrv et = -]
SSH client on your working system and connect to the device’s IP address (found in the Control =
Center) using port 22. Any SSH compatible client will do the job. e Bosc oo for e PuTTY sesin
Legang Speofythe destination you wart to connect to
T TE””K‘Z’:LDEM Host Name (or IP address) Port
. - Bel 192.168.169.22 2
An example for a Windows based SSH client is PUuTTY which shown on the right. B e oo
= Window Raw () Telet () Riogn @ SSH Seral
. . é‘;ﬁ:ﬂfe Load, save or defete a stored session
You may enter the login parameters here also and save a session for faster access. Transton saved Sesons
Selection
i cﬂﬂg:‘;:;’: Defaut Settngs Load
. _E:; Save
Login
Rlogin
Login is done using a separate user space with some restricted access to the system. A login as root e ———
isn't possible due fo security and system stability reasons. Please use the following default user set- T O CRjmeme
fings: oot beb Concel
Username embedded Image 89: SSH client connection to Embedded
Password embedded Server of DN2/DNé

After first login you should immediately change the password to a personal one using the command ,passwd”. Please keep in mind that it is
possible to reset the password using the web interface of the digitizerNETBOX/generatorNETBOX/hybridNETBOX. To fully secure access to
the device it is necessary to give a password to the web interface setup.

Mounting network folders

Network folders can be mounted and unmounted using the standard Linux mount/unmount command. Please note that you need root rights
to do a mounting/unmounting of a network folder. You get root rights for this command by using the ,sudo” command which gives you root
rights for some dedicated commands.

Mounting a test folder from a Windows server with active directory may look like this:

cd
mkdir tmp
sudo mount -t cifs //192.168.169.123/tmp tmp -0 user=YourUsername,domain=YourDomain, password=YourPassword

You may unmount the folder again with:

sudo umount tmp

Access to the /etc/fstab table is not available.

(c) Spectrum Instrumentation GmbH 198

Option Embedded Server Programming

Access to NTP (Network Time Protocol)

You access NTP with (requires firmware version V34 or newer):

sudo /usr/sbin/sntp -s de.pool.ntp.org

Editors

As a default there are two standard editors installed on the system:

e GNU nano

® vim

Installing packages

Any matching RPM modules can be installed to the system using root rights and the rpm packet manager:

sudo rpm -ihv mypackage.rpm

Programming

For general information on programming of the internal Spectrum cards please have a look through the complete manual. Programming the
cards inside the Embedded Server is 100% similar to programming of the cards of any other host system.

Accessing the cards

Depending on the type of digitizerNETBOX/generatorNETBOX/hybridNETBOX that you have there might be one or two cards installed in
the system. If two cards are installed then there is also a Star-Hub installed. Please refer to the chapter ,Introduction - Internal Digitizer Mod-
ules” or ,Introduction - Internal Generator Modules” respectively to see how many digitizers are installed in your digitizerNETBOX/genera-
torNETBOX/hybridNETBOX and whether a starhub is present or not.

As an example, for a DN2.491-16 you will find the information that you have 2 cards M2i.4912-exp and one Star-Hub installed. Accessing
these components is done with the following handles:

1st card: ,/dev/spcm0™
2nd card: ,/dev/spcml™
Star-Hub: ,syncO“

Examples

The home folder ,examples-cpp” contains all Linux based examples that are currently available. Please use and modify these examples for
your own programs as you like.

The subfolder ,netbox_embedded_server” contains some additional examples for using the embedded server features. The following exam-
ples are available:

Client/Server

A simple example showing the communication over TCP/IP between the digitizerNETBOX/generatorNETBOX/hybridNETBOX (server) and
the host PC (client). The server is running an acquisition in FIFO Multiple Recording mode and calculates minimum and maximum value from
every block. These results are then sent to the client program for further processing. In our example the results are simply printed to console.

Please change the TCP/IP settings inside the client program to your local settings to get it running.

simple rec fifo mail
This example will run a FIFO multi acquisition and send a mail for each acquired segment as a SBench6 - compatible binary file and text
header for that file. The example can easily be modified and used as a base for a monitoring application.

Please be sure to change the email seftings to a server and port settings that is available on your system.

Please keep in mind that a high trigger frequency will flood your mailserver with emails which might trigger some spam detection mechanisms.
You should therefore use this example only with single trigger events.

dbus
This is an example on how to connect to the digitizerNETBOX/generatorNETBOX/hybridNETBOX internal signals (currently only LAN state).

(c) Spectrum Instrumentation GmbH 199

Option Embedded Server Programming

Autostart

All executable files in the autostart folder will automatically be executed on system start-up. Please place any program in here that should run
automatically after powering the system. It is requested to use the ,fork()” command to continue a program or a service in the background if
multiple commands should be running.

The autostart feature can be turned off using the web interface in case that some failing program prevents the machine from starting.

LEDs

The digitizerNETBOX/generatorNETBOX/hybridNETBOX LEDs can be accessed using the special system command ,netbox_led_client”.
Calling this system command from inside a C++ program is shown in the client-server example.

The following commands will manipulate the Arm/Trig and Connected LEDs on the frontplate:

system ("netbox led client armgreen=1"
system ("netbox led client armgreen=0");
system ("netbox led client conngreen=1");
system ("netbox led client conngreen=0")

)i
).

;
7

(c) Spectrum Instrumentation GmbH 200

Appendix

Error Codes

Appendix

Error Codes

The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and
change the settings to run the program.

Table 227: Spectrum API: driver error codes and error description

error name value value error description
(hex) (dec.)

ERR_OK Oh 0 Execution OK, no error.

ERR_INIT 1h 1 An error occurred when initializing the given card. Either the card has already been opened by another process or
an hardware error occurred.

ERR_TYP 3h 3 Initialization only: The type of board is unknown. This is a critical error. Please check whether the board is correctly
plugged in the slot and whether you have the latest driver version.

ERR_FNCNOTSUPPORTED 4h This function is not supported by the hardware version.

ERR_BRDREMAP 5h The board index re map table in the registry is wrong. Either delete this table or check it carefully for double values.

ERR_KERNELVERSION 6h The version of the kernel driver is not matching the version of the DLL. Please do a complete re-installation of the hard-
ware driver. This error normally only occurs if someone copies the driver library and the kernel driver manually.

ERR_HWDRVVERSION 7h 7 The hardware needs a newer driver version to run properly. Please install the driver that was delivered together with
the card.

ERR_ADRRANGE 8h 8 One of the address ranges is disabled (fatal error), can only occur under Linux.

ERR_INVALIDHANDLE Sh 9 The used handle is not valid.

ERR_BOARDNOTFOUND Ah 10 A card with the given name has not been found.

ERR_BOARDINUSE Bh 11 A card with given name is already in use by another application.

ERR_EXPHW64BITADR Ch 12 Express hardware version not able to handle 64 bit addressing -> update needed.

ERR_FWVERSION Dh 13 Firmware versions of synchronized cards or for this driver do not match -> update needed.

ERR_SYNCPROTOCOL Eh 14 Synchronization protocol versions of synchronized cards do not match -> update needed

ERR_LASTERR 10h 16 Old error waiting to be read. Please read the full error information before proceeding. The driver is locked until the
error information has been read.

ERR_BOARDINUSE 11h 17 Board is already used by another application. It is not possible to use one hardware from two different programs at
the same time.

ERR_ABORT 20h 32 Abort of wait function. This return value just tells that the function has been aborted from another thread. The driver
library is not locked if this error occurs.

ERR_BOARDLOCKED 30h 48 The card is already in access and therefore locked by another process. It is not possible to access one card through
multiple processes. Only one process can access a specific card at the time.

ERR_DEVICE_MAPPING 32h 50 The device is mapped to an invalid device. The device mapping can be accessed via the Control Center.

ERR_NETWORKSETUP 40h 64 The network setup of a digitizerNETBOX has failed.

ERR_NETWORKTRANSFER 41h 65 The network data transfer from/to a digitizerNETBOX has failed.

ERR_FWPOWERCYCLE 42h 66 Power cycle (PC off/on) is needed to update the card's firmware (a simple OS reboot is not sufficient !)

ERR_NETWORKTIMEOQUT 43h 67 A network timeout has occurred.

ERR_BUFFERSIZE 44h 68 The buffer size is not sufficient (too small).

ERR_RESTRICTEDACCESS 45h 69 The access to the card has been intentionally restricted.

ERR_INVALIDPARAM 46h 70 An invalid parameter has been used for a certain function.

ERR_TEMPERATURE 47h 71 The temperature of at least one of the card’s sensors measures a temperature, that is too high for the hardware.

ERR_REG 100h 256 The register is not valid for this type of board.

ERR_VALUE 101h 257 The value for this register is not in a valid range. The allowed values and ranges are listed in the board specific docu-
mentation.

ERR_FEATURE 102h 258 Feature (option) is not installed on this board. It's not possible to access this feature if it’s not installed.

ERR_SEQUENCE 103h 259 Command sequence is not allowed. Please check the manual carefully to see which command sequences are possi-
ble.

ERR_READABORT 104h 260 Data read is not allowed after aborting the data acquisition.

ERR_NOACCESS 105h 261 Access to this register is denied. This register is not accessible for users.

ERR_TIMEOUT 107h 263 A timeout occurred while waiting for an interrupt. This error does not lock the driver.

ERR_CALLTYPE 108h 264 The access to the register is only allowed with one 64 bit access but not with the multiplexed 32 bit (high and low
double word) version.

ERR_EXCEEDSINT32 10%h 265 The return value is int32 but the software register exceeds the 32 bit integer range. Use double int32 or inté4
accesses instead, to get correct return values.

ERR_NOWRITEALLOWED 10Ah 266 The register that should be written is a read-only register. No write accesses are allowed.

ERR_SETUP 10Bh 267 The programmed setup for the card is not valid. The error register will show you which setting generates the error mes-
sage. This error is returned if the card is started or the setup is written.

ERR_CLOCKNOTLOCKED 10Ch 268 Synchronization to external clock failed: no signal connected or signal not stable. Please check external clock or try to
use a different sampling clock to make the PLL locking easier.

ERR_MEMINIT 10Dh 269 On-board memory initialization error. Power cycle the PC and try another PCle slot (if possible). In case that the error
persists, please contact Spectrum support for further assistance.

ERR_POWERSUPPLY 10Eh 270 On-board power supply error. Power cycle the PC and try another PCle slot (if possible). In case that the error persists,
please contact Spectrum support for further assistance.

ERR_ADCCOMMUNICA- 10Fh 271 Communication with ADC failed.P ower cycle the PC and try another PCle slot (if possible). In case that the error per-

TION sists, please contact Spectrum support for further assistance.

ERR_CHANNEL 110h 272 The channel number may not be accessed on the board: Either it is not a valid channel number or the channel is not

accessible due to the current setup (e.g. Only channel O is accessible in interlace mode)

(c) Spectrum Instrumentation GmbH 201

Appendix Error Codes

Table 227: Spectrum API: driver error codes and error description

error name value value error description
(hex) (dec.)
ERR_NOTIFYSIZE 111h 273 The notify size of the last spcm_dwDefTransfer call is not valid. The notify size must be a multiple of the page size of

4096. For data transfer it may also be a fraction of 4k in the range of 16, 32, 64, 128, 256, 512, 1k or 2k. For
ABA and timestamp the notify size can be 2k as a minimum.

ERR_RUNNING 120h 288 The board is still running, this function is not available now or this register is not accessible now.

ERR_ADJUST 130h 304 Automatic card calibration has reported an error. Please check the card inputs.

ERR_PRETRIGGERLEN 140h 320 The calculated pretrigger size (resulting from the user defined postirigger values) exceeds the allowed limit.
ERR_DIRMISMATCH 141h 321 The direction of card and memory transfer mismatch. In normal operation mode it is not possible to transfer data from

PC memory to card if the card is an acquisition card nor it is possible to transfer data from card to PC memory if the
card is a generation card.

ERR_POSTEXCDSEGMENT 142h 322 The posttrigger value exceeds the programmed segment size in multiple recording/ABA mode. A delay of the multiple
recording segments is only possible by using the delay trigger!

ERR_SEGMENTINMEM 143h 323 Memsize is not a multiple of segment size when using Multiple Recording/Replay or ABA mode. The programmed
segment size must match the programmed memory size.

ERR_MULTIPLEPW 144h 324 Multiple pulsewidth counters used but card only supports one at the time.

ERR_NOCHANNELPWOR 145h 325 The channel pulsewidth on this card can’t be used together with the OR conjunction. Please use the AND conjunction
of the channel trigger sources.

ERR_ANDORMASKOVRLAP 146h 326 Trigger AND mask and OR mask overlap in at least one channel. Each trigger source can only be used either in the
AND mask or in the OR mask, no source can be used for both.

ERR_ANDMASKEDGE 147h 327 One channel is activated for trigger detection in the AND mask but has been programmed to a trigger mode using an
edge trigger. The AND mask can only work with level trigger modes.

ERR_ORMASKIEVEL 148h 328 One channel is activated for trigger detection in the OR mask but has been programmed fo a trigger mode using a
level trigger. The OR mask can only work together with edge trigger modes.

ERR_EDGEPERMOD 14%h 329 This card is only capable to have one programmed trigger edge for each module that is installed. It is not possible to
mix different trigger edges on one module.

ERR_DOLEVELMINDIFF 14Ah 330 The minimum difference between low output level and high output level is not reached.

ERR_STARHUBENABLE 14Bh 331 The card holding the starhub must be enabled when doing synchronization.

ERR_PATPWSMALLEDGE 14Ch 332 Combination of pattern with pulsewidth smaller and edge is not allowed.

ERR_XMODESETUP 14Dh 333 The chosen setup for (SPCM_XO_MODE .. SPCM_X19_MODE) is not valid. See hardware manual for details.

ERR_AVRG_LSA 14Eh 334 Setup for Average LSA Mode not valid. Check Threshold and Replacement values for chosen AVRGMODE.

ERR_PCICHECKSUM 203h 515 The check sum of the card information has failed. This could be a critical hardware failure. Restart the system and
check the connection of the card in the slot.

ERR_MEMALLOC 205h 517 Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.

ERR_EEPROMLOAD 206h 518 Timeout occurred while loading information from the on-board EEProm. This could be a critical hardware failure.
Please restart the system and check the PCI connector.

ERR_CARDNOSUPPORT 207h 519 The card that has been found in the system seems to be a valid Spectrum card of a type that is supported by the driver

but the driver did not find this special type internally. Please get the latest driver from
www.spectrum-instrumentation.com and install this one.

ERR_CONFIGACCESS 208h 520 Internal error occured during config writes or reads. Please contact Spectrum support for further assistance.

ERR_FIFOHWOVERRUN 301h 769 FIFO acquisition:
Hardware buffer overrun in FIFO mode. The complete on-board memory has been filled with data and data wasn’t
transferred fast enough to PC memory.

FIFO replay:
Hardware buffer underrun in FIFO mode. The complete on-board memory has been replayed and data wasn't trans-

ferred fast enough from PC memory.

If acquisition or replay throughput is lower than the theoretical bus throughput, check the application buffer setup.

ERR_FIFOFINISHED 302h 770 FIFO transfer has been finished, programmed data length has been transferred completely.

ERR_TIMESTAMP_SYNC 310h 784 Synchronization to timestamp reference clock failed. Please check the connection and the signal levels of the refer-
ence clock input.

ERR_STARHUB 320h 800 The auto routing function of the Star-Hub initialization has failed. Please check whether all cables are mounted cor-
rectly.

ERR_INTERNAL_ERROR FFFFh 65535 Internal hardware error detected. Please check for driver and firmware update of the card.

Spectrum Knowledge Base

You will also find additional help and information in our knowledge base available on our website:

https://spectrum-instrumentation.com/support/knowledgebase/index.php

(c) Spectrum Instrumentation GmbH 202

Temperature sensors

Temperature sensors

The M4i/M4x card series has integrated temperature sensors that allow to read out different internal temperatures. Theses functions are also
available for the internal M4i cards inside the digitizerNETBOX, generatorNETBOX or hybridNETBOX series. In here the temperature can be
read out for every internal card separately.

Temperature read-out registers

Up fo three different temperature sensors can be read-out for each M4i and M4x card. Depending on the specific card type not all of these
temperature sensors are used. The temperature can be read in different temperature scales at any time:

Table 228: Spectrum API: temperature read-out registers of internal temperature sensors

Register Value Direction Description

SPC_MON_TK_BASE_CTRL 500022 read Base card temperature in Kelvin
SPC_MON_TK_MODULE_0O 500023 read Module temperature O in Kelvin
SPC_MON_TK_MODULE_1 500024 read Module temperature 1 in Kelvin
SPC_MON_TC_BASE_CTRL 500025 read Base card temperature in degrees Celsius
SPC_MON_TC_MODULE_O 500026 read Module temperature O in degrees Celsius
SPC_MON_TC_MODULE_1 500027 read Module temperature 1 in degrees Celsius
SPC_MON_TF_BASE_CTRL 500028 read Base card temperature in degrees Fahrenheit
SPC_MON_TF_MODULE_O 500029 read Module temperature O in degrees Fahrenheit
SPC_MON_TF_MODULE_1 500030 read Module temperature 1 in degrees Fahrenheit

Temperature hints

* Monitoring of the temperature figures is recommended for environments where the operating temperature can reach or even exceed the
specified operating temperature. Please see technical data section for specified operating temperatures.
* The temperature sensors can be used to optimize the system cooling.

22xx temperatures and limits

The following description shows the meaning of each temperature figure on the 22xx series and also gives maximum ratings that should not
be exceeded. All figures given in degrees Celsius:

Table 229: Spectrum API: temperature limits

Sensor Name Sensor Location Typi'cul figure at 25°C Maximum temperature
environment temperature

BASE_CTRL Inside FPGA 50°C £5°C 80°C

MODULE_O Inside ADC 60°C +5°C 90°C

MODULE_1 Amplifier FrontEnd 50°C +5°C 80°C

(c) Spectrum Instrumentation GmbH 203

DNé Temperature sensors

DN6 Temperature sensors

The DN6 digitizerNETBOX and generatorNETBOX products have additional temperature sensors on the interanl backplane.

The temperature can be read in different temperature scales at any time:

Table 230: Spectrum API: DN6 temperature sensor registers

Register Value Direction Description

SPC_NETBOX_TEMPERATURE1_K 400017 read Backplane sensor chip temperature in Kelvin
SPC_NETBOX_TEMPERATURE1_C 400018 read Backplane sensor chip temperature in Celsius
SPC_NETBOX_TEMPERATURE1_F 400019 read Backplane sensor chip temperature in Farenheit
SPC_NETBOX_TEMPERATURE2_K 400020 read Backplane card headroom temperature in Kelvin
SPC_NETBOX_TEMPERATURE2_C 400021 read Backplane card headroom temperature in Celsius
SPC_NETBOX_TEMPERATURE2_F 400022 read Backplane card headroom temperature in Farenheit

(c) Spectrum Instrumentation GmbH 204

Details on M4i/M4x cards /O lines

Details on M4i/MA4x cards 1/O lines

Multi-Purpose 1/O Lines

The MMCX Multi Purpose |/O connec-
tors (X0, X1 and X2) of the M4i/M4x
cards from Spectrum are protected
against over voltage conditions.

For this purpose clamping diodes of the
types CD1005 are used in conjunction
with a series resistor. All three 1/O lines
are internally clamped to signal ground
and to 3.3V clamping voltage. So when
connecting sources with a higher level
than the clamping voltage plus the for-
ward voltage of typically 0.6..0.7 V will
be the resulting maximum high-level lev-
el.

XQ/X1/X2 @

3.3V 3.3
A
=l
sl ~ Xa/X1/X2 1/0
== 7

X@/X1/X2 Output Enable

Image 90: electrical structure of multi-purpose 1/O lines

The maximum forward current limit for the used CD1005 diodes is 100 mA, which is effectively limited by the used series resistor for logic
levels up to 5.0V. To avoid floating levels with unconnected inputs, a pull up resistor of 10 kOhm to 3.3V is used on each line.

Interfacing with clock input

The clock input of the M4i/M4x cards is AC-coupled, sin-
gle-ended PECL type. Due to the internal biasing and a
relatively high maximum input voltage swing, it can be di-
rectly connected to various logic standards, without the
need for external level converters.

Single-ended LVTTL sources

All LVTTL sources, be it 2.5V LVTTL or 3.3V LVTTL must be
terminated with a 50 Ohm series resistor to avoid reflec-
tions and limit the maximum swing for the M4i card.

Differential (LV)PECL sources

Differential drivers require equal load on both the true
and the inverting outputs. Therefore the inverting output
should be loaded as shown in the drawing. All PECL driv-
ers require a proper DC path to ground, therefore emitter
resistors Rg must be used, whose value depends on the
supply voltage of the driving PECL buffer:

3.3V
~100 Ohm

50V
~200 Ohm

Vee - Vee 2.5V
Re ~50 Ohm

Interfacing with clock output

The clock output of the M4i/M4x cards is AC-cou-
pled, single-ended PECL type. The output swing of
the M4i/M4x clock output is approximately

800 mVpP.

Internal biased single-ended receivers
Because of the AC coupling of the M4i/M4x clock
output, the signal must be properly re-biased for the
receiver. Receivers that provide an internal re-bias
only require the signal to be terminated to ground by
a 50 Ohm resistor.

External | M4i Card

M4i Clk Input

o »
U 1@ nF

> o

|

|

T

|

2.5U LUTTL |
3.3V LUTTL

Sineuave :

|

I

>

[5o]

>

2.5U LUPECL
3.3U LUPECL
5.8U PECL

Re
| [50 |
[5e]

Image 91: electrical structure of clock inputs and potential interfacing circuits

3.3V LUPECL

M41 Card External
M41 Clk Output

- o)

1@ nF

— -

12 nF
S| S o internally
-l [© re-biased
- - Uce Uec

M41 Clk Output

Differential (LV)PECL receivers . N\

. ol =
Differential receivers require proper re-biasing and 1@ nF ~ | i >
likely a small minimum difference between the true 18 nF
and the inverting input fo avoid ringing with openre- 3.3V LUPECL S A NEas 2.5U LUPECL

iver i i i - [i 3.3V LUPECL
ceiver inputs. Therefore a Thevenin-equivalent can .
be used, with receivertype dependent values b.eu PECL
for R1, R2, R1" and R2'. - - -

Image 92: electrical structure of clock outputs and potential interfacing circuits
(c) Spectrum Instrumentation GmbH 205

Abbreviations

Abbreviations

Table 231: Abbreviations used throughout the Spectrum documents

Abbreviation Long Name Description

s Second

ms Milli Second 1/1000 second; 1 ms is the time between two samples when running at 1 kS/s

us (ps) Micro Second '1/\/1/000000 second or 1/1000 milli second; 1 ms is the time between two samples when running at 1

S/s
ns Nano Second é/;/OOOOOOOOO second or 1/1000 micro second; 1 ns is the time between two samples when running at 1
s

ps Pico Second 1/1000000000000 second or 1/1000 nano second

Sample One sample represents one data word that has been acquired on the same time position. Each sample con-
sist of either one byte (8 bit resolution) or two bytes (12, 14 and 16 bit resolution)

Byte The smallest storage unit

kB Kilo Bytes 1024 (2710) Bytes

MB Mega Bytes 1024 x 1024 (2/20) Bytes

GB Giga Bytes 1024 x 1024 x 1024 (2/30) Bytes

Hz Hertz 1 Hertz is one event/sample per second

kHz Kilo Hertz 1000 Hertz

MHz Mega Hertz 1000000 Hertz or 1000 kHz

GHz Giga Hertz 1000000000 Hertz or 1000 MHz

kS/s kilo Samples per Second 1000 samples per second

MS/s Mega Samples per Second 1000 kilo samples (1000000 samples) per second

GS/s Giga Samples per Second 1000 Mega samples (1000000000 samples) per second

PCle PCI Express The PCI Express bus is a point to point connection allowing full speed for every single slot. The Express bus is
freely scaling and is available with 1 lane (x1), 4 lanes (x4), 8 lanes (x8) and 16 lanes (x16)

PXI PCl eXtensions for Instrumentation Based on the CompactPCl 3U standard the PXI (PCI eXtensions for Instrumentation) enhancement was
defined especially for the measurement user. In this specification additional lines for measurement purposes
are defined.

PXle PXI Express PXI Express or PXle is a subset of the PXI standard that replaces PXI’s parallel data bus with a high speed
serial interface.

PLL Phase Lock Loop A clock device which generates a new clock phase-locked to a given reference clock.

LED Light-Emitting Diode A semiconductor device that emits light and is often used as a status light or indicator.

API Application Programming Interface A type of software interface, offering a service to access/control specific hardware or other pieces of soft-
ware.

CPU Central Processing Unit The central processor of a computer/PC system.

GPU Graphics Processing Unit An co-processor specifically tailored for fast and efficient and massively parallel calculations of certain data
structures. Often, but not exclusively, located on a separate PCle graphics card or co-processing card. s

CUDA Compute Unified Device Architecture A proprietary API for Nvidia GPUs to perform “general purpose” as in non-graphic related processing on
GPUs rather than the CPU.

DMA Direct Memory Access A method to transfer data directly between a device (card) and PC memory.

RDMA Remote Direct Memory Access A method to transfer data directly between two devices (cards).

RMA Return Manufacturer Authorization

WEEE Waste Electrical and Electronic Equipment)

(c) Spectrum Instrumentation GmbH 206

List of Figures

List of Figures

Image 1:
Image 2:
Image 3:
Image 4:
Image 5:
Image 6:
Image 7:
Image 8:
Image 9:
Image 10
Image 11
Image 12
Image 13
Image 14
Image 15
Image 16
Image 17
Image 18
Image 19

Image 20:
Image 21:
Image 22:
Image 23:
Image 24:
Image 25:
Image 26:
Image 27:
Image 28:
Image 29:
Image 30:
Image 31:
Image 32:
Image 33:
Image 34:
Image 35:
Image 36:
Image 37:
Image 38:
Image 39:
Image 40:
Image 41:
Image 42:
Image 43:
Image 44:
Image 45:
Image 46:
Image 47:
Image 48:
Image 49:
Image 50:
Image 51:
Image 52:
Image 53:
Image 54:
Image 55:
Image 56:
Image 57:
Image 58:
Image 59:
Image 60:
Image 61:
Image 62:
Image 63:
Image 64:
Image 65:
Image 66:
Image 67:
Image 68:
Image 69:
Image 70:

Spectrum portable netbox DN2, 16 channel modeloooiiiiiii e 15
19" rack mount kit installed on DN2 netbox
19” NETBOX DN6 with installed 19" mounting handles
Spectrum type plate with all information found thereccoiiiiiiiii e
block diagram of internal digitizerNETBOX structure showing the auxiliary signal wiring
block diagram of internal digitizer MOdUleiiiiiiii e
airflow in DN2 chassis
airflow in DN6 chassis
Un-mounting the bumper feet to prepare for19” rack-mount Kit...........ccooiiiiiiiiiiiiee e
: Mounting the 19" rack-mount kit fo a DN2 chassis
: Mounting the 19" rack-mount kit to a DN6 chassis
: location of connectors and labels on the back-side of @ DN2 chassisc.coiiiiriiiiiiiiieie e
: location of connectors on a front-panel of @ DN2 Chassisoiiriiiriiiiiiiiiiee et
: location of connectors on a front-panel of @ DN2 chassiscccoveiiiiiiiiiiii e

: location of connectors on a front-panel of @ DNG chassiscovieriiiiiiiiiiiec e

: Windows screenshot: finding a remote Spectrum device like digitizerNETBOX
: Device Manager showing a new Spectrum cardcocooiiiiiiiiiiiii i

: Spectrum Kernel Driver, APl Library and Software structure.............cccooviiiiiiiiiiiiccee

: Spectrum Control Center INStAller.............ooiiiiii e

Spectrum Control Center showing detail card informationcccceoviiiiiiiniii e

Spectrum Control Center - enfering an IP address for a NETBOXcccooiiiiiiiiiiiiiiiicceccceee e

Spectrum Control Center: wake on LAN for a cached card............cccooiiiiiiiiiiii e

INEHDOX MONTIOr GEHVAHON ...ttt ettt ettt e
Spectrum Control Center: detailed hardware information on installed cardcooiiiiiiiiii
Spectrum Control Center - showing firmware information of an installed card
Spectrum Control Center - showing firmware information of an installed card
Spectrum Control Center - showing driver information details.............ooiiiiiiiiiinii e
Spectrum Control Center - adding a demo card to the sysstem
Spectrum Control Center - feature update, CoOde ENIYcoiiiiiiiiii et
Spectrum Control Center - software license installec.cooiiiiiiiiii e
Spectrum Control Center - running an on-board calibration
Spectrum Control Center - performing MEMOIY FEStc.uiiiieiiiiitieit ettt ettt ettt ettt ettt enae e e ene e e
Spectrum Control Center - running a transfer speed test of one card
Spectrum Control Center - activate debug logging for support cases
Spectrum Control Center - USiNg deVICE MAPPING ..veeiuvreiieieiiiie ettt ettt ettt ettt et et e et e et e e nee e e ennes
SBench 6 overview of main functionality with demo datacoiiiiiiiiii e
Structure of the Delphi exmaples
LabVIEW driver oscilloscope example...... ..o
SPECHTUM MATLAB AriVET SITUCIUTEvteee ettt ettt ettt ettt et h e bt ettt e st e et e bt ettt neeeneenneenne e
General concept of IVI drivers for Spectrum products. Access of different type of products
Spectrum API: using the input offset shifting to optimize the usage of the input rangecccooviiiiiiiiiii e
Spectrum API: effects of different input offset SEHINGcceiiiiiiiiii e
Spectrum API: input offset registers and available register setingscccooviiviiiiiiiiiiiiieeiee

Acquisition cards: graphical overview of acquisition status and card command interaction...................

Generation cards: graphical overview of generation status and card command inferaction

standard acquisition mode and pretrigger/postirigger/trigger relationccooeiieviiiiiiiiiieee,

Overview of buffer handling for DMA transfers showing and the interaction with the DMA engine
MAT/MAX ClOCK SECHON OVEIVIEW ... e

Trigger Engine Overview. Red marked parts not available on all card typescocoeeviiiiiiiiinn,

trigger engine overview with trigger OR mask shown.........cccooiiiiiiiiiiii e

trigger engine OR mask detailsc.ooiiiiiiiii e

trigger engine overview with trigger AND mask shownccoociiiiiiiiiinii i

trigger engine AND mask details..........cocooiiiiiiiiiiiii e

trigger engine overview with marked trigger delay stagecccccooiiiiiiiiiiiii

trigger engine overview with marked main external trigger ExtO/TrgOccuiiiiiiiiiiiiiieii e
trigger engine overview with external trigger Ext markedocciiiiiiiiiiii
trigger engine overview with channel trigger section marked
trigger overview with multi-purpose lines marked.............ccoiiiiiiii e
Drawing of Multiple Recording aCqUISIONoiiiriiiiiiiiii i
drawing of Multiple Recording Acquisition with Timestamps
Drawing of Gated SAmMPIING MOTEooiiiiiiiiie ettt ettt
Drawing of Gated Sampling mode and Timestamp POSIIONSoiiiiiiiii i
drawing of timestamp acquisition in standard mode in relation to card start and trigger detection
drawing of timestamp acquisition in start-reset mode in relation to card start and trigger detection
drawing of timestamp acquisition in refclock mode in relation to card start and trigger detectioncocoevveviriienncnne.
Overview of acquisition data, ABA data and timestamp data DMA transfer
drawing of Multiple Recording Acquisition with TIMESIAMPScvieriiiiiiiiiiieii et
Drawing of Gated Sampling mode and Timestamp POSIIONSiiiiiiiiii i
Drawing of ABA mode
overview of ABA mode data acquisition with slow A-data and fast B-datacccoeeiiiiiiiiiiiiniie i

(c) Spectrum Instrumentation GmbH 207

List of Figures

Image 71:
Image 72:
Image 73:
Image 74:
Image 75:
Image 76:
Image 77:
Image 78:
Image 79:
Image 80:
Image 81:
Image 82:
Image 83:
Image 85:
Image 84:
Image 86:
Image 87:
Image 88:
Image 89:
Image 90:
Image 91:
Image 92:

Overview of acquisition data, ABA data and timestamp data DMA transfer .. 169
Drawing of ABA MOTE.cuiiiiiiiiitieit ettt ettt ettt ettt ettt et bt b et a ettt ens o 172
overview block diagram of multi-purpose 1/O lines and pulse generatorscccoooiiiiiiiiiiiiici e 174
overview block diagram of the pulse Generator..............oociiiiiiiiiii e 175
timing diagram illustrating the basic pulse parametersccccooiiiiiiiiiii e .. 176
timing diagram illustrating delaying a pulse generator output 177
timing diagram illustrating the pulse generator triggered outpUE MOE........ccuiiiiiiiiiiiiii e
timing diagram illustrating the pulse generator single-shot triggered output mode

timing diagram illustrating the pulse generator gated outpUt MOoiiiiiiiiiiiiicc e
block average FPGA option block diagramooiiiiiiiiii e
block average FPGA option - principle of operation

simplified block diagram of FPGA structure with signal processing firmware block

timing diagram of block average acqUISHONcoiiiiiii i e

Overview of waveform block statistics information results
block statistics FPGA option block diagramccoouiiiiiiiii e

simplified block diagram of FPGA structure with signal processing firmware blockccccooiiiiiii 194
timing diagram of block statistics acquisition
diagram of Embedded Server 0pHONcouiiiiiii ittt

SSH client connection to Embedded Server of DN2/DINGoooeiiieieeeeeeeeeeeeeee e 198
electrical structure of multi-purpose 1/O lines
electrical structure of clock inputs and potential inferfacing CIrCUIS..........coviiiiiiei e 205
electrical structure of clock outputs and potential inferfacing Circuitsccoooiiiiiiiiiiiii i 205

(c) Spectrum Instrumentation GmbH 208

List of Tables

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19

Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:

Table 36
Table 37

Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:

Table 45

Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:

Table 54
Table 55

Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:

Table 63
Table 64

Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:

Symbols and Safety LADEISc.oiiiiiiiiiii ettt eae e 11
Packing List

overview of digitizerNETBOX models and internal digitizer modules............ccoooiiiiiiiiiiiiii e 16
Connector and label description on back-side of DN2 chassisc..cooiiiiiiiiiiiii e 32
Connector and LED description on front-side of DN6 chassis

Connector and LED description on frontside of DN2 chassis
location of connectors on a front-panel of @ DN2 ChaSsisoiiiiiiiiiiiiii ittt
Connector and LED description on front-side of DN2 chassis
Connector and LED description on frontside of DN6 chassis
: list of C/C++ header files in driVer...... ...
: C/C++ type declarations for drivers and examples
: C/C++ type naming convention throughout drivers and examples
: Spectrum driver APl functions overview and differentiation between 32 bit and 64 bit registerscccocoovvieviiniieniinnenne.
: Spectrum APl: Command register and basic COMMANGScoiiiiiiiiiii e
: Spectrum API: Card Type Registercccocvvvuivieniennnne.

: Spectrum API: list of card type codes for M4i.22xx series
: Spectrum API: list of card type codes for MAX.22XX SEIESeiuieruieieeieitie ettt ettt
: Spectrum API: hardware and PCB version register overview

: Spectrum API: extension module hardware and PCB version register
Spectrum API: register for reading back the PXle card slot number..........

Spectrum API: Register overview of firmware versionsccccccoee..

Spectrum API: Register overview of reading current firmware..................

Spectrum API: production date FEGISIET.ttt ettt ettt
Spectrum APl calibration date register.iiiiiiii e e
Spectrum API: hardware serial number register
Spectrum API: maximum sampling rate register
Spectrum API: installed memory registers. 32 bit read is limited to @ maximum of 1 GByteccceviiiiiiiiiicicce,
Spectrum API: Feature Register and available feature flagscccocoevveiiiiiiiiiiiiie

Spectrum API: Extended feature register and available extended feature flags
Spectrum API: register overview of miscellaneous cards information........
Spectrum API: register card function type and possible types
Spectrum API: register driver type information and possible driver types
Spectrum APl driver VErsion read FEGISIETiiiieiieie ettt ettt ettt ettt ettt ettt et ettt ettt ettt
Spectrum API: kernel driver version read register............ouiiiiiiiiiiiii e
Spectrum API: custom modification register and different bitmasks to split the register in various hardware parts ..
: Spectrum API: command register and reset COMMANGc..iiiiiiiiieit ettt ettt
: Spectrum API: digitizerNETBOX/generatorNETBOX specific registers and available information...........c..ccooveviiiiieiininnn.
Spectrum API: channel enable register and register setingsocceviiiiiiiiiieiiee
Spectrum APL: channel count registercouiiiirieriiii e
Spectrum API: registers for reading the installed input ranges from card EEPROM
Spectrum API: input range settings register and available vales depending on installed low-voltage option
Spectrum APl: AC/DC compensation register for offset settings with an AC coupled signalcccccoeiiiine

Spectrum API: register to read the analog input features and the meaning of the feature flags.........................

Spectrum API: AC/DC setup registers and available register seftingsccccoovveviiiiiiiniiiiceee e

: Spectrum API: anti-aliasing filter SEtUP register...........oiiiiiiiiiiiii e

Spectrum API: automatic offset compensation register and valid register SEHNGScooviiiiiiiiriiiieiieieieee e
Spectrum API: loading and storing calibration values to the EEPROMoooiiiiiiiiiiiiec e
Spectrum API: card mode and read out of available card mode software registers
Spectrum API: possible values for the card mode register. Description of the different card modes
Spectrum API: card command register and different commands with descriptionsccooviiiiiiieniic e
Spectrum API: timeout definition register...........oovuiiiiiieriii e
Spectrum API: card status register and possible status values with descriptions of the status ...
Spectrum APL: memory test reGistercouuiiiiiiiiiiiiiee e
: Spectrum API: Command register and commands for DMA transfers.......

: Spectrum API: status register and status codes for DMA data transfer
Spectrum API: card mode register and standard single mode Setupcooiiiiiiiiiii e
Spectrum API: memory size and posttrigger registers for standard single modecccooiiiiiiiiii
Spectrum API: card mode register and standard FIFO mode setup
Spectrum API: setup registers for standard FIFO MOdecciiiiiiiiiiiiiii e
Spectrum API: Limits of pre trigger, post frigger and MemMOrY SiZ€...........coiiiiiiiiiiiiiieicet e
Spectrum API: registers for DMA buffer handling.............ccoocoiiiiiiiiiiic e

Spectrum API: content of DMA buffer handling registers for different use cases
: M4i and M4x cards data organizationcoceevieiiieniene e
: data sample format in standard mode and with digital inputs enable.......
Spectrum API: data conversion registers and valid register seftings
Spectrum API: clock mode register and available clock modescccoooiiiiii
Spectrum API: clock mode register and internal clock mode............ccooiiiiiiiii
Spectrum API: samplerate register
Spectrum API: clock output and clock output frequency register
Spectrum API: maximum internal sampling rate depending on channel selection and modelcccoooiiiiiiiiiii,

(c) Spectrum Instrumentation GmbH 209

List of Tabl

es

Table 71
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89
Table 90:
Table 91:
Table 92:
Table 93:
Table 94:
Table 95:
Table 96:
Table 97
Table 98:
Table 99:

Table 100:
Table 101:
Table 102:
Table 103:
Table 104:
Table 105:
Table 106:

Table 107

Table 108:
Table 109:
Table 110:
Table 111:
Table 112:
Table 113:
Table 114:

Table 115

Table 116:
Table 117:
Table 118:
Table 119:
Table 120:
Table 121:
Table 122:
Table 123:

Table 124
Table 125

Table 126:
Table 127:
Table 128:
Table 129:
Table 130:
Table 131:
Table 132:

Table 133
Table 134

Table 135:
Table 136:
Table 137:
Table 138:
Table 139:
Table 140:
Table 141:

Table 142

: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:

Spectrum API:
Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
: Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
: Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
: Spectrum API:
: Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

special clock mode register and USAGEooouiiiiiiiiiie e .o 112
clock mode register and qUArz 2 SEHiNGSeeiiiiieriiiiie e . 112
clock output and clock output frequency register 112
clock oversampling readout FEGISTEriiiiiiiii e 112
clock mode register and external reference clock setup . 113
reference clock register and available sefiNgs............coiiiiiiiiiii i 113

clock output and clock output frequency registerooiiiiiiiiiiiii e
clock mode register and PXI reference clock usageccoviiiiiiiiiiiiiiii

general trigger OR mask register and available settings
channel trigger OR mask registers and available seftings.............cccooiiiiiiiiiiiii e 117

general trigger AND mask registers and available settings . 118
channel trigger AND mask registers and available settings 118
software register and register setting for software triggerccccooiiiiiiiiii 119
command register and force trigger command . 119
command register and trigger enable/disable command.............ccoociiiiiii 119

trigger delay registers and available setings..............ooiiiiiiiiiii e
trigger counter register and register return values

external trigger ExtO registers and register Setingsocuerieiiiiriioieiie ettt 121
external trigger ExtO OR mask SEHINGS.oouiiiiiiiiiiiiiii ittt 121
external trigger ExtO input termination .o 121
external trigger ExtO input COUPIINGeeuviiiiiiiii it 122
external trigger Ext1 registers and register setings...........ocvoiiuiiiiiiiiiiiiieeet e 122
external trigger Ext] OR mask SHINGS.......oiuiiiiiiiiiiiie ettt . 122
external trigger available settings for trigger levels.............occooiiiiiiiiiii o 122
external trigger OR mask and AND mask register and setfingsccccoooviiiiiiiiiiiiicieee .. 123
external register mode setup for trigger on positive €dgec.eoieriiiiiiiiiiie e .. 123
external register mode setup for trigger on negative edge...........ccceeviiiiiiiiiiiie e .. 123
external trigger register mode setup for trigger on positive and negative edge 124
external trigger register mode setup for trigger re-arm on positive €dgecccveriiiiiiiiieniiie e .. 124

external trigger register mode setup for trigger re-arm on negative edge............cccoceeviiiiiieniennnn, .. 124

external trigger register mode setup for window trigger for entering signalscccoooiiinn. .. 125

external trigger register mode setup for window trigger for leaving signalsccccccooviiiiiiiiiiniii 125

external trigger register mode setup for high level trigger............oocooiiiiiiiiiii
external trigger register mode setup for low level trigger............ooccooiiiiiiiiiiiiiii
external trigger register mode setup for in window trigger
external trigger register mode setup for outside window triggercoccoiiiiiiiiiiiii e 126
channel trigger OR mask register.........oouiiiiiiiiii it

channel trigger mode registers and available mode seftings
channel trigger level registers and available setingsccocooiiiiiiiiiiic
trigger level settings and related input trigger voltage in comparison to input range
trigGer [Vel COUNT FEGISIErttt ettt ettt e
channel trigger OR Mask Fegister..........couiiiiiiiieiti ettt
channel trigger register settings for positive edge trigger
channel trigger register settings for negative edge trigger
channel trigger register settings for positive and negative edge trigger............cocveviiiiiiiiiiiiiiee
channel trigger register settings for re-arm trigger on positive edge
channel trigger register settings for re-arm trigger on negative edge............ccooviiiiiiiiiiiii e

channel trigger register settings for window trigger for entering signalsccccoocoiiiiiiiiii, 131
channel trigger register settings for window trigger for leaving signalscccoooiiiiiiiiii 131
channel trigger register settings for high level frigger............ccoooiiiiiiiiiiii e 131

channel trigger register settings for low level trigger.............ccocooiiiiiiiiiiiiii
channel trigger register settings for in-window trigger
channel trigger register settings for outside-window triggerccuoviiriiiiiiiiiiiee e
register settings for channel hysteresis trigger on positive edgeccceevveiiiiiiniiiieiieeeee
register settings for channel hysteresis trigger on negative edge............cccoooiiiiiiiiiiiiiiiii
register settings for channel hysteresis re-arm trigger on positive edge
register settings for channel hysteresis re-arm trigger on negative edge............c.ocooeviiiiiiiiiiiiciece 134
register settings for high-level channel hysteresis frigger............ccccooiiiiiiiiiiii e
register settings for low-level channel hysteresis triggercccociiiiiiiiiiiiiiii e
multi-purpose 1/O lines registers and available register settingsccocceviiiiiiiniiiiiiiiece,
asynchronous |/O register settings of the multi-purpose /O registers

Spectrum API: additional trigger output register for compatibility with older hardwarecccoooveviiiiiiiiiii 136
: Spectrum API: multi-purpose 1/O register settings for setup as synchronous digital inputscccccoeviiiiiiiiiiiinie e 137
: data sample format in standard mode and with digital inputs enable..............cc.coooiiiiiiii 137
Spectrum API: software registers for Multiple Recording mode SEtUPocuiiiiiiiiiiiiie e 138
Spectrum API: card mode register and multiple recording SEMINGScc.eoiiiiiiiiiiieii e 138
Spectrum API: memory and loop registers with related multiple recording seftingscccooviiiiiiiiiiiiiii 138
Spectrum API: card mode register and multiple replay FIFO mode settings...........coouviiiieiiiiiiieiieese e 138
Spectrum API: loops register settings when using Multiple Replay FIFO mode............ccooiiiiiiiiiiiiiiiecc e, 139
Spectrum API: Limits of pre trigger, post trigger and MemOry SIZecccooiiiiiiiiiiiiiie e 139
Spectrum API: registers and seftings for Gated Sampling Modec.oooiiiiiiiiiiiiiei e 142
: Spectrum API: card mode register and settings for Gated Sampling standard mode............coeoiiiieiiiiiiie e 142

(c) Spectrum Instrumentation GmbH 210

List of Tables

Table 143
Table 144:
Table 145:
Table 146:
Table 147:
Table 148:
Table 149:
Table 150:
Table 151
Table 152
Table 153:
Table 154:
Table 155:
Table 156:
Table 157:
Table 158:
Table 159:
Table 160:
Table 161
Table 162:
Table 163:
Table 164:
Table 165:
Table 166:
Table 167:
Table 168:
Table 169
Table 170:
Table 171:
Table 172:
Table 173:
Table 174:
Table 175:
Table 176:
Table 177:
Table 178:
Table 179
Table 180:
Table 181:
Table 182:
Table 183:
Table 184:
Table 185:
Table 186:
Table 187
Table 188:
Table 189:
Table 190:
Table 191:
Table 192:
Table 193:
Table 194:
Table 195:
Table 196
Table 197
Table 198:
Table 199:
Table 200:
Table 201:
Table 202:
Table 203:
Table 204:
Table 205
Table 206
Table 207:
Table 208:
Table 209:
Table 210:
Table 211:
Table 212:
Table 213:
Table 214:

: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:
: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:

Spectrum API:

memsize and loops register and register settings for Gated Replay modecccooviiiiiiiiiiiiii 142
card mode register and Gated Sampling FIFO mode settings
Gated Sampling FIFO mode loops register SEHINGSccueiiiiiiiieiiiie et
Limits of pre trigger, post trigger and MemMOry SIZe..........ccioiiiiiiiiiiiiieii e
gate end alignement in Gated Sampling mode..............

trigger mask registers and available register settings
trigger register settings for trigger on positive @dgec.ooiiiiiiiiiiiiiiie e
trigger register settings for trigger on negative edge...........
trigger register settings for re-arm trigger on positive edge......
trigger register settings for re-arm trigger on negative edge
trigger register seftings for window trigger on entering signals
trigger register settings for window trigger on leaving signals...................

trigger register settings for high-level trigger ..o
trigger register settings for low-level triggerc.ooiiiiiiiiiii e
trigger register settings for in-window trigger
trigger register settings for outside-window trigger
channel trigger OR Mask reGister.........oiuiiiii et
trigger register mode and level setup for trigger on positive edge

trigger register mode and level setup for trigger on high level

trigger register mode and level setup for trigger on negative edge
trigger register mode and level setup for trigger on low level.................coo
trigger register mode and level setup for trigger on positive edge with re-arm level
trigger register mode and level setup for trigger on negative edge with re-arm level................cccocvin. 150
trigger register mode and level setup for trigger on signal entering windowcccociviiiiiiiine.
trigger register mode and level setup for trigger on signal leaving window ...
trigger register mode and level setup for trigger on signal inside windowcccoviiiiiiiiiiiniiie,
trigger register mode and level setup for trigger on signal outside windowcccociiiiiiiiiin.

trigger register mode and level setup for trigger on positive edge with hysteresisccccooeiiiiiinine. 152
trigger register mode and level setup for trigger on high level with hysteresiscccocooviviiiniiininnnn. 152
trigger register mode and level setup for trigger on negative edge with hysteresis.................ccocoie. 153
trigger register mode and level setup for trigger on low level with hysteresisccccooeiiiiiiiiiine. 153

trigger register mode and level setup for trigger on positive edge with re-arm level and hysteresis 153
trigger register mode and level setup for trigger on negative edge with re-arm level and hysteresis 154
timestamp related register and available timestamp commands
timestamp commands for standard mode.............ccooiiiiiiiiiiii

timestamp commands for StAr-reset MOAEc.iiiiiiiii ettt
timestamp commands for refclock modeccooiiiiiiiii
extra DMA commands (ABA and Timestamp)

Spectrum APUI: extra DMA status (ABA and Timestamp).....................

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

: Spectrum API:
: Spectrum API:

Spectrum API:
Spectrum API:

ABA and Timestamp DMA buffer handling registers
timestamp sample format for standard mode..................
timestamp sample format for extended mode.................
timestamp extra data word format
timestamp data format registerccooeviiiiiniinnnn
gate end alignement in Gated Sampling mode..............
timestamp command register and ABA mode settings
ABA mode relevant registers and register SEHINGSeeiiiiiiiiiiieiie ettt
card mode programming register and setup for ABA mode
memory size register and available register Sefingsooiiiiiiiiiiii e
card mode programming register and setup for ABA FIFO modecooouiiiiiiinieniiiiciecieeeee e
loops programming register and available register settings
Limits of pre trigger, post trigger and memory size............
extra DMA commands (ABA and Timestamp)

: Spectrum APUI: extra DMA status (ABA and Timestamp).....................
: Spectrum API:

ABA and Timestamp DMA buffer handling registers
timestamp command register and ABA mode SEHiNGScuieiiiiiiieiiieiiee i
pulse generator clock frequency read registercooiiiiiiiiiiiiee e
pulse generator enable registers
pulse generator length/period register
pulse generator HIGH Hime registers............eiuiiiiiieiieie ettt ettt ettt
pulse generator loops/pulse repetition registers............cccooveeeiieneiennne..

pulse generator delay/phase shift registersccoooviiniieniieniinninn

pulse generator mode registers with their available settings......................

pulse generator trigger MUX1 registers with their available settings
pulse generator trigger MUX2 registers with their available settings
pulse generator command register for trigger forcing by software................cooiii

Spectrum API: pulse generator additional configuration registers with the available settings

Spectrum API: XIO lines and mode software registers with their reduced to the settings required for outputting pulses 180
star-hub clock overview diagram ..o e 182
Spectrum API: star-hub related registers for reading detected connechons..............ccoooiiiiiiiiiiiiii e 183

Spectrum API:
Spectrum API:

synchronization enable mask register
star-hub synchronization ComMmMANSccooiiiiiiiiii e

(c) Spectrum Instrumentation GmbH 211

List of Tables

Table 215:
Table 216:
Table 217:
Table 218:
Table 219:
Table 220:
Table 221:
Table 222:
Table 223:
Table 224:
Table 225:
Table 226:
Table 227:
Table 228:
Table 229:
Table 230:
Table 231:

Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:
Spectrum API:

clock mode register and settings for SH Direct modeccooviiiiiiiiiiiiiiiiiiiceeeeeee ... 186
software registers and register settings for programming the block average mode . 189
card mode registers and register settings for standard lock average modecccccooviiiiiiiiiiii 190
card mode registers and register settings for FIFO block average mode................cocoiiiiiiiiiniiiiiii. 190
block average mode loop register and register seftings . 190
block average mode output sample format............cociiiiiiiiiiii e 191

block average mode data organizationooiiiiiiiiiii e
software registers and register seftings for programming the block statistics mode
card mode registers and register settings for standard block statistics modeccccoceiiiiiiiiiiiii
card mode registers and register settings for FIFO block statistics modecccoovviiiiiiiiiiiiiiiiee
block statistics mode loop register and register seftings
block statistics mode data organizZationc.iiiiiiiiiiie e
driver error codes and error desCriptioncc.iiiiiiiiiicii ettt
temperature read-out registers of internal temperature sensors
HEMPEIATUTE [IMIES ... ittt ettt ettt ettt ettt be ettt et
DING temPerature SENSOT TEGISIETSitteiiiiiiiiiit e e ettt e ettt e e ettt e e e e ettt e e e e e e eanibaeeeeeas

Abbreviations used throughout the Spectrum doCUMENTSocuiiiiiiiiii e

(c) Spectrum Instrumentation GmbH 212

) I\NT—\{
sPECTRUM WARRC

~ o
INSTRUMENTATION C’M“““

Spectrum Instrumentation GmbH

Ahrensfelder Weg 13-17 | 22927 Grosshansdorf | Germany
Phone +49 (0)4102-6956-0 | Fax +49 (0)4102-69 56-66
info@spec.de

SPECTRUM

INSTRUMENTATION CORP.

Spectrum Instrumentation Corp

401 Hackensack Ave, 4th Floor | Hackensack, NJ 07601 | USA

Phone +1 (201) 562-1999 | Fax +1 (201) 342-7598

sales@spectrum-instrumentation.com spectrum-instrumentation.com

	Table of Contents
	Safety Instructions
	Symbols and Safety Labels
	General safety information
	Requirements for users and duties for operators
	General safety at work

	Bringing the product into service
	Intended use
	Application area of the product
	Requirements for the technical state of the product
	Requirements for operation
	Electrical safety and power supply
	Requirements for the location
	Requirements on the ventilation
	Maintenance
	Repair/Service
	Cleaning the module housing (NETBOX devices, cables, amplifiers, systems only)
	Opening the module (NETBOX devices, amplifiers only)
	Dismounting parts of the card (instrument card only)

	Markings and Labelling

	Packing list
	Introduction
	Preface
	General Information
	digitizerNETBOX Overview
	Internal Digitizer Modules
	Differences between plain cards and digitizer modules inside the digitizerNETBOX
	Overview of digitizer modules inside the DN2.22x and DN6.22x digitizerNETBOX

	Different models of the DN2.22x series
	Additional options for DN2 products
	19“ Rack Mount Kit
	DC Power Supply

	Different models of the DN6.22x series
	Additional options for DN6 products
	19“ Rack Mount Kit

	AC Cable Options
	The Spectrum type plate
	Hardware information
	Block diagram of digitizerNETBOX DN2.22x and DN6.22x:
	Block diagram of a single internal digitizer module:
	DN2 / DN6 Technical Data
	Dynamic Parameters
	RMS Noise Level (Zero Noise)
	DN2 specific Technical Data
	DN6 specific Technical Data

	DN2 Order Information
	DN6 Order Information

	Hardware Installation
	Warnings
	ESD Precautions
	Opening the Chassis
	Cooling Precautions
	Sources of noise

	Installing 19“ rack mount option for DN2
	Installing 19“ rack mount option for DN6
	Setup of digitizerNETBOX/generatorNETBOX
	Connections
	Back Side DN2
	Front Panel DN2 digitizerNETBOX/generatorNETBOX
	Front Panel DN2 hybridNETBOX DN2.80x and DN2.81x
	Front Panel DN2 hybridNETBOX DN2.82x
	Front Panel DN6 digitizerNETBOX or generatorNETBOX
	Ethernet Default Settings

	Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX
	Discovery Function
	Finding the digitizerNETBOX/generatorNETBOX/hybridNETBOX in the network
	Troubleshooting

	Software Driver Installation
	Required Software for operation
	Location
	Windows
	Linux
	Overview
	Driver Installation with Installation Script
	Standard Driver Update
	Compilation of kernel driver sources (optional and local cards only)
	Update of a self compiled kernel driver
	Installing the library only without a kernel (for remote devices)
	Installation from Spectrum Repository
	Control Center

	Software
	Software Overview
	Card Control Center
	Discovery of Remote Cards, digitizerNETBOX/generatorNETBOX/hybridNETBOX products
	Wake On LAN of digitizerNETBOX/generatorNETBOX/hybridNETBOX
	Netbox Monitor
	Device identification
	Hardware information
	Firmware information
	Software License information
	Driver information
	Installing and removing Demo cards
	Feature upgrade
	Software License upgrade
	Performing card calibration (A/D only)
	Performing memory test
	Transfer speed test
	Debug logging for support cases
	Device mapping

	Accessing the hardware with SBench 6
	C/C++ Driver Interface
	Header files
	General Information on Windows 64 bit drivers
	Microsoft Visual C++ 6.0, 2005 and newer 32 Bit
	Microsoft Visual C++ 2005 and newer 64 Bit
	Linux Gnu C/C++ 32/64 Bit
	C++ for .NET
	Other Windows C/C++ compilers 32 Bit
	Other Windows C/C++ compilers 64 Bit

	Driver functions
	Delphi (Pascal) Programming Interface
	Driver interface
	Examples

	.NET programming languages
	Library
	Declaration
	Using C#
	Using Managed C++/CLI
	Using VB.NET
	Using J#

	Python Programming Interface and Examples
	Driver interface
	Examples

	Java Programming Interface and Examples
	Driver interface
	Examples

	Julia Programming Interface and Examples
	Driver interface
	Examples

	LabVIEW driver and examples
	MATLAB driver and examples

	Integrated Webserver
	Home Screen
	LAN Configuration
	Status
	Security
	Documentation
	Firmware Update
	Power
	Downloads
	Logging
	Access
	Embedded Server
	Login/Logout

	IVI Driver
	About IVI
	General Concept of the Spectrum IVI driver
	Supported Spectrum Hardware
	Supported data acquisition and generation card families:
	Supported digitizerNETBOX families
	Supported generatorNETBOX families

	IVI Compliance
	Supported Operating Systems
	Supported Standard Driver Features
	IVIScope Supported Class Capabilities
	IVIDigitizer Supported Class Capabilities
	IVIFGen Supported Class Capabilities

	Find more Information on IVI
	General Information on IVI
	IVI Getting Started Guides and Videos

	Installation
	Installer
	Shared Components
	Installation Procedure
	Installation of the IVI driver package

	Configuration Store
	General Information
	Repeated Capabilities

	Programming the Board
	Overview
	Register tables
	Programming examples
	Initialization
	Initialization of Remote Products
	Error handling
	Gathering information from the card
	Card type
	Hardware and PCB version
	Reading currently used PXI slot No. (M4x only)
	Firmware versions
	Production date
	Last calibration date (analog cards only)
	Serial number
	Maximum possible sampling rate
	Installed memory
	Installed features and options
	Miscellaneous Card Information
	Function type of the card
	Used type of driver
	Custom modifications

	Reset
	digitizerNETBOX/generatorNETBOX specific registers

	Analog Inputs
	Channel Selection
	Important note on channel selection

	Setting up the inputs
	Input ranges
	Input offset
	AC/DC offset compensation
	Read out of input features
	Input coupling
	Anti aliasing filter (Bandwidth limit)
	Automatic on-board calibration of the offset and gain settings

	Acquisition modes
	Overview
	Setup of the mode

	Commands
	Card Status
	Acquisition cards status overview
	Generation card status overview
	Data Transfer

	Standard Single acquisition mode
	Card mode
	Memory, Pre- and Posttrigger
	Example

	FIFO Single acquisition mode
	Card mode
	Length and Pretrigger
	Difference to standard single acquisition mode
	Example FIFO acquisition

	Limits of pre trigger, post trigger, memory size
	Buffer handling
	Data organization
	Sample format
	Converting ADC samples to voltage values
	Enabling hardware sample conversion to offset-binary

	Clock generation
	Overview
	Clock Mode Register
	The different clock modes

	Details on the different clock modes
	Standard internal sampling clock (PLL)
	Special Clock Mode
	Using Quartz2 with PLL (optional, M4i cards only)
	Oversampling
	External clock (reference clock)
	PXI Reference Clock (M4x cards only)

	Trigger modes and appendant registers
	General Description
	Trigger Engine Overview
	Trigger masks
	Trigger OR mask
	Trigger AND mask

	Software trigger
	Force- and Enable trigger
	Trigger delay
	Trigger Counter

	Main external window trigger (Ext0/Trg0)
	Trigger Mode
	Trigger Input Termination
	Trigger Input Coupling

	Secondary external level trigger (Ext1/Trg1)
	Trigger Mode
	Trigger level
	Detailed description of the external analog trigger modes

	Channel Trigger
	Overview of the channel trigger registers
	Channel trigger level
	Detailed description of the channel trigger modes

	Multi Purpose I/O Lines
	On-board I/O lines (X0, X1, X2)
	Programming the behavior
	Using asynchronous I/O
	Special behavior of trigger output
	Synchronous digital inputs

	Mode Multiple Recording
	Recording modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Multiple Recording and Timestamps

	Trigger Modes
	Programming examples

	Mode Gated Sampling
	Acquisition modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Gate-End Alignment
	Gated Sampling and Timestamps

	Trigger
	Detailed description of the external analog trigger modes
	Channel triggers modes

	Programming examples

	Timestamps
	General information
	Example for setting timestamp mode:

	Timestamp modes
	Standard mode
	StartReset mode
	Refclock mode

	Reading out the timestamps
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands
	Data format

	Combination of Memory Segmentation Options with Timestamps
	Multiple Recording and Timestamps
	Gate-End Alignment
	Gated Sampling and Timestamps
	ABA Mode and Timestamps

	ABA mode (dual timebase)
	General information
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Example for setting ABA mode:

	Reading out ABA data
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands
	ABA Mode and Timestamps

	Pulse Generator (Firmware Option)
	General Information
	Principle of Operation
	Setting up the Pulse Generator
	Enabling, disabling and resetting a pulse generator
	Defining the basic pulse parameters
	Delaying (phase shifting) the Outputs
	Defining the trigger behavior
	Configuring the pulse generator’s trigger source
	Configuring Multi Purpose lines to output generated pulses

	Programming Example

	Option Star-Hub (M3i and M4i only)
	Star-Hub introduction
	Star-Hub trigger engine
	Star-Hub clock engine

	Software Interface
	Star-Hub Initialization
	Setup of Synchronization
	Setup of Trigger
	Run the synchronized cards
	SH-Direct: using the Star-Hub clock directly without synchronization
	Error Handling

	Mode Block Average (Firmware Option)
	Overview
	General Information
	Principle of operation
	Simplified Block Diagram
	Setting up the Acquisition

	Recording modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	For cards with 12bit, 14bit and 16bit ADC resolution (firmware V14 and above):
	For cards with 8bit ADC resolution, 32 bit data mode (firmware V14 and above):
	For cards with 8bit ADC resolution, 16 bit data mode (firmware V14 and above):

	Trigger Modes
	Output Data Format
	Data organization
	Programming examples

	Mode Block Statistics (Firmware Option)
	Overview
	General Information
	Waveform Block Statistics
	Simplified Block Diagram
	Setting up the Acquisition

	Recording modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	For cards with 12bit, 14bit and 16bit ADC resolution:
	For cards with 8bit ADC resolution:

	Trigger Modes
	Information Set Format
	Data organization
	Programming examples

	Option Embedded Server
	Accessing the Embedded Server
	SSH Connection
	Login
	Mounting network folders
	Access to NTP (Network Time Protocol)
	Editors
	Installing packages

	Programming
	Accessing the cards
	Examples
	Autostart
	LEDs

	Appendix
	Error Codes
	Spectrum Knowledge Base

	Temperature sensors
	Temperature read-out registers
	Temperature hints
	22xx temperatures and limits

	DN6 Temperature sensors
	Details on M4i/M4x cards I/O lines
	Multi-Purpose I/O Lines
	Interfacing with clock input
	Interfacing with clock output

	Abbreviations
	List of Figures
	List of Tables

