

Erzeugen von AWG-Signalen durch Gleichungen in SBench 6

Arbitrary Waveform-Generatoren (AWG) zählen zu den leistungsstärksten Signalquellen für Testzwecke. Sie können unterschiedlichste Wellenformen erzeugen, um im Handumdrehen diverse Testereignisse zu realisieren.

Spectrum bietet zwei Baureihen von Arbitrary Waveform-Generatoren. Bei der ersten handelt es sich um die Baureihe M2i.60xx, die Abtastraten von bis zu 125 Megasamples/Sekunde (MS/s) und Signalbandbreiten von bis zu 60 MHz bei einer Amplitudenauflösung von 14 Bit bietet. Bei der zweiten handelt es sich um die neu eingeführte Baureihe M4i.66xx von Arbitrary Waveform-Generatoren, die neue Maßstäbe in puncto Bandbreite, zeitliche Auflösung und Amplitudenauflösung setzen. Die neuen Modelle der Baureihe M4i.66xx bieten einen, zwei und vier Kanäle, wobei über jeden Kanal elektronische Signale mit Abtastraten von bis zu 625 MS/s und 16 Bit vertikaler Auflösung ausgegeben werden können. Diese beiden AWG-Baureihen eignen sich ideal für die Erzeugung niedrig- und hochfrequenter Signale bis zu 200 MHz bei bestmöglicher Präzision und Signaltreue.

SBench 6 Formula Editor

Die ausgeklügelte Software-Anwendung SBench 6 unterstützt alle modularen Digitizern und AWG-Produkte von Spectrum. Für die AWGs bietet die Software SBench 6 einen Editor für die Erzeugung von Wellenformen mithilfe von Gleichungen (Bild 1).

Komponenten von Wellenformgleichungen

Dieser Anwendungshinweis gibt einen Überblick über die Regeln für die Erzeugung von Wellenformen und zeigt einige Beispiele im Detail. Am Anfang steht eine Übersicht über die in SBench 6 zur Verfügung stehenden Elemente zur Erzeugung von Wellenformen.

Konstanten

Zwei Konstanten sind vordefiniert:

e = eulersche Zahl = 2,7182... pi = Pi = 3,14159...

Benutzer können ihre eigenen Konstanten mithilfe der Funktion "const" definieren: const Lichtgeschw=299792458;

Kommentare

Kommentare lassen sich unter Verwendung der Zeichenfolgen /* und */ in die Formel einfügen (Kommentare in einer Form ähnlich der von Kommentaren in der Programmiersprache C).

Leerzeichen, Leerzeilen und Zeilenvorschübe lassen sich in die Struktur der Gleichung einfügen, um die Verständlichkeit zu verbessern.

Quellsignale

sig0(x) Wert des Quellsignals 0 sig1(x) Wert des Quellsignals 1

sig2(x) Wert des Quellsignals 2 sig3(x) Wert des Quellsignals 3

Operatoren

- + Addition
- Subtraktion
- * Multiplikation
- / Division
- % Modulo
- ^ Potenz
- & bitweises AND
- l bitweises OR
- description of the contract of the contract
- >> bitweise Verschiebung nach rechts

Funktionen

Alle nachstehend aufgeführten Funktionen erfordern ein Argument. Das Standardargument ist x (aktuelles Sample), das von Null bis [Länge – 1] verläuft. Das Argument kann auch mit einem anderen Ausdruck verändert werden. Dadurch lässt sich die Zeitbasis des resultierenden Signals beeinflussen.

Die bitweisen Funktionen AND, OR und SHIFT lassen sich nur für Signale und für andere bitweise Funktionen nutzen; sie lassen sich nicht für Funktionen nutzen.

Liste der Funktionen

sin(x)	Sinus
cos(x)	Kosinus
tan(x)	Tangens
asin(x)	Arkussinus
acos(x)	Arkuskosinus
atan(x)	Arkustangens
sinh(x)	Hyperbelsinus
cosh(x)	Hyperbelkosinus
tanh(x)	Hyperbeltangens

In(x) Natürlicher Logarithmus

abs(x) Absolutwert

Konditionale Funktionen

if (x, min, max) wenn $x \ge min$ und $x \le max$, dann ist das Ergebnis 1,0, anderenfalls null sign (x) —1,0 bei negativem Argument, oder +1,0 bei positivem Argument

tri (x,d) Dreieck mit d % einer ansteigenden Periode, die andere 100 – d% fallend rect (x,d) Rechteck mit d % einer hohen Periode, die andere 100 – d% niedrig

Beispiele für die Erzeugung von Wellenformen in SBench 6 mithilfe von Gleichungen

Die nachstehende Tabelle enthält zahlreiche Beispiele für Wellenformen, die mit Gleichungen unter Verwendung der oben aufgeführten Elemente erstellt wurden. Zu beachten ist, dass alle Gleichungen auf der Samplenummer, der durch das Symbol x repräsentiert wird, basieren. Dies führt zu Gleichungsargumenten, die in Form der Signalperiode ausgedrückt werden, was immer einer ganzzahligen Anzahl an Abtastungen entspricht. Die Zeitachse lässt sich durch Multiplikation des Abtastwerts mit der Abtastperiode bestimmen. Eine Anpassung der Abtastrate des AWG ermöglicht die Erzeugung eines beliebigen Frequenz- oder Zeitintervalls innerhalb der Wellenform-Speicherlänge und der Auflösungsgrenzen der Abtastrate.

Signalform	Allgemeine Gleichung	Beispiel
Positiver Sprung	If (x, X _D , X _{MAX}) X _D - Position des Sprung in Sample X _{MAX} – Länge des Signals in Sample	
	Beispiel: if (x,8192,16384)	-4 ms 0 s 4 ms 8 r
Negativer Sprung	1 - If (x, X ₀ , X _{MAX}) X ₀ - Position des Sprungs in Samples X _{MAX} – Länge des Signals in Samples Beispiel: 1-if (x,8192,16384)	
Positiver Puls	If (x, X _s , X _E) X _s – Position der führenden Flanke in Samples X _E – Position der abschließenden Flanke in Samples	
	Beispiel : if (x,6192, 10192)	-4 ms 0 s 4 ms 8 r

Signalform	Allgemeine Gleichung	Beispiel
Rechteck Pulsform	0.5+0.5 *sign (sin (2*pi*x/X _p))	· !
	X _p - Länge des Signals in Samples	- 1V - 0V
	Beispiel : 0.5+0.5*sign(sin (2*pi*x/1000))	-4ms 0s 4ms 8r
Bipolare Pulsform	rect (x/X _p d)	- !
	X _p - Länge des Signals in Samples	17
	d- Tastverhältnis in Prozent (%)	_ I I
		1V
	Beispiel : rect(x/1000,50)	-4ms 0s 4ms 8r
Rampe	x*(DV/DX) DV/DX – Steigung der Rampe in Volts/Samples	
		- 1V
	Beispiel : x*(1/16384)	-4ms 0s 4ms 8r
Verzögerte Rampe	$(x-X_D)^* (DV/DX)^* if(x, X_D, X_{MAX})$	
	X _D – Verzögerung in Samples	
	DV/DX – Steigung der Rampe in Volts/Samples X _{MAX} – Länge des Signals in Samples	I
	Beispiel : (x-6192)*(1/16384)*if(x,6192,16384)	-4ms 0s 4ms 8r

Signalform	Allgemeine Gleichung	Beispiel
Abgeschnittene Rampe (verzögert)	(x-X _D)* (DV/DX)* if(x, X _D , X _E)	- !
	X _D – Verzögerung in Samples	
	DV/DX – Steigung der Rampe in Volts/Samples	-
	X _E – Position der Endeflanke in Samples	<u>ov</u> !
		- 1
		1V
		-
	Beispiel: (x-6000)*(1/4000)*if(x,6000,10000)	-4ms 0s 4ms 8r
Negative Rampe	(x-X _D)* (-1*DV/DX)* if(x, X _D , X _E)	-
(abgeschnitten)	X _D – Verzögerung in Samples	
	DV/DX – Steigung der Rampe in Volts/Samples	i - i
	X _E – Position der Endeflanke in Samples	_ov
		-
		1V
		-
	Beispiel: (x-6000)*(-1/4000)*if(x,6000,10000)	-4ms 0s 4ms 8r
Periodisches	Tri (x/ X _p , d)	- !
Dreiecksignal	X _P - Länge des Signals in Samples	
	d – Tastverhältnis in Prozent (%)	
		_0V / !/ /
		Z-1V V V
	Beispiel : tri(x/1000,95)	-4ms 0s 4ms 8r
Sinus	sin(2*pi*x/X _p)	
	X _p - Länge des Signals in Samples	10
		1 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		<u> </u>
		-4ms 0s 4ms 8r
	Beispiel: sin(2*pi*x/1000)	

Signalform	Allgemeine Gleichung	Beispiel
Gated Sinus	sin(2*pi*x/ X _p) * if(x, X _S ,X _E)	- !
	X _P - Länge des Signals in Samples	
	X _S – Position des Starts in Samples	
	X _E – Position des Endes in Samples	<u> </u>
		1V
	Beispiel : sin(2*pi*x/1000)*if(x,6000,10000)	-4ms 0s 4ms 8r
Abnehmende	e ^ (-1*(x/X _{t)})	- 1
Exponentialfunktion	X _T – Exponentielle Zeitkonstante in Samples	
		_ov
		- 1
		1V
	Beispiel : e^(-1*(x/500))	-4ms 0s 4ms 8r
Verzögerte	(e ^ (-1*(x- X_D)/ X_t))* if(x, X_D , X_{MAX})	-
Abnehmende Exponentialfunktion	X _D – Verzögerung in Samples	_1V
	X _T – Exponentielle Zeitkonstante in Samples	_ \ i
	X _{MAX} – Länge des Signals in Samples	<u>ov</u>
	Beispiel:	1v
	(e^(-1*((x-6192)/500))) * if (x,6192,16834)	
		-4ms 0s 4ms 8r
Aufsteigende Exponential funktion	1-(e^(-1*(x/X _T)))	
	X _T – Exponentielle Zeitkonstante in Samples	_1V
		/
		Lov I
		-4ms 0s 4ms 8r
	Beispiel : 1-(e^(-1*((x)/500)))	וס צוווד פט צווודי

Signalform	Allgemeine Gleichung	Beispiel
Verzögerte	$(1-(e^{(-1*(x-X_D/X_T)))})* if(x,X_D,X_{MAX})$	- !
Aufsteigende Exponentialfunktion	X _D – Verzögerung in Samples	
	X _T – Exponentielle Zeitkonstante in Samples	_
	X _{MAX} – Länge des Signals in Samples	_ <u>ov</u> !
		- ' -1V
	Beispiel: 1-(e^(-1*((x-6192)/500)))) * if(x,6192,16384)	-4ms 0s 4ms 8r
Exponentielpuls	$(1-(e^{(-1*(x-X_S/X_T)))})* if(x,X_S,X_P) +$	- !
	$(e \wedge (-1*(x-X_p)/X_t))* if(x,X_pX_{MAX})$	
	X _T – Exponentielle Zeitkonstante in Samples	- ()
	X _{MAX} – Länge des Signals in Samples	_ov
	X _S – Startzeitpunkt des Pulses in Samples	- ' -1V
	X _p – Endzeitpunkt des Pulses in Samples	- 1
	Beispiel:	-4 ms 0 s 4 ms 8 r
	(1-(e^(-1*((x-6192)/500)))) * if(x,6192,8192)+	
	(e^(-1*((x-8192)/500))* if(x,8192,16384))	
Exponentiell	(e ^ (-1*(x/X _{t)})) * sin(2*pi*x/ X _p)	-
gedämpfter Sinus	X _T – Exponentielle Zeitkonstante in Samples	
	X _p - Länge des Signals in Samples	-1v
	Beispiel : e^(-1*(x/2500)) *sin(2*pi*x/500)	-4ms 0s 4ms 8r
Gauss-Puls	e^((-1/2)*((x-X _D)^2)/(Xs^2))	
	X _D – Mittlere Verzögerung in Samples	_1V
	Xs - Pulsbreite (sigma)	
		1V
	Beispiel : e^((-1/2)*((x-8192)^2)/(1000^2))	-4ms 0s 4ms 8r

Signalform	Allgemeine Gleichung	Beispiel
Amplituden- modulation	0.5*sin(2*pi*x/X _C)*(1+ K _M *f(x)) X _{C _} Länge des Carrier-Signals in Samples K _M – Modulation-Index 0 bis 1 F(x) – Modulationssignal	-1 V
	Beispiel: 0.5*sin(2*pi*x/250)*(1+(0.75*cos(2*pi*x/5000)))	-4ms 0s 4ms 8r
Sinus Amplitude- sweep	x*(DV/DX) * sin(2*pi*x/X _C) DV/DX – Steigung der Rampe in Volt/Samples X _{C –} Länge des Carrier-Signals in Samples	
	Beispiel : x*(1/16384)*sin(2*pi*x/250)	-4ms 0s 4ms 8r
Frequenz- modulation	Sin(2*pi*x/X _C +(X _M /X _{Dev})*cos(2*pi*x/X _M) X _C Carrier Länge des Signals in Samples X _M – Modulation Länge des Signals in Samples X _{Dev} – Period deviation in samples	
	Beispiel : sin(2*pi*x/250+(5000/500)*cos(2*pi*x/5000))	-4ms 0s 4ms 8r
Linearer Frequenz- sweep	Sin(pi*(2*(x/X _s)+(((1/X _E)-(1/X _S))/X _{MAX})*x^2)) X _S – Start-Länge des Signals in Samples X _E – End-Länge des Signals in Samples X _{MAX} – Länge des Gesamtsignals in Samples	- - - - - - - - -
	Beispiel : sin(pi*(2*(x/5000)+(((1/500)+ (-/5000))/16384)*x^2))	-4ms 0s 4ms 8r

Signalform	Allgemeine Gleichung	Beispiel
Logarithmischer Frequenz-sweep	$Sin*2*pi(X_{MAX}/ln(X_s/X_E)/X_s)*e^{((ln(X_s/X_E)/X_s)*x)-1)}$ $X_s - Start-Länge des Signals in Samples$ $X_E - Ende-Länge des Signals in Samples$ $X_{MAX} - Länge des Gesamtsignals in Samples$ $Beispiel:$ $sin(2*pi*(16384/ln(5000/500)/5000) * e^{((ln(5000/500)/16384)*x)-1)}$	-1V
Phasen modulation	Sin((2*pi*(x/X _C)+ K*Sin(2*pi*(x/X _M))) X _{C _} Länge des Carrier-Signals in Samples X _M – Länge des Modulations-Signals in Samples K– Peak phase excursion in Radiant	
	Beispiel : sin(2*pi*(x/500)+7* sin(2*pi*(x/5000)))	-4ms 0s 4ms 8r
Lorentzscher Puls	1/(1+((x-X _D)/(X _W))^2) X _D - Zeitverzögerung in Samples T _W – halbe Pulsbreite in Samples	-
Obere Halbwelle des Sinus	Beispiel: $1/(1+((x-8192)/500)^2)$ Abs(Sin(2*pi*x/ X _p)) X _p – des Signals in Samples	-4ms 0s 4ms 8r -1V
	Beispiel: Abs(Sin(2*pi*x/5000))	-4 ms 0 s 4 ms 8 r

Signalform	Allgemeine Gleichung	Beispiel
Abgeschnittene Sinus Halbwelle	0.5*(sin(2*pi*x/X _p)+Abs(Sin(2*pi*x/ X _p))) X _p – Länge des Signals in Samples Beispiel : 0.5*(sin(2*pi*x/5000)+Abs(Sin(2*pi*x/5000)))	- I
Sinc	sin((x-X _D)/X _p)/((x- X _D)/ X _p) X _D - Zeitverzögerung in Samples X _p – Länge des Signals in Samples Beispiel: sin((x-8192)/500)/((x-8192)/500)	