
Application Note

Closed Loop Test using a PC Digitizer and AWG
This application note shows the setup of a PC-based closed-loop using general purpose PCIe
Digitizers and AWGs in combination with plain C++ programming. Different setups have
been tested using Windows and Linux environment. The article also shows the differences in
latency when adding a GPU for processing power to the loop.

Target applications
There are different potential applications on the
market that need a low latency to make fast decisions
or to make fast modifications. These applications are
normally covered under the name "real-time"
applications. This name originally referred to hardware
based real-time applications, where you need a
defined and guaranteed response time to be sure that
your controlling setup is reacting in time to an external
stimulus. Some examples are found in automotive or
aerospace systems. However, the label "real-time" is
also often used as a synonym for "fast answer". In such
cases the interesting figure is the latency between
input and output (or the decision and response). This
article should be of interest for anyone involved in the
following target applications:

• Control loops: a controller type application
where the input is used as a base for the
output to control some external device or
devices.

• Decision making: reacting on an external event
by creating some kind of changed output.

• Manipulation loops: acquiring a signal, modify
the signal and then outputting it again.

• Stimulus response: generating a signal,
acquiring a response, analyzing it and making
a decision

Technical background
All Spectrum products are designed for fast FIFO mode data transfer, be it a Digitizer or an
AWG. A fast FIFO mode is based on optimized drivers that control the scatter-gather DMA
(direct memory access) process. Unfortunately, the demand for high throughput always
generates the need for the buffering of data. First, a fast DMA is based on large buffer size
transfers. This optimizes the relationship between the data transfer and the control
command overhead. Second, any external delay in the answering or response time can be
compensated by the large buffers. If the buffers are too small, the result is usually an overrun
or underrun of the FIFO buffers, which stops the FIFO transfer.

The classical approach for these applications is to have a real-time operating system with

© Spectrum GmbH, Germany 1/5

The test system consisting of an off-the-shelf Xeon Server
board, a Spectrum M4i.4451-x8 500 MS/s 14 Bit Digitizer,
a M4i.6622-x8 625 MS/s 16 Bit AWG and a Nvidia Quadro
P2000 GPU

Application Note

defined answer times and priority settings, matching real-time drivers and hardware that is
optimized for short latency (and not for highest throughput). An even faster solution would
be to have the complete process implemented in hardware (FPGA) without interaction by the
host system. However, sometimes these setups are just programming or cost overkill. FPGA
programming requires specific knowledge and the hardware often has limitations that
restrict a systems functionality and its data processing capability. Similarly, real-time systems
add the expense of a license for a real-time operating system and may restrict the access to
useful third-party software tools. In many cases setting up a closed-loop system that’s based
on Windows (or Linux) may prove to be more economical as well as being faster to
implement.

Test results for PC-based software (Windows)
To provide an indication of
what can be achieved for a
closed loop type system,
running under Windows, a
test system was configured
using a Spectrum M4i.4451-x8
digitizer and an M4i.6622-x8
AWG. Both cards are
externally connected. The
reference clock output of the
digitizer is used to feed the
reference clock input of the
AWG, providing clock
synchronization, and the
trigger output of the digitizer
is used to start the output of
the AWG. The AWG is pre-
loaded with some zero-data
which is replayed until the
data acquired digitizer data is
received. The size of the pre-
loaded data defines the
latency between acquired data and the looped data. The right hand block diagram shows
the setup.

Tests have been done on a Spectrum streaming system SPcB6-E6 running Windows 7
Professional

Speed Channels FIFO transfer software buffer notify size latency

500 MS/s 1 (14/16 Bit) 2 x 1 GByte/s 768 kByte 256 kByte 790 µs

250 MS/s 1 (14/16 Bit) 2 x 500 MByte/s 360 kByte 120 kByte 740 µs

125 MS/s 1 (14/16 Bit) 2 x 250 MByte/s 240 kByte 80 kByte 980 µs

62.5 MS/s 1 (14/16 Bit) 2 x 125 MByte/s 240 kByte 60 kByte 1,97 ms

500 MS/s 2 (14/16 Bit) 2 x 2 GByte/s 1.5 MByte 256 kByte 790 µs

250 MS/s 4 (14/16 Bit) 2 x 2 GByte/s 1.5 MByte 256 kByte 790 µs

© Spectrum GmbH, Germany 2/5

Application Note

As can be seen from the table, the best results have been achieved with a notify size for the
DMA transfer that splits the software buffer into 3 or 4 parts. The minimum notify size that
works stably is around 64 kByte. That limitation comes from the internal hardware buffers
whose size needs to be compensated by the software buffers. The results shown here are the
best performance that was reached for run-times of a minute.

Test results for PC-based software (Linux)
Same setup as above but using a Linux operating system.

Speed Channels FIFO transfer software buffer notify size latency

500 MS/s 1 (14/16 Bit) 2 x 1 GByte/s 2 MByte 256 kByte 2.1 ms

250 MS/s 1 (14/16 Bit) 2 x 500 MByte/s 1 MByte 128 kByte 2.1 ms

125 MS/s 1 (14/16 Bit) 2 x 250 MByte/s 512 kByte 64 kByte 2.1 ms

62.5 MS/s 1 (14/16 Bit) 2 x 125 MByte/s 512 kByte 32 kByte 2.1 ms

500 MS/s 2 (14/16 Bit) 2 x 2 GByte/s 4 MByte 256 kByte 2.1 ms

250 MS/s 4 (14/16 Bit) 2 x 2 GByte/s 4 MByte 256 kByte 2.1 ms

Results for GPU-based software (SCAPP option) under Linux
In a second test setup using an
M4i.4451-x8 digitizer and an
M4i.6622-x8 AWG a GPU is
added to the system. Again,
both cards are externally
connected with the reference
clock output of the digitizer
feeding the reference clock
input of the AWG and the
trigger output of the digitizer
starting the output of the
AWG. In this setup the GPU
directly receives and transmits
data using RDMA. The GPU
only copies the data once from
digitizer buffer to AWG buffer
with no manipulation. The
AWG is pre-loaded with some
zero-data which is replayed
until the acquired digitizer
data is received from the GPU.
The size of the pre-loaded
data defines the latency between acquired data and looped data

© Spectrum GmbH, Germany 3/5

Application Note

Speed Channels FIFO transfer software buffer notify size latency

500 MS/s 1 (14/16 Bit) 2 x 1 GByte/s 2.6 MByte 256 kByte 2.6 ms

250 MS/s 1 (14/16 Bit) 2 x 500 MByte/s 1.3 MByte 128 kByte 2.6 ms

125 MS/s 1 (14/16 Bit) 2 x 250 MByte/s 640 kByte 64 kByte 2.6 ms

62.5 MS/s 1 (14/16 Bit) 2 x 125 MByte/s 640 kByte 64 kByte 5.2 ms

500 MS/s 2 (14/16 Bit) 2 x 2 GByte/s 5.1 MByte 256 kByte 2.6 ms

250 MS/s 4 (14/16 Bit) 2 x 2 GByte/s 5.1 MByte 256 kByte 2.6 ms

As seen above the GPU setup needs more buffers to run stable. This is mainly due to the fact
that the Linux environment itself needs more buffers to compensate for background tasks.

Tests have been done on a Spectrum streaming system SPcB6-E6 running Linux

Results for GPU-based software under Windows
Under Windows there is no
direct data transfer (RDMA)
between digitizer/AWG and
GPU possible as the Nvidia
GPU driver doesn't support
this feature. Therefore data
has to be transferred to CPU
memory first, copied there
and then transferred to the
GPU. The manipulated data
has to take the same way
back. In general this adds
some latency and also adds
some more risks for
overrun/underrun as in total
four DMA transfers are
running for each block.

Speed Channels FIFO transfer software buffer notify size latency

500 MS/s 1 (14/16 Bit) 2 x 1 GByte/s 3 MByte 1 MByte 3.1 ms

250 MS/s 1 (14/16 Bit) 2 x 500 MByte/s 1.5 MByte 512 kByte 3.1 ms

125 MS/s 1 (14/16 Bit) 2 x 250 MByte/s 750 kByte 256 kByte 3.1 ms

As expected the closed-loop test results and stability are worst in that scenario. Doubling the
DMA transfers adds latency and adds the need for larger buffers to maintain stability and
avoid underruns or overruns.

© Spectrum GmbH, Germany 4/5

Application Note

Conclusion
Spectrum hardware is designed to achieve high data throughput, meaning the products use
large FIFO buffers. As such, the non-deterministic behavior of standard operating systems like
Windows or Linux doesn't offer perfect system performance when it comes to closed-loop
applications. This results in a trade-off between stability and latency performance. Although
the Spectrum hardware and driver allows very fast reaction times, with a latency in the sub-
ms range, stability is an issue when the operating system layer can’t guarantee the
mandatory answering times. During testing we encountered many system flaws that could
immediately end the running of a closed loop process. For example, just opening the browser
in a parallel operation took enough processor time from our loop to stop it running. So, for
demanding applications the best approach is to insure the operating system is performing as
few tasks possible in terms of running programs and background jobs.

Hints
The test programs are available as part of the examples package. Please note the following:

• Best performance is received with the release version of the program only, the debug
version will always have much worse results

• Any driver logging need to be de-activated

• The software development system needs to be closed to run the loop. The software
development GUI always monitors programs, even the release version, and therefore
degrades performance

• Close all other programs and services that may run in the background

• Please note that all these test results have been achieved with simple data copy only.
There was no calculation or manipulation on the data. It is expected that real-world
applications will need longer latency to run stable due to the additional calculation
time

• Please note that the results shown above are just the limit what can be achieved on
best circumstances. That is not a guaranteed performance. For critical applications
where an interruption would cause problems a large safety margin and extensive
tests would be needed

© Spectrum GmbH, Germany 5/5

	Closed Loop Test using a PC Digitizer and AWG
	Target applications
	Technical background
	Test results for PC-based software (Windows)
	Test results for PC-based software (Linux)
	Results for GPU-based software (SCAPP option) under Linux
	Results for GPU-based software under Windows
	Conclusion
	Hints

